SUBMANIFOLDS WITH CONSTANT MEAN CURVATURE VECTOR FIELDS

SEUNG-HO AHN, DONG-SOO KIM AND KWANG-CHEUL SHIN

Dept. of Mathematics, Chonnam National University, Kwangju 500-757, Korea.

1. Introduction

Let E_s^m be the *m*-dimensional pseudo-Euclidean space with the standard flat metric given by

$$\bar{g} = -\sum_{i=1}^{s} dx_i^2 + \sum_{j=s+1}^{m} dx_j^2,$$

where (x_1, \dots, x_m) is a rectangular coordinate system of E_s^m . For a positive number r and a point $c \in E_s^m$, we denote by $S_s^{m-1}(c,r)$ and $H_{s-1}^{m-1}(c,-r)$, the pseudo-Riemannian sphere and the pseudo-hyperbolic space defined respectively by

$$S_s^{m-1}(c,r) = \{x \in E_s^m | \langle x-c, x-c \rangle = r^2\},$$

$$H_{s-1}^{m-1}(c,-r) = \{x \in E_s^m | \langle x-c, x-c \rangle = -r^2\},\,$$

where <, > denotes the indefinite inner product on the pseudo-Euclidean space. The point c is called the center of $S_s^{m-1}(c,r)$ and of $H_{s-1}^{m-1}(c,-r)$, respectively. We simply denote $S_s^{m-1}(0,1)$ and $H_{s-1}^{m-1}(0,-1)$ by S_s^{m-1} and H_{s-1}^{m-1} , respectively. In physics, S_1^{m-1} and E_1^m are known as de Sitter space-time and the Minkowski space-time, respectively. We denote by H^{m-1} the (connected) hyperbolic space, imbedded standardly in E_1^m , by

$$H^{m-1} = \{x \in E_1^m | \langle x, x \rangle = -1 \text{ and } t > 0\},$$

where $t = x_1$ is the first coordinate of the Minkowski space-time E_1^m . A vector X in E_s^m is said to be space-like (respectively, time-like or light-like)

Received May 1, 1995.

This work was partially supported by BSRI program, Ministry of Education under the project number BSRI-95-1425

if $\langle X, X \rangle > 0$ or X = 0 (respectively, $\langle X, X \rangle < 0$ or $\langle X, X \rangle = 0$ with $X \neq 0$).

Let $x: M^n_t \to E^m_s$ be an isometric immersion of a pseudo-Riemannian manifold M^n_t into E^m_s . Denote the position vector field of the immersion $x: M^n_t \to E^m_s$ aslo by x. Then we have the well-known Beltrami equation

$$(1.1) \Delta x = -nH,$$

where H is the mean curvature vector field of M_t^n in E_s^m .

In this paper, we investigate the submanifolds of Minkowski space-time E_1^m with constant mean curvature vector fields. As a result, we obtain the following results:

THEOREM A. Let $x: M_t^n \to E_{t+1}^{n+2}$ be a complete isometric immersion with nonzero constant mean curvature vector field. Then

- (a) M_t^n is isometric to E_t^n .
- (b) M_t^n is, up to congruences on E_{t+1}^{n+2} , reparametrized by $\bar{x}: E_t^n \to E_{t+1}^{n+2}$, $\bar{x}(u_1, \dots, u_n) = (f(u_1, \dots, u_n), u_1, \dots, u_n, f(u_1, \dots, u_n))$ for some function f on E_t^n with $\Delta f = -n$. Conversely, such submanifold has nonzero constant mean curvature vector field.

THEOREM B. Let M^n be a submanifold of the Minkowski space-time E_1^m . If M^n has nonzero constant mean curvature vector field, then

- (a) the Ricci tensor of Mⁿ is negative semi-definite,
- (b) M^n is Ricci flat if and only if M^n lies in the (n+2)-dimensional Minkowski space-time E_1^{n+2} .

2. Preliminaries

 $E^m_{s,j}$ denotes the m-dimensional affine space with the metric \bar{g} whose canonical form is

$$\begin{pmatrix} -I_s & 0 & 0 \\ 0 & I_{m-s-j} & 0 \\ 0 & 0 & O_j \end{pmatrix},$$

where I_k is the $k \times k$ identity matrix and O_j is the $j \times j$ zero matrix. The metric is non-degenerate if and only if j = 0, in which case we write E_s^m for $E_{s,0}^m$. In general, if M is an n-dimensional manifold whose tangent spaces have a metric of signature (i, n-i-j, j) we write $M_{i,j}^n$, if $j = 0, M_i^n$ is called a pseudo-Riemannian manifold, and if $j = i = 0, M^n$ is called a Riemannian manifold. In this paper, we always assume that manifolds are connected.

