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1. Introduction

Let E7* be the m-dimensional pseudo-Euclidean space with the stan-
dard flat metric given by

= —idw?+ }E dmf,

i=1 J=a+1

where (zy,:--,7m) is a rectangular coordinate system of E™. For a
positive number r and a point ¢ € E;*, we denote by S™"(c,r) and
H™ (¢, ~r), the pseudo-Riemannian sphere and the pseudo-hyperbolic
space defined respectively by

Smle,r)={z € E™ <z —c,z—c>=r?},

Hs":-_].l(c7 —7‘) = {m € E;nl <T—¢r—c>= ____,’.2}’

where <, > denotes the indefinite inner product on the pseudo-Euclidean
space. The point c is called the center of S™~1(c,r) and of H*7'(c, —r),
respectively. We simply denote S™!(0,1) and H*7'(0,~1) by S™~1
and H7', respectively. In physics, S™~! and E]* are known as de Sitter
space-time and the Minkowski space-time, respectively. We denote by
H™! the (connected) hyperbolic space, imbedded standardly in ET*, by

H™'!'={z € El*| < 2,2 >= -1 and t > 0},

where ¢t = 7, is the first coordinate of the Minkowski space-time E*. A
vector X in E}" is said to be space-like(respectively, time-like or light-like)
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if < X,X >> 0 or X = O(respectively,< X,X >< 0or < X, X >= 0
with X # 0).

Let x : M{® — E" be an isometric immersion of a pseudo-Riemannian
manifold M;* into ET*. Denote the position vector field of the immersion
r: M — ET aslo by z. Then we have the well-known Beltrami equation

(1.1) Ar = —nH,

where H is the mean curvature vector field of M* in ET".

In this paper, we investigate the submanifolds of Minkowski space-time
ET™ with constant mean curvature vector fields. As a result, we obtain
the following results :

THEOREM A. Let z : M — E{i;'"lz be a complete isometric immersion
with nonzero constant mean curvature vector field. Then

(a) M} is isometric to E}.

(b) M} is, up to congruences on E;f'lz , reparametrized by z : E} —
E?.:izy j'(ula' "t 7un) = (f(ula' b 7un)1u1)' ° ,ufhf(ula"' aun)) forsome
function f on E} with Af = —n. Conversely, such submanifold has
nonzero constant mean curvature vector field.

THEOREM B. Let M™ be a submanifold of the Minkowski space-time
E™. If M™ has nonzero constant mean curvature vector field, then

(a) the Ricci tensor of M™ is negative semi-definite,

(b) M™ is Ricci flat if and only if M™ lies in the (n + 2) -dimensional
Minkowski space-time E}*2.

2. Preliminaries

E}"; denotes the m-dimensional affine space with the metric § whose

canonical form 1is

-1, 0 0
0 Imws-j 0 3
0 0 0

where I is the k x k identity matrix and O; is the j x j zero matrix.
The metric is non-degenerate if and only if j = 0, in which case we write
E7 for ETy. In general, if M is an n-dimensional manifold whose tangent
spaces have a metric of signature (i,n—1—j,j) we write M, if j = 0, M[*
is called a pseudo-Riemannian manifold, and if j = ¢ = 0, M" is called
a Riemannian manifold. In this paper, we always assume that manifolds
are connected.
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Let z : M{* — ET* be an isometric immersion of a pseudo-Riemannian
manifold M{ into EJ*. V,V, D,k and A denote the Levi-Civita connec-
tion on (M7, g) , the flat connection on (E™, §), the normal conection on
the normal bundle of M, the second fundamental form and the Wein-
garten map with respect to £ in the normal bundle, respectively. Then we
have the following well-known formulae:

(a) VxY =VxY + h(X,Y),

(b) Vx€ = —A¢(X) + Dx¢,

(c) 9(A¢(X),Y) = §(h(X, V), €)

for any X,Y tangent to M and £ normal to M.

