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AN ESTIMATE OF FOCAL POINTS
FOR SPACELIKE HYPERSURFACES
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1. Introduction

Recently, P. Ehrlich and S.-B. Kim[5] obtained a condition of the ex-
istence of conjugate points for Riemannian or timelike geodesics by using
the stable Jacobi tensors and its associated Riccati equation in [8], which
is called the Raychaudhuri equation in general relativity. From the Riccati
equation, we have a Jacobi equation problem for conjugate points in the
oscillation theory of second order linear differential equations (cf. {15,17]).

D. N. Kupeli[13,14] investigated the Riccati equations to obtain con-
jugate points and focal points along geodesics on semi-Riemannian man-
ifolds. More in details, in [13] he generalized the Myers theorem for the
conjugate points by using the Fourier coefficients of the Ricci curvature
which is sharper than the Myers-Galloway theorem given in [9], and there
he used a differential inequality originated in the index form technique (cf.
[1,2,3,4,5,6,7,10,11]) but did not used the Riccati equation involving the
shear tensor. Moreover, in [14] he tried to generalize the Myers theorem
for the focal point case by using the Riccati equation containing the shear
tensor but he restricted the initial condition of Jacobi tensor to get a focal
point by setting the second fundamental tensor zero.

On the other hand, for the existence of focal points along timelike
geodesics orthogonal to the spacelike submanifold of codimension arbi-
trary, S.-B. Kim and D.-S. Kim[12] generalized the Myers-Galloway theo-
rem on Lorentzian manifold by using the submanifold index form.

In this paper, using the Riccati equation technique we first extend
the restricted Myers theorem given by D. N. Kupeli[14] by including the
nonzero second fundamental tensor into the initial condition of K-Jacobi
tensors. Second, we show the Myers-Galloway theorem and its diameter
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theorem for the spacelike hypersurface which sharpens the results given
by S.-B Kim and D.-S. Kim[12].

2. Preliminaries

Let (M, g) be an arbitrary space-time. Given p,q € M, p £ ¢ means
that p = ¢ or there is a piecewise smooth future directed nonspacelike
curve from p to ¢, and p € ¢ means that there is a piecewise smooth
future directed timelike curve from p to gq.

Let v : [0,1] — M be a unit timelike geodesic segment. and let K
be a spacelike submanifold of dimension k > 0. For ¢ € M, we notate
K << g if there exists p € K such that p << ¢q and K < ¢ if there exists
p € K with p < ¢q. Let I (K) = {¢ € M|K << ¢} be the chronological
future of K, I"(K) = {¢ € M|g << K} the chronological past of K,
J*(K) = {¢g € M|K < g} the causal future of K, and J™(K) = {q €
M|q < K} the causal past of K. Clearly, IT(K) = U,cx I*(p) where
I*(p)={q € Mlp < q}.

Now, let Q , be the path space of all piecewise smooth future directed
nonspacelike curves v : [0, 5] — (M, g) with ¥(0) € K and y(b) = g. The
Lorentzian arc length L : Qk,, — R for a partition 0 = o < t; < ...... <
t, = b such that 7|(_, ) is smooth for i = 1,2,....,n is given by

=Y [ V=@

-1
Now we define the Lorenizian distance from K to g by

0, if ¢ ¢ JT(K)

U0 ={ (bl € ). i€ HK).

Clearly, d(K,q) > 0iff ¢ € I'*(K). g € J*(K) — I'*(K) implies that
d(K,q) = 0, But the converse does not hold, since d(K,q) = 0 for ¢ ¢
JT(K).

Given a timelike curve v from K to g, we have a variation « of (¢) and
define the variation vector field V of a along v by

V()= ga-;a(t,s)l,,:o, V(b) =0, V(0) € T.Y(Q)I{.

