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1. Introduction

Let LT be the m-dimensional Lorentz Minkowski space with metric
tensor go given by

m—1
gdo = Z dz? - dz?,,
i=1
where (21, ,zm) is a rectangular coordinate system of LT*. (LT, go) is
a flat Lorentz manifold of signature (m — 1,1). Let ¢ = (¢, ,cm) be a

point in LT and r > 0. We put
Slm—l(car) = {x € L;n <KT—-CTr—Cc>= 1'2},

H" Yer)={z €Ll <z -,z —c>=—r’2m > cm},

where < , > denote the indefinite inner product on L. S""(c,r) and
H™=1(c,r) are called the de Sitter space time and the hyperbolic space,
respectively ([2,4,10]).

Let z : M — LT be an isometric immersion from n-dimensional pseudo-
Riemannian submanifold M into LT*. Denote by A the Laplacian of M
associated with the pseudo-Riemannian metric on M. The submanifold
M of LT is said to be of k-type if the position vector z of M in LT* has
the following form ([2,3]):

(1.1) z=ct+zi+ -+ Ty,
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where

A:L',', = l.'tm,',, l,'l < e L I"w

¢ is a constant vector and z;,,--- ,z,, are non-constant L}*-valued eigen-
functions of A. A submanifold M is said to be of finite type if it is of
k-type for some k. Otherwise, M is said to be of infinite type.

B.-Y.Chen proved in [1] that every closed Euclidean plane curve of finite
type is of 1-type, and hence a circle. Later, in [6] B.-Y.Chen, F.Dillen,
L.Verstraelen and L.Vrancken proved that a Euclidean plane curve is of
finite type if and only if it is an open part of a circle or a straight line.

In this article we study the Lorentzian version of the above. As a result,
we prove that every finite type Lorentzian plane curve is of 1-type.

2. Finite type curves in L?

Let z : R — L? be a curve parametrized by arclength s. Then the
Laplacian A of z is given by A = ~8%/8s%. If z is of finite type in L2,
then z can be written as ([6]):

z(8) = ag +as + Z{b,- cos(l;s) + ¢;sin(l;s)}

(2.1) =t

k
+)_{aie?* + die™%°},

=1

where 0 < l; < --- < l,, and 0 < ¢; < -+ < ¢ are positive real numbers
and ag,a, bj,¢;, a;,d; are vectors in L? such that for each j € {1,--- ,m}
and ¢ € {1, ,k}, a; and d; (b; and c;, respectively) are not simultane-
ously zero. Let :

m

(2.2) A(s)=a+ Z lj[—b; sin(l;8) + ¢; cos(l;3)].
=1

Then we have

k
(2.3) z'(s) = A(s) + Y _ gila;e® — d;e™9"].

=1
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Since the functions s®e?*cosys and s®e?*sin-ys are linearly independent([8]),
< z'(z),z'(s) >= %1 is equivalent to the following :

k
H(l): < A(s),A(s) > =Y ¢? < @i, d; >= 1,

i=1
k
I() - Z @ < a0 > +2 Z 4iq; < aj,a; >
=1 1<J
2qi=l gi+gqi=l

k
+2§:q.~<A(s),a,'>-2 Z giqj < di,a; >=0,

i=1 1<y
gi=l g —gqi=l

k
J(1): z g < diydi > +2 z gigj < di,d; >

=1 i<
2gi=l git+gj=l1
k
- 22 qi < A(s),d,- > -2 Z quj < dj,a,' >=0,
i=1 i<
=l g —gi=l

foralll € {g;|1 i < k}U{gi+g;11 1< j<k}U{g—qll <i<j <k}

(Case 1) k > 1. For | = 2¢; we obtain from (I(1)) and (J(I)) that
< ak,ax >=< di,dy >= 0. And, for | = (g + gx—1), (I(?)) and (J(1))
imply < ax,ax-1 >=< di,dr_1 >= 0.

There are three possibilities:

(1) ar = ax(1,1) #0,di = 6x(1,1) # 0. We obtain az_; = Oq,_l(l,l)
and di—1 = 6x—1(1,1). Now, suppose that a; = a(1,1) and d; = 6,(1,1)
for all t > r. We show that a, and d, are also of this form. Indeed, we
have

< ai,a; >=<d;,d; >=0 foralli,j>r

For | = (q& + ¢) we obtain from (I(!)) and (J(1)) that
< g, @y >=< di,d, >= 0.

Thus e, = a,(1,1) and d, = 6,(1,1). By induction, a; = a;(1,1) and
d;i = 6;(1,1) for all ¢ € {1, -- ,k}. For | = qx we obtain from (I()) and
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(J(1)) that < A(s),az >= 0. Thus we obtain A(s) = ¢(s)(1,1). Hence we
have < z'(s),z'(s) >= 0. This is a contradiction.

(2) ar = ak(17 1) 7& 0, dy = 6k("171) # 0.

We obtain ax—; = ag-y(1,1) and di; = 0k-1(—1,1). Now, suppose
that a; = a4(1,1) and d; = §;(—1,1) for all ¢ > r. We can have

<aj,a; >=< d,‘,dj >=0 forall 1,7 >,

For | = (qk + ¢r) (I(1)) and (J(I)) imply < ai,ar >=< dx,d, >= 0.
Thus a, = a,(1,1) and d, = 6.(~1,1). By induction, a; = ai(1,1) and
d; =6i(—1,1)foralli € {1,--- ,k}. For | = g; we obtain < A(s),ap >=<
A(s),dr >=0. Thus we have A(s) = 0. And we obtain from (I(q; — @)
and (J(g; — ¢i)) that

<dj,a; >=<dj,a; >=0 forall i< j,

so that a;6; = a;6; = 0 for all ¢ < j. Since ax # 0 and & # 0, for
| = (q& — 1) we obtain that a}é; = a;6; = 0. Thus a; = 6; = 0.
Slrmlarly, Oy = Q3 = *°* = Ug-1 = 0 and 62 = 63 = e = 6k_1 = 0, 80
that a1 = dy = --- = ag—1 = dr-1; = 0 and ax # 0, dx # 0. Hence we may
assume that z(s) is of the following form:

z(8) = ag + ae?’ + de™?*
=ag + af1,1)e?* + §(-1,1)e™ .

