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ON INVERSE LIMIT OF CONTINUA*
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1. Introduction

In 1920, Canster and Kuratowski [4] asked if nondegenerate homoge-
nous continuum in R? must be a simple closed curve. Subsequently
Mazurkiewicz [14] asked if every continuum in R? which is homeomor-
phic to each of its nondegerate subcontinua must be an arch, and they
described the example of a nondegenerate hereditarily in decomposible
continua. Bing [3] and Moise [15] answered the question in [15] negatively.
And he also showed that most continua in R" or Hilbert space are pseudo
arcs. This chain of event and results are undoubtely responsible for the
continuing interest in and development of the theory of arc like continua.
In our study, we have constructed the special arc and indicated how to
prove it is hereditarily indecomposible in sin(1) continuum. A symmetric
treatment of the arc, even if it was limited to the result mentioned above,
would require space we do not have, instead, we shall devote this paper
to some the general inverse limit theory of arc like continua.

2. Preliminaries

An inverse sequense is a double sequence {X;, fi}32, of spaces X, called
coordinate spaces, and continuous functions f;: Xi;41 — X called bonding
maps. If {X,, f;}32, is an inverse sequence, sometimes written

f f fi~ fi fiy
Xpem Xy e o e X e K e

then the inverse limit of {X;, fi}{2,, denoted by lim{X;, fi}32,, is the
subspace of the cartesian product space [[2, X; denoted by

Em{X;, £}, = {(z)% € [[ Xi: fileisa) = i for all 4}

=]
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Let {X;}$2, be a sequence of compact metric spaces such that X; O
Xit1foreach ¢ =1,2,-.., and let X =NX, X;. If U is an open subset of
X; such that U D X, then there exists N such that U D X; for alli > N.
In particular, if each X; # ¢, then X 3 ¢ (and clearly, compact metric).

PRrorosITION 2.1. If {X;}32, is a sequence of continua such that X; D
Xiy1 foreachi =1,2,---, and

o0
X =()X.
i=1
Then, X is a continuum.

Proof. Since X is a nonempty, compact metric space, it suffices to show
that X is connected. Suppose that X is not connected. Then X = AUB
where A and B are disjoint, nonempty, closed (hence, compact) sets. Since
X, is a normal space, there are disjoint open subsets V and W such that
AcVand BCW. Let U=V C W. Then U D X,, for some n. Hence,
Xp=(XaNV)U(X,NW). Since X,, D X = AU B and since A # ¢ and
B # ¢, we see that X, NV # ¢ and X,, N W # ¢. It now follows easily
that X, is not connected, a contradiction. Therefore, X is connected.

A continumm X is said to be decomposible provided that X can be
written as the union of two proper subcontinuum. A continuum which is
not decomposible is said to be indecomposible.

LEMMA 2.2. Let Xoo = lim{X;, fi}?2,. Let A and B be compact
subsets of X, and let c = AN B. If, for each i, 7;: Xoo — X; is the i-th
projection map and ¢; = m;(A) N 7i(B), then c is im{c;, fi | ci+1}52;-

Proof. Let c is lim{e;, fi | ci41}52,. Take each z = (z,,z2,---) in c.

For each i, mj(z) = z; € ¢; and m;41(z) = Tiy1 € ciy1 such that, for all 4,
f(zit1) = z;. Since 2 € Xoo and z € ¢, f(zi41) = 7;. So T € ceoand
¢ C €. Take each y = (y1,¥2, ) in ¢oo. Then, for each 1,

yi €ci =mi(A)Nmy(B) D 7(ANB)

y €77 (yi) C 7Y (e) = w7 (mi(A) Ny B))
c a7 (mi(A) N7 (m(B)=ANB =c.

Therefore ¢ = coo = lim{e;, fi | €i+1}32;.
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THEOREM 2.3. An inverse limit of arcs cannot contain a simple closed
curve.