Then we may recall some facts. If v : [0,b] — (M,g) is a unit speed
timelike geodesic from K to ¢, then L'(0) = ¢(V(0),7'(0)). Thus, 7 is
extremal iff v is orthogonal at y(0) to K.
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Moreover, if v : [0,b] — (M,g) is a unit timelike geodesic which is
orthogonal at ¥(0) to the spacelike submanifold K and assume that V is
a piecewise smooth vector field along v orthogonal to 4/, then we have

L"(0) = 9(Sy @ V(0), V(0)) + I(V, V)

where I(V,V) = — [’[g(V', V') — g(R(V,7')Y, V)|dt and, S, is the
second fundamental tensor given by S,z = —(V,v'(0))T for z € T, K
where T means “tangential part”.

Let V1(v) be a vector space of piecewise smooth vector fields Y with
orthogonal to 7' and set V4(v,K) = {Y € VL(9)|Y(0) € Ty0yK}. Then
the Lorentzian submanifold index form

Inky:Vi(1,K)x VH(y,K) > R
for X,Y € V1(v, K), is defined by
I6,,)(X,Y) = 9(84(0)X(0),Y(0)) + I(X,Y)

where I is the index form on V(7).

Now a smooth vector field J € V1(v, K) is called a K -Jacobi field along
~ if J satisfies

(1) J"+ R(J,¥' )y = 0.

(2) J'(0) + 5,0 J(0) € (Toio) K)™

Hence, v(to),to € (0,b] is said to be a K -focal point if there is a non-
trivial K-Jacobi field with J(¢¢) = 0.

Let Vi-(v, K) be the subspace of V*(v, K) with Y (b) = 0. Then, from
the maximality of K-Jacobi fields along timelike geodesics, we have the
following proposition (cf. [11]).

PROPOSITION 2.1. If v : [0,b] — M is a future directed timelike ge-
odesic perpendicular to the spacelike submanifold K with no K -focal
points. Then the submanifold index form I k) is negative definite on
VOJ-(’Y?K) X VO‘L(A/a K)

Using the submanifold index form I3 ) it is well known that a timelike
geodesic orthogonal to a spacelike submanifold K fails to maximize arc
length after the first K-focal point (cf. [1,2,12]).

Moreover, if (M, g) is a globally hyperbolic space-time, we know that
there is a future directed maximal nonspacelike geodesic between any
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causally related two points. However, we can not guarantee the existence
of the future directed maximal nonspacelike geodesic from K to a point
in M (even if K is closed)[12].

If M is globally hyperbolic and if J~(¢) N K is compact, then the
function z — d(z, ¢) is continuous on the compact set J~(¢) N K. Hence,
it has a maximum at p € J~(¢) N K. Thus, d(K, ¢) = d(p,q). Therefore,
there is a geodesic v from p to g of length d(K,q) = d(p,q). We may
assume that ¢ ¢ K and p << q. From the first variation formula, it is
normal to K. Thus we have the following proposition[12].

PROPOSITION 2.2. Let (M, g) be a globally hyperbolic space-time and
let K be a spacelike submanifold of (M, g). Then for any q € I'*(K) with
J~(q¢) N K compact, there is a future directed maximal timelike geodesic
v perpendicular at ¥(0) to K in Qg ,.

S.-B. Kim and D.-S. Kim[12] generalized the Myers-Galloway theorem
to the K-focal sense by using the sectional curvature and the second fun-
damental form conditions.

THEOREM 2.3. Let (M, g) be a space-time of dimension > 2 and v any
unit speed timelike geodesic with length L in Q , perpendicular at v(0)
to the spacelike submanifold K of dimension k > 0 for any point ¢ € M.
Suppose

g

s(Ru, YOO, 0) 2 (0 + 3

—le+ 4
for all u € (v'(t))* with g(u,u) = 1 along v, and suppose

£(0)

9(S+ (0yw, w) 2 =

for all w € T, K with g(w,w) = 1, where a > 0,c > 0 and f is a
differentiable function with |f(t)| < ¢. Assume