Let $x: M^n_t \to E^m_s$ be an isometric immersion of a pseudo-Riemannian manifold M^n_t into E^m_s . $\nabla, \bar{\nabla}, D, h$ and A_ξ denote the Levi-Civita connection on (M^n_t, g) , the flat connection on (E^m_s, \bar{g}) , the normal conection on the normal bundle of M^n_t , the second fundamental form and the Weingarten map with respect to ξ in the normal bundle, respectively. Then we have the following well-known formulae:

- (a) $\bar{\nabla}_X Y = \nabla_X Y + h(X, Y),$
- (b) $\bar{\nabla}_X \xi = -A_{\xi}(X) + D_X \xi$,
- (c) $g(A_{\xi}(X),Y) = \bar{g}(h(X,Y),\xi)$

for any X, Y tangent to M_t^n and ξ normal to M_t^n .

Note that $H = \frac{1}{n}trace \ h$ is called the mean curvature vector of the submanifold M_t^n of E_s^m . If $\{e_1, \dots, e_n\}$ is a local orthonormal frame of the tangent bundle of M_t^n , then $trace \ h = \sum_{i=1}^n \epsilon_i h(e_i, e_i)$, where $\epsilon_i = g(e_i, e_i) = \pm 1$ for $i = 1, \dots, n$. If $H \equiv 0$, then M_t^n is called a minimal submanifold of E_s^m . We may find the basic notations and formulae in [1,6].

3. Examples

In this section, we investigate the pseudo-Riemannian submanifolds in E_s^m with nonzero constant mean curvature vector field and give some examples.

LEMMA 3.1. Let $x: M_t^n \to E_s^m$ be an isometric immersion with nonzero constant mean curvature vector $H \equiv x_0$. Then

- (a) x_0 is a null vector, hence we have $t \leq s-1$ and $n \leq m-2$.
- (b) if m = n + 2, then we have t = s 1 and $h(X, Y) = \alpha(X, Y)x_0$ for some (0,2)type tensor α .

Proof. (a) For any vector field X, Y tangent to M_t^n , we have

$$0 = Y < X, x_0 > = < \bar{\nabla}_Y X, x_0 > = < h(X, Y), x_0 > .$$

Hence we obtain

$$< x_0, x_0 > = < x_0, H > = \frac{1}{n} \sum_{i=1}^n \epsilon_i < x_0, h(e_i, e_i) > = 0,$$

where $\{e_1, \dots, e_n\}$ is an orthonormal frame field of M_t^n .

(b) Choose a normal vector field y of M_t^n in E_{t+1}^{m+2} so that $\langle y, y \rangle = 0$ and $\langle x_0, y \rangle = -1$. Since $\{x_0, y\}$ spans the normal space of M_t^n in E_s^m ,

we have $h(X,Y) = \alpha(X,Y)x_0 + \beta(X,Y)y$ for some (0,2)type tensors α, β . Note that

$$\alpha(X,Y) = - < h(X,Y), y > = - < A_{y}(X), Y >$$

and

$$\beta(X,Y) = - \langle h(X,Y), x_0 \rangle = - \langle \bar{\nabla}_X Y, x_0 \rangle = \langle Y, \bar{\nabla}_X x_0 \rangle = 0.$$

Thus the Lemma follows.

From Lemma 3.1, we know that no submanifolds of the Euclidean space have nonzero constant mean curvature vector, that is, if a submanifold of the Euclidean space has a constant mean curvature vector, then it is minimal in the Euclidean space.

Example 3.2. Let $M_{t_1}^{n_1}$ and $M_{t_2}^{n_2}$ be two submanifolds of $E_{s_1}^{m_1}$ and $E_{s_2}^{m_2}$ whose mean curvature vectors are H_1 and H_2 , respectively. Then $M_{t_1}^{n_1} \times M_{t_2}^{n_2}$ is a submanifold of $E_{s_1+s_2}^{m_1+m_2}$ whose mean curvature vector H is equal to $\frac{1}{n_1+n_2}(n_1H_1 \bigoplus n_2H_2)$. Therefore, if H_1 and H_2 are constant and if either H_1 or H_2 is nonzero, then H is a nonzero constant vector field.

