Dopamine as a Strong Candidate for a Neurotransmitter in a Hydrozoan Jellyfish

  • Chung, Jun-Mo (Department of Biology, College of Natural Sciences, Ewha Womans University)
  • Published : 1995.07.31

Abstract

Recent studies have shown that dopamine applied to cultured swimming motor neurons of Polyorchis penicillatus produces an inhibitory action by opening potassium channels through $D_2$-like receptors. In this study, it was demonstrated that dopamine found in the hydromedusa was not from exogenous sources and the content of dopamine depended on the $Ca^{2+}$ content of the dissecting media. In addition, a combination of thin layer chromatography and high performance liquid chromatography showed the presence of DOPA and DO PAC-like compounds in the jellyfish. The glyoxylic acid method for catecholamines suggested that a population of small cells, neither swimming motor neurons nor B-like neurons, had dopaminergic systems. From all these results, it is suggested here that DA synthesized from DOPA in some cells is released. being dependent on calcium concentrations, into a synaptic cleft and degraded into DOPAC after acting as an inhibitory transmitter to swimming motor neurons.

Keywords