Wood Anatomy of Some Korean Angiosperm (Ⅱ)

A Comparative Wood Anatomy of Juglandaceae

Sang-Jin Park, Ae-Kyung Kang, You-Jung Kim, Jae-Woo Kim, Jung-Suk Lee

ABSTRACT

Anatomical characteristics of genus Platycarya, Juglans and Pterocarya of Juglandaceae occurring in Korea were described and coded based on the IAWA list.

Juglandaceae are ring-porous or semi-ring-porous. Vessels have simple perforation plates and helical thickenings in some genus. Axial parenchyma cells were abundant, most apotracheal but rarely paratracheal and rays with 1-5 seriate.

Platycarya is ring-porous wood with 2-3 rows of vessels in the pore zone. Helical thickenings were found only in small vessel of latewood. Axial parenchyma were commonly diffuse-in-aggregates or vasicentric. Rays 3-5 seriate, belonging to Krics' heterogeneous I or II type with frequent occurrence of rhomboidal crystals. Juglans are semi ring-porous with few vessels in mm² and pores are commonly solitary. Axial parenchyma were diffuse-in-aggregate or marginal. Rays were mostly homocellular and 3-5 seriates. Pterocarya is similar to Juglans in anatomical features but the reticulate parenchyma consisting of 1 layer on transverse section and biseriate rays.

Keywords: Platycarya, Juglans, Pterocarya, ring-porous wood, semi-ring-porous wood, parenchyma, ray.

1. 緒 論


2. 재료 및 방법

글피나무属(Platycarya)에서 1종, 가래나무属(Juglans)에서 2종, 중국글피나무属(Pterocarya)에서 1종을 조사대상으로 하였으며, 숲명과 표본番호는 다음과 같다(Kyw:慶北大學校 木材標本番號, Friw:林業研究所 木材標本番號, Unk:番호 未附與木材標本番號).

가래나무과(Juglandaceae)
Platycarya:글피나무 P. strobilacea(Kyw 469, 566 :Friw 87, Unk)

Table 1. IAWA code number by the anatomical characteristics of Juglandaceae.

<table>
<thead>
<tr>
<th>Species</th>
<th>IAWA code no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platycarya strobilacea</td>
<td>1, 3, 6, 11, 13, 22, 25, 31, 36, 39, 43, 52, 61, 69, 72, 77, 79, 93, 98, 107, 108, 115, 136, 137, 189, 194, 197, 211, 218</td>
</tr>
<tr>
<td>Juglans sinensis</td>
<td>1, 4, 10, 13, 22, 25, 31, 42, 47, 53, 62, 68, 72, 76, 77, 79, 89, 93, 97, 104, 115, 189, 194, 197, 211, 218</td>
</tr>
<tr>
<td>Pterocarya stenoptera</td>
<td>1, 4, 5, 9, 13, 22, 23, 25, 30, 42, 47, 53, 62, 68, 72, 77, 87, 94, 97, 104, 115, 136, 138, 141, 189, 211, 218</td>
</tr>
</tbody>
</table>

Table 2. Variations in some quantitative wood anatomical characters and specific gravities of Korean Juglandaceae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Vessels</th>
<th>Wood fibers</th>
<th>Parenchyma</th>
<th>Rays</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tangential Length</td>
<td>No. per mm²</td>
<td>Pit diam. (μm)</td>
<td>Diameter (μm)</td>
</tr>
<tr>
<td>Code No.</td>
<td>±28</td>
<td>±69</td>
<td>±2.8</td>
<td>±2.8</td>
</tr>
<tr>
<td>Platycarya strobilacea</td>
<td>203</td>
<td>331</td>
<td>6.9</td>
<td>13.0</td>
</tr>
<tr>
<td>Juglans</td>
<td>±27</td>
<td>±78</td>
<td>±2.1</td>
<td>±3.1</td>
</tr>
<tr>
<td>J. mandshurica</td>
<td>152</td>
<td>414</td>
<td>10.9</td>
<td>25.6</td>
</tr>
<tr>
<td>J. sinensis</td>
<td>±12</td>
<td>±55</td>
<td>±1.6</td>
<td>±7.7</td>
</tr>
<tr>
<td>Average</td>
<td>±20</td>
<td>±66</td>
<td>±1.9</td>
<td>±5.4</td>
</tr>
<tr>
<td>Pterocarya stenoptera</td>
<td>±28</td>
<td>±561</td>
<td>6.8</td>
<td>23.1</td>
</tr>
</tbody>
</table>

Table 3. Variations in some quantitative wood anatomical characters and specific gravities of Korean Juglandaceae.
Fig. 1. *Platycarya strobilacea*, Cs. 70×. Ring-porous wood, latewood vessels in tangential and denticular pattern, and vessel clusters common.

Fig. 2. *Juglans mandshurica*, Cs. 70×. Semi-ring-porous wood, axial parenchyma diffuse-in-aggregates.

Fig. 3. *Pterocarya stenoptera*, Cs. 70×. Semi-ring-porous wood, axial parenchyma reticulate.

Fig. 4. *Platycarya strobilacea*, Rs. 150×. Body ray cells procumbent with mostly 2~6 rows of upright and/or square marginal cells.
Fig. 5. *Juglans mandshurica*, Rs. 150×. Helical thickening only in smaller vessel elements.

Fig. 6. *Pterocarya stenoptera*, Rs. 150×. All ray cells procumbent.

Fig. 7. *Platycarya strobilacea*, Ts. 150×. Ray width commonly 3–5 seriate.

Fig. 8. *Juglans mandshurica*, Ts. 150×. Ray width commonly 2–3 seriate.
Fig. 9. Pterocarya stenoptera, Ts. 150×. Ray
width commonly 1~2 seriate.
Notes: Cs : Cross section, Rs : Radial section.
Ts : Tangential section.