Let $L^n_{s-1}(x_0,\epsilon)$ be the null hypersection of S^{n+1}_s (for $\epsilon=1$) or H^{n+1}_{s-1} (for $\epsilon=-1$) in E^{n+2}_s defined by

$$L_{s-1}^n(x_0,\epsilon) = \{x \in E_s^{n+2} | \langle x, x \rangle = \langle x, x_0 \rangle = \epsilon\},$$

where x_0 is a null vector in E_s^{n+2} . Then $L_{s-1}^n(x_0, \epsilon)$ is a flat totally umbilic submanifold of E_s^{n+2} with constant mean curvature vector field $H \equiv -\epsilon x_0$. More generally, we obtain the following:

PROPOSITION 3.3. Let $x: M_t^n \to E_s^{m+2}$ be an isometric immersion which also lies in S_s^{m+1} (or H_{s-1}^{m+1}). Then the mean curvature vector field of M_t^n in E_s^{m+2} is a nonzero constant vector if and only if M_t^n is a minimal submanifold of a null hypersection $L_{s-1}^m(x_0, \epsilon)$ in E_s^{m+2} .

Now suppose that M_t^n is a minimal submanifold of a null hypersection $L_{s-1}^{m-2}(x_0,\epsilon)$. Since $\{x,x_0\}$ spans the normal space of $L_{s-1}^{m-2}(x_0,\epsilon)$ in E_s^m , we have $H=\alpha x+\beta x_0$ for some functions α,β on M_t^n . Note that H=0, we obtain H=0.

4. Proofs of main theorems

Let M_t^n be a pseudo-Riemannian manifold of the pseudo-Euclidean space E_s^{n+2} with nonzero constant mean curvtre vector $H \equiv x_0$. Then Lemma 3.1 implies that x_0 is null, s = t+1 and $h(X,Y) = \alpha(X,Y)x_0$. Note that x_0 is normal to M_t^n at any point in M_t^n and $D_X x_0 = 0$ for any X tangent to M_t^n . If α is a unit speed curve in M_t^n with $\alpha(0) = q \in M_t^n$ and if $\xi(s)$ is a normal parallel translation of x_0 along α , then, by the uniqueness of the normal parallel translation, we have $\xi(s) \equiv x_0$. Thus we see that

$$\frac{d}{ds} < \alpha(s) - q, x_0 > = < \alpha'(s), x_0 > = < \alpha'(s), \xi(s) > = 0.$$

And from the fact $\alpha(0) = q$, we obtain

$$<\alpha(s)-q,x_0>=0.$$

That is, $\alpha(s) - q \in (\mathbf{R}x_0)^{\perp} = T_q M \bigoplus \mathbf{R}x_0$, where $\mathbf{R}x_0 = \{tx_0 | t \in \mathbf{R}\}$. Since M_t^n is connected, we know that $M \subset T_q M \bigoplus \mathbf{R}x_0 = E_{t,1}^{n+1}$ (cf. [3,5]).

Now we prove the main theorems:

Proof of Theorem A. (a) We may assume that $x_0 = (1, 0, \dots, 0, 1)$. Then we have $E_{t,1}^{n+1} = T_q M \bigoplus Rx_0 = \{x_1, \dots, x_{n+2} | x_1 = x_{n+2}\}$. Let $p: E_{t,1}^{n+1} \to E_t^n$ be the projection defined by $p(x_1, \dots, x_{n+2}) = (x_2, \dots, x_{n+1})$. Then p is a linear map which preserves the inner product. Let U be a coordinate neighborhood of M_t^n with coordinates (x_1, \dots, x_n) , then

$$\begin{split} <\frac{\partial}{\partial x_i},\frac{\partial}{\partial x_j}> &=< x_*(\frac{\partial}{\partial x_i}), x_*(\frac{\partial}{\partial x_j})> \\ &=< p_*(x_*(\frac{\partial}{\partial x_i})), p_*(x_*(\frac{\partial}{\partial x_j}))> \\ &=< (p\circ x)_*(\frac{\partial}{\partial x_i}), (p\circ x)_*(\frac{\partial}{\partial x_j})>. \end{split}$$

Thus we see that $p \circ x : M_t^n \to E_t^n$ is an isometric immersion. Since M_t^n is complete, we see that $p \circ x$ is an isometry (see [6] pp.201-202).