Proof. Let X,, be an inverse limit of arcs. Assume X, contains a
simple closed curve. Then, by 2.2, ¢; = mi(A) N 7i(B) and ¢ = lim{c;, f; |

ci+1}52;- But, since c is a simple closed curve, S* = {z € R?: ||z|| = 1} is
homeomorphic to c. There exist p',q' in S! where p’ is an interior point
of S! and ¢' is an end point of S?, such that p' = ¢’. Put f(p') =p =
(prop2,-) and f(¢') = g = (g1,g3,++) in c. Then, for each i, pi = g,
and m;(p) and w,(g) are in 7;(c) = ¢;. But, since ¢; C X, and X; is an
arc, for all i, p; # ¢; in X;. Hence p = (p1,p2,-**) # ¢ = (¢1,92,--*) in
lim{c;, fi | ei41}2,- But, ¢ = lim{ci, fi | ci+1}iZ, and p = (pr,p2,-++) =

q=(q1,92,"--)inc

PROPOSITION 2.4. Consider the situation in the diagram below where
Xoo = Iim{X;, fi}2;, Yoo = lim{Y, 9i}{2,, each rectangle is commutative
; @i 0 fi = gi o ¢piy1 for each i. Then the following hold :

(1) $oo maps X into Y,

(2) if each ¢; is continuous, then ¢ is continuous,

(38) if each ¢; is one to one, then ¢, is one to one,

(4) if each ¢; maps continuously onto Y; and if X; is a compact metric
space, then ¢o, maps Xoo onto Yoo.

f1 fa2 fi Jigr
X X3 S X; —— Xisp1 Xoo
¢1l ¢zl ¢.'l ¢-’+11 l¢eo
Yh Yy Y, « Yig1 ¢ Yoo
(5} 92 8 $i41

Proof. Define ¢oo: Xoo = Yoo by doo((2i)i2;) = (di(2i)i2,) for each
(a?,')?;] € Xoo.

(1) ; Since, for all ¢, ¢;: X; — Y is a map, for each z = (21,232, ), ¢i(zi)
C 11;. and gn@i+1(Zi+1) = @nfn(Tit1) = ¢n(za). Hence (é1(z1), ¢1(z1),- ")
€ Yoo

(2) ; m¢; is continuous, since ¢; is continuous.

(3) ; Let y1 = (yi,¥3,-*) # ¥2 = (41,93, +) in Yoo. Then, for each
i, since ¢; is continuous, ¢ (y}) # 7' (y?). Hence y; = (z},2},---) #
(z%,23,--+) in Y.
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(4); Fix y = (y1,y2,-++) € Yoo. Put Z; = ¢7'(y:) in X;. Since f
is continuous and X; is compact, f(X;) is compact and ¢ '(y;) = Z; is
compact. Hence ¢} (y:i) = {(z1,22, -+ )|z; € Z;} and since 7,4, in Z;4,
and in ¢ (yi+1), i f(Tig1) = 6i(2:i) = Yic1 = gibit1(Tiv1)- Gif(zip1) =
9idi+1(Tiv1) = vicy. 67 (Wis1) = Zic1 3 f(zis1).

Let X and Y be metric spaces and let f: X — Y. Then, f is called an

e-map provided that f is continuous and the diameter of f~1(f(z)) < €
for all z € X.

3. Inveerse limits and Main theorems

The sin( 2 )-continuum is the closure W of W where W = {(z;,sin(1)) €
R?: 0 <z <1}.

THEOREM 3.1. (a) If X is a sin()-continuum, then X is arc-like. (b)
If X = sin(1)-continuum and the commutative diagram below, where each
X = X, each Y; C Yiy; is a particular arc in W begin at (1,sin(1)), each
fi is the identity map and each g; is bonding maps and ¢; is a natural
horizontal projection, then X is homeomorphic to Y.

f1 fa2 Ji-1 I Jig1

X1 Xy ~ X Xit1 e Xeo
¢1l ¢zl ¢.'l ¢i+1l l¢oo
Y Y, « Y, Yigr ¢ Yoo

an 92 gi-1 gi Fit1

S

Proof. (a) ; Define f.: X — [0,1] by

{ fe($)=($,sin%):%+%’ 0 <
f(t)=(0,1) = % + %’ -1
Then f. is one to one and continuous. (b) ; Using proposition 2.4, we

can define ¢doo: Xoo — Yoo, Xoo C J[Xi and Yo C [[Y:. Let z =
(z1,22,°+), ¥ =(y1,Yy2, ") In Xoo. Assume ¢o(z) # ¢oo(y). Then, for
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some i, ¢i(z;) # di(yi) in Y; such that ¢;_; f¢™'(#i(x;)) = g(¢i(z:)) and
$i—1f67 (di(w:)) = 9(¢i(yi))- But g(¢i(2:)) # 9(¢i(y:)) and so

bi—1fo7(di(yi)) # 9(¢i(x:)) in X;. Hence z; # y; in X; and ¢7'(z;)
is the i-th coordinate of z = (z1,%2, ) in Xo and ¢~ !(y;) is the i-th
coordinate of y = (¥1,y2,---) in Xo. Therefore z # y and ¢ is one to
one. Yoo = Xoo | [][ Vi such that Yoo C Xoo. But since @oo: Yoo — Xoo is

one to one, continuous, Yo, = Xo. So X can be represented by Y.