효가 분포한다. 방향성조직은 짧은 접선적 및 둘어질의
독립성조직의 이층적이다. 방향조직은 5~6세포층의
다수방향조직이다. IA9의 표준조사 형식에 의한 특
성번호는 표 1. 구성세포의 종류별 크기는 표 2와 같고
주요 조직특성은 그림 1~9에 나타내었다.

3. 1 골판커아무무(Platycarya)
골판커아무무는 우리나라에 골판커아무무 1종이 분포한다.
심재는 연한 갈색을 띠고 연령계수가 명확하며 비중은 0.6
 정도이다.

골판의 관절개수가 2~3열인 관절개이며, 관절의 의
형은 원형 혹은 타원형이다. 관절외 관절은 다각형이고
수~수 유의적이고 통합하여 접접적 혹은 둘어질로 되는 관
관절개를 나타낸다. 관절은 단락관이며, 관절의 꼭
관절내부에는 나선형관절이 가진다. 관절관절간 관절은 교차
적으로 그 크기는 6.9±2.8 미등이다. 관절의 방향조직
관절은 원형 혹은 타원형이다. 관절의 접선방향 직경
은 평균 203.0±28.8 미등이다. 관절의 중심격이는 331±69
미등이며 있다.

골판은 정지방성이고 담장의 겉은 940±172
미등이고, 직경은 13±2.3 미등으로서 직경이 작다. 방향성
조직은 짧은 접접적 혹은 둘어절의 스탠드로의 겉은
8.2±2.4 미등이고 형상은 가늘고 긴다. 방향조직은 3~5
세포층이며 평균 높이는 687±254 미등이며, 1mm당
방향조직의 평균 겉은 7±2.0 개 정도이다. 방향조직
의 구성세포는 평평세포와 그 상하에 2~6열의 방향세포
로 이루어지는 방향방성 혹은 방향방성. 평평세포의
방향세포 모두에는 흰색 꼬리의 분포한다.

3. 2 가래나무무(Juglans)
가래나무무와 노반과무와 2종이 있다. 심
재는 흰색을 띠고 흰색이고 반판개이다. 평균비중은
0.58 정도이다.

단면 상에서 관절의 직경이 길이에 정직적이고 반판개가
이나 관절의 배열이 약간 방사상의 경향이 있으며 1mm
당 관절의 분포수가 10.4±1.9개에 불과하다. 관절의 의
형은 원형 혹은 타원형이다. 관절대 관절이 대부분이나 드
물게 2~3개씩의 방향으로 관절대 관절이 관찰된다. 관절은 단
관절이며, 관절관절간 관절은 평균직경이 6.8±1.1 미등
로서 매우 작으며 교차적, 특히 다각형의 교차성 경우가
많다. 관절은 접선방향 평균직경은 163±20 미등이고 평균
직경은 452±66 미등 정도이다.

골판은 골판방성과방성이며 목측면의 평균직경은 925
±102 미등이고 평균직경은 21.5±5.4 미등이다.

방향성조직은 짧은 접접적, 접접적, 방향적, 수 방
직경이 분포하며 신체에 명확하게 관찰할 수 있다. 특히
연령계수의 1~3층의 방향성조직은 가느다란 선으로
나타난다. 방향성조직의 겉은 6~10개 정도로써
비교적 겉수가 많고 형태는 가늘고 긴다. 방향조직은
2~3 세포층이며 평균직경이 380±83 미등이다. 방향조직
의 구성세포는 노반과무와 대부분 평평세포만으로 이루
어진 방향방성으로 반하여 가래나무는 방향방성은 물론 가름
방향방성도 관찰할 수 있다. 1mm당 방향조직의 수는 8
±1.8 개 정도이다.

3. 3 중국골판커아무무(Pterocarya)
중국골판커아무무 1종이 도입되어 사용하고 있다. 심재의
구별이 거의 안되고 겉색은 백색과 가깝다. 평균비중은
0.48 정도로서 가볍고 연은.

연령계수가 명확하며 1mm 10개 관절의 겉수가 6.8±
1.1개 정도로서 관절의 분포수는 극히 적은 반판개이다.
관절의 접접방향 직경은 144±28 미등 정도이다. 관절
관절이 대부분이고 직경은 원형 혹은 타원형이다. 관절
要紜의 길이는 561±146μm이다. 관화는 실관화이다. 소관은 웅관화이다. 원관은 소관화이며, 산관의 크기는 6.1±1.4μm이고, 분관은 소관화이며 웅관화이며, 둥관은 소관화이다. 나관은 대부분 복관화이며, 원관은 소관화이며, 웅관화이며, 둥관은 소관화이다. 국관은 원관화, 둥관화이며, 나관은 소관화이다. 화관은 소관화이며, 웅관화이며, 나관은 소관화이다. 국관은 원관화, 나관은 소관화이며, 국관은 소관화이며, 나관은 소관화이다.

- 4. 结 論 -


参考文献

1. 金在慶. 1985. 韓國産 闊葉樹材의 放射組織에 관한 研究. 慶尚大. 博士學位論文: 1～142
3. 朴相珍, 李元用, 李華德. 1987. 木材組織과 識別. 鄉文社: 297～298
4. 朴相珍, 鄭愛慶, 金柔姬, 李哲範. 1994. 國産闊葉樹材 資源의 木材組織(1) - 소귀나무과 및 바드나무과 树材의 比較木部組織 -. 목재공학 22(4): 26～36
5. 李昌福. 1986. 新編 樹木學. 鄉文社: 129～131
6. 李昌福. 1994. 韓國産 木材의 構造. 正民社: 42～45