L(7) > -’5 (( ))c+ \/(1 ))2c2 a(n—1— --))

Then v can not be maximal.
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COROLLARY 2.4. Let (M,g) be a globally hyperbolic space-time of
dimension n > 2 and K the compact spcelike submanifold of dimension
k > 0. Suppose there exist constants a > 0 and ¢ > 0 such that for
any point ¢ € M, and any unit maximal timelike geodesic v in Q  with
length L perpendicular at v(0) to K,

df

9(R(u, 7 (0)7'(8),w) 2 = 2)

—(a+

for all u € (y'(t))* with g(u,u) =1 along + and

f()

9(Syyw, w) > 1

for all w € T o)K with g(w,w) = 1. where f is some function with
|f(t)| < c along v. Then

diamg (M, g)

s%@ w+¢u— ¢&+Ww4--0

REMARK. If K is any compact hypersurface of M, we have

diamg(M,g) < —-—-(c+ V2 + (n—1)a).

3. Jacobi Tensors and its Riccati Equations

P. E. Ehrlich and S.-B. Kim [5], D. N. Kupeli [14] studied on Jacobi
tensors and obtained conditions of the existence of conjugate points along
Riemannian or timelike geodesics. In this section some definitions and
facts of Jacobi tensors follow from [2]. Given any unit speed timelike
geodesic v : [0, L] — (M, g), let (7'(t))* = {v € T,y M|(g(v,7'(t)) = 0}
and let V*(y) = Upercp(7(t))*. We recall that Jacobi tensor field along
7 is a smooth (1,1) tensor field A : V(5) — V1(5) which satisfies

(3.1) A"+ RA=0

and

Ker(A)NKer(A') =0
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for all ¢ € (a,b) where RA(v) = R(A(v),7')}y". If A is a Jacobi tensor field
along v and P is a parallel field along v, then J = A(P) is a Jacobi vector
field along ~.

Given a Jacobi tensor field A along v, set B = A’A~! at which A~ is
defined. One defines the ezpansion tensor 6 = trB, the vorticity tensor w
= 1(B—B*), and the shear tensor o = 2(B+B*)—(6/n —1)Id. Here B*
is the adjoint tensor field defined by requiring that g(B*v, w) = g(v, B(w))
for all v,w € V(4(t)). Thus B =w + 0 + (8/(n — 1)) Id and it may also be
shown that 6 = tr(A'A™1)= (det(A))'/ det(A4). The Jacobi equation (3.1)
is converted into the associated Raychaudhuri equation by calculating 6.
Explicitly, one obtains

2
(3.2) 8 + Ric(v',v') + tr(w?) + tr(o?) + aﬂ_———i = 0.

If the Jacobi tensor field A satifies the initial condition A(0) = 0,
A'(0) = Id, then B = B* so that w = 0 and equation (3.1) simplifies
to

2

6
(3.3) —6' = Ric(y',v") + tr(e?) + —

Now the change of variables z = (detA)Wi—1 is made. Then we ob-
tains 2" + -5 (Ric(v',7') + tr(0?))z = 0. Therefore, it can be shown that

. 1 :
z = (detA)Wi’f satisfies the differential equation z'' + ﬁ_——:-l_(Rwhl’ ~') +
tro®)z = 0 with the initial condition z(0) = 0 and &'(0) = (detA'(0))71.
Hence, for a given Jacobi tensor A satisfying the above initial condition,
z" + -—I-I(Rib('y’ ,7') + tro®)z = 0 can be considered as a Jacobi differ-
n —

ential equation for the conjugate points on the interval (0, b].
In [14], D. N. Kupeli proved a Myers type theorems by using a second
order linear differential equation including a term of the shear tensor. Let