LEMMA 3.2. Suppose that A, is the convex arc in the plane R? from
(0,1) to (0,0) and, for each n = 1,2,.--, A, is the convex arc in the
plane R? from (0,1) to (0,27 "*1) and, for eachn = 1,2,---, X; = Ag U
(U:;+=11An), Y, = Ui.'t_-l1An and f;: X;y1 — Xi and g¢;: Yiy, — Y; are
the natural maps, fi mapping Aiy; linearly onto Ay, ¢; mapping Ai41
linearly onto A; and, in both case, leaving all other points fixed. Then
the two inverse limits X, = 1i£_n{X,',f,'}§’§1, Xo = 1§_xln{Xg,fi}??;1 are
homeomorphic.

Proof. Define ¢;: X; — Y; by for each z; in X,

TORS S,
(Oa 1) if Ty ¢ Y’t

Then ¢; and ¢; ! are continuous function. Define ¢oo: Xoo — Yuo by for
each z = (21,232, ) in Xoo, doo(z) = (¢1(21), $2(22),- ). To be prove
that ¢, is homeomorphism, we will show that ¢, is one to one. (P is
onto ; for each y in Yoo, ¥y € Xoo(D Y), doo, ¢ are continuous ; ¢oo, dl
are continuous)

Assume ¢oo((7i)52,) # (0i(vi){2;). Then, for some i, z; # y; and so
z#yin Xoo.

A continuum X is said to be hereditarily decomposible provided that
each nondegenerate subcontinuum of X is decomposible. A subset D of a
continuum X is said to be continuumwise dense in X if DN A # ¢, for all
A, is nondegenerate subcontinua A of X.

EXAMPLE 3.3. Construct a decomposible continuum which contains
no arc.

Proof. We start the construction by letting X be the sin(3)-continuum.
Let p = (1,sin(1)), ¢ = (0,1) and r = (0,~1). Let D; = {zl:n =
1,2,---} is countable subset of X; — {p,q,r} such that D; is continuum-
wise dense in X;. Note that if J = X; — W(W = sin(2)-continuum), then
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D, NJ = J. Now let X; be the continuum obtained from X; by "replac-
ing” the point z! with a copy Y of X, by this we mean that X, is one of
the two continua drowing below. Let K denote the arc in Y corresponding
to the arc J in X;. Let f; from X; onto X; be the natural map which
takes K to z! and is a homeomorphism from X; — K onto X; — {z}}.
Let s and t denote the two end points of K. Let Dy = {z2: n=1,2,---}
be cotinuumwise dense in X3 such that D, misses f| Upyg,r)), {s,t},
and f;'(z3) for all n > 2. From z; from z; by replacing each of the two
points z? and f;'(z}) with a copy of X;. The map f, from X; onto X;
is defined in a manner similar to the way f; was defined. We obtain X4
from X3 by a procedure similar to the one used to obtain X3 from Xj,
this time making sure that copies of X; are inserted in X3 at the first
enumerated point 3 of D3 and at each of the two points f;'(2%) and
(fiof2)"'(z3). Continuing in this fashion, we obtain the inverse sequence
{X;, fi}2,. Then, to be proved that {Xj, fi}{2, = X is a decomposible
continuum which contains no arc, we will show that X, is arcless and each
subcontinuum A of X, has a cut point. X, is arcless ; Xoo = lim, o0 X
by theorem 3.1, but since lim;— X; is arcless. Each A C X has a cut
point ; define 7 ': Xo, — X; : natural projection (take i large enough).
Then, for each A C X, 7; '(A) contains some cut point. Therefore A is
decomposible.

X, when zl e W X, when g1 €J

THEOREM 3.4. Let Y be a compact 'matric space, and let {Y;}32, be
a sequence of compact subset of Y, such that, for each i = 1,2,---, there
are continuous functions g; from Y;; onto Y; and ¢; from Y onto Y; such
that g; o ¢;y1 = ¢; ; if the sequence {¢;}2, converges uniformly to the

identity map on Y, then Y is homeomorphic to lif_n{l/},g,-}fil.