Note that H = itrace h is called the mean curvature vector of the
submanifold M of E*. If {e;,--- ,e,} is a local orthonormal frame of
the tangent bundle of M, then trace h = I ¢;h(e;, e;), where ¢; =
g(ei,ei) = xlfori=1,--- ,n. If H = 0, then M is called a minimal
submanifold of E}*. We may find the basic notations and formulae in [1,6).

3. Examples

In this section, we investigate the pseudo-Riemannian submanifolds in
E7 with nonzero constant mean curvature vector field and give some
examples.

LEMMA 3.1. Let z : M — ET* be an isometric immersion with
nonzero constant mean curvature vector H = z4. Then

(a) z¢ is a null vector, hence we havet < s —1 andn <m — 2.
(b) if m = n + 2, then we havet = s — 1 and h(X,Y) = a(X,Y)z,
for some (0,2)type tensor a.

Proof. (a) For any vector field X,Y tangent to M*, we have
0=Y < X,z0 >=< Vy X,z >=< h(X,Y), 20 > .

Hence we obtain

1
< zg,Tp >=< 29, H >= —T;E;;le,' < xg,h(e;,e) >=0,
where {e;, - ,e,} is an orthonormal frame field of M.

(b) Choose a normal vector field y of M in E;’I‘l'z so that < y,y >=0
and < zg,y >= —1. Since {z¢,y} spans the normal space of M in ET,
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we have h(X,Y) = a(X,Y)zo + B(X,Y )y for some (0,2)type tensors a, 5.
Note that

a(X,Y) = - < h(X,Y),y >= - < 4,(X),Y >
and
B(X,Y)=— < h(X,Y),z0 >= — < VxY,20 >=< Y,Vxz9 >= 0.
Thus the Lemma follows.

From Lemma 3.1, we know that no submanifolds of the Euclidean space

have nonzero constant mean curvature vector, that is, if a submanifold
of the Euclidean space has a constant mean curvature vector, then it is
minimal in the Euclidean space.
Example 3.2. Let M;' and M;;* be two submanifolds of EJ}* and E}}?
whose mean curvature vectors are Hy and Hj, respectively. Then M, x
M;}? is a submanifold of E71t™: whose mean curvature vector H is equal
to n1+n2(n1H1 @ nyH;). Therefore, if Hy and H, are constant and if
either H; or H, is nonzero, then H is a nonzero constant vector field.

Let L™_,(zo,€) be the null hypersection of S7+!(for e = 1) or Hyt}

—1
(for € = —1) in E?*?% defined by

Ly (zo,€) ={z € E;H'zl <z,z>=<1z,T9 >= €},

where z is a null vector in E**2. Then L?_, (2o, €) is a flat totally umbilic
submanifold of E?*? with constant mean curvature vector field H = —ezy.
More generally, we obtain the following :

PROPOSITION 3.3. Let z : M — E™*? be an isometric immersion
which also lies in S™*! (orH™'). Then the mean curvature vector field
of M? in ET%? is a nonzero constant vector if and only if M{* is a minimal

submanifold of a null hypersection LT ,(zo, €) in ET+2.

Proof. Let H' be the mean curvature vector of M in S™*! (or H*11),
then we have H = H' — ex. Suppose that H is a nonzero constant vector
Zg. Since zg is a null vector, we have < H', H' >= —eand < &, —exy >=¢.
Thus M is a minimal submanifold of the null hypersection LT (—exg, ).

Now suppose that M is a minimal submanifold of a null hypersection

LT %(2,€). Since {z, 0} spans the normal space of L7 *(zg,¢€) in E™,
we have H = az + Bz for some functions a, 8 on M ". Note that <

H,r >= -1 and < H,zo >= 0. Thus we obtain H = —ex,.
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4. Proofs of main theorems

Let M be a pseudo-Riemannian manifold of the pseudo-Euclidean
space E7*? with nonzero constant mean curvtre vector H = zo. Then
Lemma 3.1 implies that z¢ is null, s = ¢t + 1 and A(X,Y) = (X, Y )zo.
Note that ¢ is normal to M} at any point in M} and Dxzy = 0 for any
X tangent to My". If « is a unit speed curve in M} with a(0) = ¢ € M}
and if £(s) is a normal parallel translation of z, along a, then, by the
uniqueness of the normal parallel translation, we have £(s) = zo. Thus we
see that

Ed; < a(8) - g,z¢ >=< a'(s),zq >=< a'(s),£(s) >= 0.