2 L . [ 2
ag = -—-——————(n L /0 [Ric(y',y") + tro?]dt
and

2 L . ‘I ! 2 2mt
ay --m/() [Ric(v',~") + tro?] cos( 7 )dt

be the Fourier coefficients of Ric(y',v')+tro? where tro? can be extended
to a continuous function on [0, L]. But, in [13] he had extended the Myers
theorem by using the Fourier coefficients of just Ric(v',v').
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THEOREM 3.1. (Myers) Let v : [0,L] — M be a geodesic segment.
If L?(ag — a1) > 2n% then v contains a conjugate point to “0”. In
particular, L is the first conjugate point to “0” along - if and only if

L (Ric(',7') + tr(o?) = (37"

Moreover, in [13] the above theorem further gives a generalization of
the Myers theorem given by Galloway|[9].

THEOREM 3.2. (Myers-Galloway) Let v : [0, L] — M be a unit timelike
geodesic on a Lorentzian manifold M. Assume that there exist constants
a > 0, ¢ > 0 and a differentiable function f : [0,L] — R with |f| < ¢

such that Ric(v',v') 2 (a + %) Then ~ contains a conjugate point
to “0” if L > (2c¢ + \/4c® + (n — 1)an?)/a. In particular, L is the first
conjugate point to “0” along v if and only if R, = (n%/L?)Id, where
L = (2¢c+ /4c? + a(n — 1)n?)/a.

REMARK. From the above Theorem 3.2, D. N. Kupeli in fact showed
that the inequality L > (2¢ + v/4c? + a(n — 1)n?) /a is sharper than the
inequality L > (mc + y/72¢% + a(n — 1)7?)/a in [9].

4. K-Jacobi Tensors and Main Results

Let M be a Lorentzian manifold of dimension n > 2 and K be a spacelike
hypersurface and let 7 : [0,L] — M be a unit speed timelike geodesic
perpendicular to K at p = 4(0). We define the K-Jacob: tensor A along v
by a Lagrange Jacobi tensor along v satisfying

(1)A"+RA=0
(2) A(O) = Ida A'(O) = Ty (0)-

Set E,(t) = +'(t) and let Ey,E;,--- ,En—y be n — 1 spacelike paral-
lel orthonormal frame fields along v such that E;(0), E5(0),--- , En—1(0)
forms on basis of T, K.

1Setting B = A'A~! whenever A is non-singular, § = trB, 0 = B —
n-—1
A'A"TA'A"!' = —R — B?, we obtain as in section 3 a traced Riccati
equation

6Id, and using a matrix Riccati type equation B’ = A"A~1 —

6 + ;—i—-IH? + Ric(v',v') + tra® = 0.
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Put f = Ric(v',v') + tro?, then we obtain a standard Riccati equation

0'+a92+f=0wherea=n11. Set y = (det A)*>T. Then ‘91=
—— n—.
1" 12

!
. 1 — TR .
%’ (y # 0). Since ;—:—1—0' = u&iﬂ“’ by substitution into Ricatti equa-

. . 1 .
tion, we obtain y" + n—:-i-fy = 0 with y(0) = 1,'(0) = — trS. (o).

1
) n-—1
Thus, v contains a K-focal point at t; € (0,L] to M if and only if
H
y n—1
Now, we extend a focal Myers theorem for a spacelike hypersurface
given in [14] by including the nonzero trace of second fundamental tensor
as follows.

fy = 0 has a nontrivial solution y with y(t) = 0.

'THEOREM 4.1. Let v:[0,L] — M be a unit timelike geodesic orthog-
onal to the spacelike hypersurface K. Let

2 E . ! ! 2
by = m‘/o [Ric(v',v") + tro?]dt

and let
by = e / L[Ric(—y' "+ traz}cos(lr—t-)dt
'S h-1L J, 7 L

iftra? can be extended to a continuous function on [0,L]. Then, v contains

2
& K-focal point to K if I*(bo +b1) > - - n’*_L 1

Proof. Let Ey(t), Ea(t), -+ ,En-1(t) be n — 1 spacelike parallel fields
along v. Set W; = cos(g-)E.- fori =1,2,--- ,n—1. Since E;(0) € Ty K

and since Wi(L) = 0, W; € V4+(v,K). By computing the submanifold
index form, we have

tTS.yI(o) .