(b) Note that $x \circ (p \circ x)^{-1} : E_t^n \to E_{t,1}^{n+1}$ is an isometric immersion and that $p \circ (x \circ (p \circ x)^{-1})$ is the identity map. Thus we have

$$(x \circ (p \circ x)^{-1})(u_1, \dots, u_n) = (f(u_1, \dots, u_n), u_1, \dots, u_n, f(u_1, \dots, u_n)).$$

for some function f on E_t^n . Let \bar{x} be the reparametrization $x \circ (p \circ x)^{-1}$ of M_t^n . From the Beltrami equation (1.1) we have

$$\Delta \bar{x} = (\Delta f, 0, \cdots, 0, \Delta f) = -nH = (-n, 0, \cdots, 0, -n).$$

Hence we see that f is a function on E_t^n satisfying $\Delta f = -n$.

The converse is obivious.

Proof of Theorem B. (a) From Lemma 3.1(b), we see that M^n is spacelike. Let $\{e_1, \dots, e_n\}$ be an orthonormal frame of M^n , then for any X, Y tangent to M^n we have

$$\begin{split} Ric(X,Y) = & tr(V \to R(X,V)Y) = \Sigma_{i=1}^{n} < R(X,e_{i})Y, e_{i} > \\ = & \Sigma_{i=1}^{n} \{ < \bar{R}(X,e_{i})Y, e_{i} > + < h(X,Y), h(e_{i},e_{i}) > \\ & - < h(X,e_{i}), h(Y,e_{i}) > \} \\ = & \Sigma_{i=1}^{n} \{ < h(X,Y), h(e_{i},e_{i}) > - < h(X,e_{i}), h(Y,e_{i}) > \}, \end{split}$$

where the third equality follows from Gauss equation. Thus we obtain

$$Ric(X,X) = \sum_{i=1}^{n} \{ \langle h(X,X), h(e_i,e_i) \rangle - \langle h(X,e_i), h(X,e_i) \rangle \}$$

= $-\sum_{i=1}^{n} \langle h(X,e_i), h(X,e_i) \rangle$,

where the second equality follows from the fact $\langle x_0, h(X, Y) \rangle = 0$.

On the other hand, let $\{x_0, y, e_{n+3}, \dots, e_m\}$ be a pseudo-orthonormal frame of the normal bundle, that is, $\{x_0, y, e_{n+3}, \dots, e_m\}$ is a frame of the normal be satisfying the following:

$$\langle x_0, y \rangle = -1, \langle e_t, e_t \rangle = 1$$
 and otherwise zero, $t = n + 3, \dots, m$.

And let A_t denote A_{e_t} for $t = n + 3, \dots, m$. Then $\langle h(X, e_i), e_t \rangle = \langle A_t(X), e_i \rangle$ and $\langle h(X, e_i), x_0 \rangle = 0$. Hence we obtain

$$h(X, e_i) = \alpha(X, e_i)x_0 + \sum_{t=n+3}^m \langle A_t(X), e_i \rangle e_t.$$

Finally we have

(*)
$$Ric(X,X) = -\sum_{i=1}^{n} \sum_{t=n+3}^{m} \langle A_t(X), e_i \rangle^2$$
$$= -\sum_{t=n+3}^{m} \langle A_t(X), A_t(X) \rangle \leq 0.$$

(b) Suppose that $Ric \equiv 0$, then by (*) we see that $A_t(X) = 0$ for $t = n + 3, \dots, m$. Hence we have

$$h(X,Y) = \alpha(X,Y)x_0, \quad \bar{\nabla}_X e_i = \sum_{j=1}^n w_i^j(X)e_j + \alpha(X,e_i)x_0,$$

which implies that $\nabla_X(e_1 \wedge \cdots \wedge e_n \wedge x_0) = 0$. Therefore for a fixed point $q \in M^n$, M^n lies in $T_q M^n \bigoplus Rx_0 = E_{0,1}^{n+1}$. Thus M^n lies in the (n+2)-dimensional Minkowski space-time E_1^{n+2} .

The converse follows from Theorem A.

References

- 1. B.-Y. Chen, Total mean curvature and submanifolds of finite type, World scientific, New Jersey and Singapore, 1984.
- 2. B.-Y. Chen, Some classification theorems for submanifolds in Minkowski spacetime, Arch.Math. 62 (1994), 177-182.
- 3. J. Erbacher, Reduction of the codimension of an isometric immersion, Jour. Differential Geometry 5 (1971), 333-340.
- 4. D.-S. Kim and Y.H. Kim, Biharmonic submanifolds of the pseudo-Riemannian space forms, Preprint.
- 5. M.A. Magid, Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba Jour.Math. 8 (1984), 31-54.
- 6. B. O'neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.