And from the fact a(0) = q, we obtain
< a(s)—gq,z0 >=0.

That is, a(s) — ¢ € (Rzo)t = T,M @ Rz, where Rz = {txo]t € R}.
Since M is connected, we know that M C T,M @Rzo = E}F! (cf.
[3,5)).

Now we prove the main theorems :

Proof of Theorem A. (a) We may assume that zo = (1,0,---,0,1).
Then we have Et"'lH =T M@ Rzo = {21, ,Tn42)|21 = Tp42}- Let p:
E{:’f’l — E7 be the projection defined by p(z1, - ,Zn42) = (22, " , T4t
)- Then p is a linear map which preserves the inner product. Let U be a
coordinate neighborhood of M;* with coordinates (z;,---,,), then

<_é.. __a_>—-<x(_.§_.)z-(__q_)>
9z’ 0z; =~ T8z " Oz

=< p*(w*(%))’p‘(x*(%)) >

=< (Pos)(5m) (o)) >

Thus we see that poz : M — E[ is an isometric immersion. Since M}
is complete, we see that p o 2 is an isometry (see [6] pp.201-202).

(b) Note that zo(poz)™! : E} — E't";H 18 an isometric immersion and
that po (z o (poz)™!)is the identity map. Thus we have

(zo(pom)—l)(ula"’ ,un) = (f(uh 3un)1u1a"° 3unaf(ula"' ’un))'
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for some function f on E!. Let 7 be the reparametrization z o (po z)™!
of M. From the Beltrami equation (1.1) we have

Az = (Af,0,--- ,0,Af) = —nH = (-n,0,---,0,—n).

Hence we see that f is a function on E} satisfying Af = —n.
The converse is obivious.

Proof of Theorem B. (a) From Lemma 3.1(b), we see that M" is space-
like. Let {e1,---,€e,} be an orthonormal frame of M", then for any X,Y
tangent to M™ we have

Ric(X,Y) =tr(V = R(X,V)Y) =X, < R(X,e;)Y,e; >
=27 {< R(X,e;)Y,e; > + < h(X,Y), h(e;, €;) >
— < h(X,ei),h(Y,e;) >}
=27 {< W(X,Y), h(ei,ei) > — < h(X, i), h(Y, i) >},
where the third equality follows from Gauss equation. Thus we obtain
Ric(X,X) =20, {< h(X, X), h(ei,€i) > — < h(X, e;), h(X, &) >}
=-—3%, <h(X,e),h(X,e) >,
where the second equality follows from the fact < zo, A(X,Y) >=0.
On the other hand, let {zg,y,€n+3,** ,€m} be a pseudo-orthonormal

frame of th~ normal bundle, that is, {Z¢, ¥, €nt3, " ,€m} is a frame of the
normal b e satisfying the following :

< g,y >= —1, < et ep >=1 and otherwise zero, t =n+3,--- ,m.
And let A, denote A, for t = n +3,--- ,m. Then < h(X,e),er >=<
Ay X),e; > and < h(X,e;),z9 >= 0. Hence we obtain

h(X,e) = a(X,e)To + D nys < Ae(X),€i > €r.
Finally we have
(%) Ric(X,X) = — L Tl s < Ad(X), i >?
==30 13 < A X), A(X) ><0.
(b) Suppose that Ric = 0, then by () we see that A;(X) = 0 for t =
n+3,---,m. Hence we have
WX,Y) = a(X,Y)zs, Vxei =Ll ,wi(X)e;+a(X, ez,

J $
which implies that Vx(e; A -+ A en Azg) = 0. Therefore for a fixed point
g € M™, M™ lies in T,M"™ @ Rzo = E;7'. Thus M" lies in the (n + 2)-
dimensional Minkowski space-time Ep*2.
The converse follows from Theorem A.
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