Iip k) (Wi, W5)

L o» 2 . g, 7t
=9(57'(0)Wi(0),Wi(0))*/0 [(Q'E) sin (ﬁ)g(Ei’Ei)
- COSZ('Z—”%)(g(R(E.-, YW, Ei) + g(o® E;, E:)))dt

1=1,2,--- ,n— 1. Since W;(0) = E;(0) we sum up the above index form
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foralli =1,2,.-- ,n — 1. Then, since fo cos( )dt 0, we obtain

trS.y (o) +/ [cosz( )(ch('y 7' + tro?)

—(n =15 )2 ( )]dt
2 L
=1trSy) — (n— 1)§f + -;-/0 [Ric(v',v') + tro?]dt

L
+—;— / [Ric(y',7') + tra?] cos(zrzt-)dt

0
m* L
= trS‘y’(O) - (n - 1)5"1'_; + Z(n - 1)(bo + b])
If the submanifold index form I, k) is semi-positive on Vg (7, K), there
is a K-focal point along v. Thus, we obtain

2 4L
2 >_’L...
L(bo + by) 2 5 —

t’l‘S‘Y 1(0)

as a necessary condition to get a K-focal point along ~.

Thus, we may obtain a generalized Myers-Galloway theorem which is
sharper than Theorem 3.2 given in [13].

THEOREM 4.2. Let v:[0,L] = M be a unit timelike geodesic orthog-
onal at ¥(0) to the spacelike hypersurface K. Assume that there exist
constant a > 0,c > 0 and a differentiable function f : [0,L] — R with

|f| < ¢ such that Ric(y',%") 2 a-}—% and trS..g) 2 f(0). Then v contains

_ 2
a K-focal point if L > -(1; (c+\/c2—— Q}____i__)f_”__)

d
Proof. Since Ric(v',v') 2 a + a{-, trSy) 2 f(0), and tro? > 0, a
straight forward computation shows that

2 L ' 2 wt
by + b1 = '(-'-":—i')-f/ [RZC('Y Y )+t7‘0 ](1 + COS(-E))dt

I)L/ (a + )(1+ os(—— )dt

= 1)L[aL 2f(0) + — /f(t)sm(——-)dt]
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An estimation shows that

L
mt 2¢L
. Tt < 2L
[ tsinGar <
Hence,
Lz(bo + b]) 2 n _2- 1(0L2 - 2t1'57c(0)L - 2CL)

Thus, from Theorem 4.1, 4 contains a K-focal point if

2
2 T 4L
e 1((1L - thS.yI(Q)L - 2CL) Z “é" — N ltTS.’,l(g).
Thus, v contains a K-focal point if L satisfies the inequality
 1\2
aLz—-ZcL——g-T-l—-—Z-l-)—lr-— > 0.

Then, it follows that

—_ 2
Lzl(cﬂ/cz..@__l)ﬁ._),
a 4

Hence, we obtain a generalized diameter theorem for the spacelike hy-
persurfce whose proof is similar to the proof of Theorem 4.2 in [12].

COROLLARY 4.3. Let (M,g) be a globally hyperbolic space-time and
K the compact hypersurface. Suppose there exist constants a > 0 and
¢ 2 0 such that for any point ¢ € M, and any unit maximal timelike
geodesic v in §lk o with length L perpendicular at 4(0) to K,
df

Ric(r',7) 2 a+ 5

along v and
trSy) 2 £(0)
where f is some function with |f(0)| < c along . Then

— 2
diamyaa,9) < 2 (e - B2,

REMARK. This diameter is sharper than that given in Corollary 2.4
when K is the spacelike hypersurface since £ > 1, and is also just half of
that given in Theorem 3.2.
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