Preparation and Release Characteristics of Polymer-Reinforced and Coated Alginate Beads

  • Published : 1995.06.01

Abstract

Polymeric reinforcement and coatings of alginate beads were carried out to control the release rate of drug from alginate beads. A poorly water-soluble ibuprofen (IPF) was selected as a model drug. A commercially available $Eudragit^{\circledR}$ RS100 was also used as a polymer. Effects of polymeric contents, the presence of plasticizers and amount of drug loading on the release rate of drug were investigated. The release rate of drug from alginate beads in the simulated gastric fluid did not occur within 2 h but released immediately when dissolution media were switched to the simulated intestinal fluid. No significant difference of release rate from polymer-reinforced alginate bead without plasticizers was observed when compared to plain (simple) beads. However, the release rate of drug from polymer-reinforced alginate beads was further sustained and retarded when aluminium tristearate (AT) as a plasticizer was added to polymer. However, polyethylene glycol 400 (PEG400) did not change the release rate of drug from alginate beads although PEG400 was used to improve dispersion of polymer and sodium alginate, and plasticize $Eudragit^{\circledR}$ RS100 polymer. The presence of plasticizer was crucial to reinforce alginate gel matrices using a polymer. As the amount of drug loading increased, the release rate of drug increased as a result of decreasing effects of polymer contents in matrices. The significantly sustained release of drug from polymer-coated alginate beads occurred as the amount of polymer increased because the thickness of coated membrane increased so that cracks and pores of the outer surface of alginate beads could be reduced. The sustained and retarded action of polymer-reinforced and coated beads may result from the disturbance of swelling and erosion (disintegration) of alginate beads. From these findings, polymeric-reinforcement and coatings of alginate gel beads can provide an advanced delivery system by retarding the release rate of various drugs.

Keywords