Proof. Definer: Yoo — Y : by n(z) = lim;_.oc z; where z = (21,22, )
in Y, and m,: Yoo — Y, by natural projection. Then 7 is one to one ; if
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for z = (ml’x%"')v Yy = (ylay%"') € Yco, 7r(a:) 7& ﬂ'('y)a then there

exists ¢ such that z; # y; and 2,41 # ¥it+1, Tit1 F Yit1, . S0 T #F ¥
in X, onto ; for each y € Y, there exists (2,22, ,¥1,
Y2, ++) in Yo such that 7(z1,z2, -+ ,¥1,¥2,"+) = y, continuous ; u is

openin Y, 77 (u) = 77 ¢n(u), n : large enough, by the same way 7! is
continuous. Therefore Y =2 {Y;,9:}2,.
LEMMA 3.5. X, which is constructed in 3.3 is embedable in R?.
Proof. Put X = lim; .o X; where X; is a subset of X and X; C X41.

n 92 9i-1 gi i1

X; « X3 X; Xiy1 Xoo
dnT ¢2I ¢.‘T ¢.‘+1T Tlx
Y; Y, « Y; Yig1 ¢ Yoo

1x 1y 1x o 1x 1x
1
Define g, : X, I
j:1
3 P one b one
&

<
Q)
él‘.

By the same way, define g; and ¢;. Then ¢; converges uniformly to 1x.
Then, by 3.4, Xoo = X. Hence X, is embedable in R?.

EXAMPLE 3.6. Construct a nondegenerate continuum X in R? such
that each nondegenerate subcontinuum of X separates R?.

Proof. Construct H as the below diagram ;

(€9~

By the same way 3.3, do the replacing. Then
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X “""*/\{\f\zow\f\———-

2 3 o Ot

A~y O Ei O e BB
ﬂ’as«@

Hence each subset of lim;_,o, X, contains many X;. Therefore O in
X, separates RZ.

THEOREM 3.7. Let X = Lim{X;, fi}32, where each X; is a nonempty
compact metric space with metric d;. Let
fij=fio- o fj-1: Xj — X ifj >i1+1and fii+1 = fi.

Let (Y, p) be a complete metric space. Then, there is a sequence {€; }{2,,

¢; > 0, such that if there are embeding h; of X; in Y satisfying p(hj(z), hjo
fij(2)) < % foreachz in X, and j > i where §; < Yandé < p(hj(z), hj(z))
whenever d;(y, z) > €;, then X is embedable in Y.

Proof. Let d be a metric for X defined by, for each (z;)%2,, (¥i){2; in
X,

d((m‘)l=1’ (yi)cml 22“' d; (J!,, yi)

7 1 +di(zi,yi)
Then i-th projection 7;: X — X;is 27 !'-map; forall z = (21, , i, Tit1,
")1 y= (m17m27"' y Tir Yi+1, Yit+2 - ) in ﬂ.;—l(x)' Then

ey di+1(Ti+1,Yi+1)
d(z.y) = 9-(i+1)(__GiH1\Tiv1, Vi
(2,9) <1 + dig1(ZTit1, Yit1)
+ 2—-(i+2)( di+2(xi+2’ yi+2)
1+ digo(Tiva, Yiga)

_ 2._,-(2._1( dit1(Tit1, Yit1)

+-) <27
1+ digi(xigr, Yit1) )
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Make €(C X;) = {y € Xi|n7'(y) € = '(x;) where z; is fixed in X;}.
Then {€;}$2, converges to one point. Let h be lim; o {h; 0 7;(z)}. Since
Y is a complete metric space, {h; o mi(z)} is converges. So {h;} is a
Cauchy sequence. hisonetoone; z,y € X such that z = (z;,23,--+),y =
(y1,y2,- - ). Assume h(z) # h(y). Then lim;_, oo {hiomi(z)} # lim;—oc{hio
mi(y)}. Since h; is an embeding, m;(z) # mi(y) and z; # y; in X, since
7; is a 27 '-map. Then z; # y;,¢t = i,4 + 1,---. Hence h is one to one.
h is onto ; trivial. h is continuous ; since =; is continuous, lim;_,o 7; is
continuous and lim;_. . h; is continuous, ™! is continuous ; define

0, = {z € X|d(z,y) <27}

and ‘
Uy = {z: € Xildi(zi,5:) <27'}.

Then Oy, U, are open and 7;(Oy) D U, 3 z; and so m;(0y) is open.
Hence A~} is continuous. Therefore X is embedable in Y.
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