Therefore z(s) is congruent to one of the following:

HYr)={z € L}| < z,2 >= —r? 2, > 0},
S’ll(r) ={z € Lf{ <z,z>=rz;> 0},
where r = % > 0.

(3) ar = ag—1 = -+ = Ggg41 = 0,.a, # 0, dp = 6v # 0 where
v =(1,1) or v = (—1,1). Then J(gi + gx—1) implies

< dg,dg-1 >=0 and dg—; = 6x_1v.
Suppose that d; = é;v for all ¢ > r. For | = (g +¢,) we obtain from (J(I))

that < di,d, >= 0. Thus d, = é,v. Hence d; = §;v forall i € {1,--- , k}.
For | = 2qi, we obtain from (I(l)) that < ax,,ax, >= 0, so that a;, =
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a,u where u = (1,1) or u = (—1,1). For I = (q&, + gx,—1) We obtain
from (I(1)) that < ax,,ar,—1 >= 0. Hence ax,—1 = ax,—1u. Suppose that
a; = aqu for all kg > t > r. Thus J(qk, + ¢r) implies < ax,,a, >= 0.
Hence a, = a,u. By induction, a; = a;u forall i € {1,--- , ko}.

(1) If u # v, then (I(gx,)) and (J(gx)) imply
< A(8),a, >=< A(38),dx >=0.

Thus A(s) = 0. Hence we have < z'(s),z'(s) >= 0. This is a contradic-
tion.

(ii) If u = v, then as in (1), we obtain a; = a;vforalli € {1,--+ ,ko} and
d; = ;v for all : € {1,--- ,k}. Thus we obtain from (I(gx,)) and (J(qr))
that < A(s),ax, >=< A(s),d;x >= 0. From this we have A(s) = ¢(s)v.
Hence we have < z'(s),z'(s) >= 0. This is a contradiction.

(Case 2) k = 0. In this case, z(s) is of the following form :

z(s) =a¢ +as+ Z{b.- cos(l;s) + ¢; sin(l;3)}.

i=1

Note that the condition (z'(s), z'(s)) = %1 is equivalent to the following
(e]) :

(2.4) Y 8Dy =2(+1- < a,a>),

=1

m m

(25) 4> LM+ Y BAi+2 Y LljA; -2 3 LD =0,
f=1 i=1 D7 i>j

li=l 2=l Litl=l li-l=l

m m

(26) 4> LM+ Y FAi+2 Y LlAj;+2 ) LD =0,
j=1 =1 (> T i>]
L=l 2=l i+l=l i1 =l

foralll € {L1 < i <m}U{li+lll <5 <i SmIU{Li-l1<j <i<m),
where

w——

Mi = (G,C,‘), Mi = (aa bi)y
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(2.7) Aij = (b, b5) — (ciyej),  Dij = (bi, bs) + (ei, ¢5),

Zii = (b,~,c,~) + (bj,ci>’ sz‘j = (biacj) - (bj,ci),

foralli,j € {1,2,--- ,m}.
Thus we obtain from (2.5) and (2.6) that < by, by >=< ¢pm,cm > and
< bm,cm >=0. Since by, cm € L2, we have < by, by >=< ¢, cm >= 0.
There are two possibilities:
(1) bm # 0, e # 0.
Since < b, by >=< ¢, m >= 0, < by, ¢y >= 0, we have b,, = B,,v
and ¢, = Ymv for a null vector v in L2, For | = I, + 1,1 (2.5) and (2.6)
imply

And we have
< bmybm—1 >= Bm < v,bm-1 >,

< CmiCm—~1 2= Ym < UV, Cp—1 > .

Let A =< v,b,—; > and B =< v,¢p—3 >. Since fpA = v, B and
BmB = —vmA, B A = PmymB = —v5,A. Hence (8% +7%)A = 0. Thus
A=< v,bjm-1 >= 0. Similarly, B =< v,¢pm-1 >= 0. Then bp,—1 = Bn—1v
and ¢p;—1 = Ym-1v. Now, suppose that b, = Byv and ¢; = v for all
t > r. Forl = I, + I, we obtain from (2.5) and (2.6) that A4,,, = 0
and Ay, = 0. Thus b, = B,v and ¢, = ¥,v. Hence b; = B;v and
¢i = vivforall i € {1,---,k}. For ! = [; (2.5) and (2.6) imply that
<a,b; >=< a,c¢; >=0. Hence a = Fyv. Thus we obtain

z'(s) = [Bo + Z{li(—ﬂi sin(lis) + i cos(lis)) }]v.

Hence we have < 2'(s),z'(s) >= 0. This is a contradiction.

(2) by = b1 = =bpmyt1 =0, b, # 0 and ¢y = Ymv # 0 where
v=(1,1)orv=(-1,1). For l = I, + l,,; we obtain < ¢;,,,crn_1 >= 0.
Thus ¢p—1 = Ym-1v. Suppose that ¢; = yv forallt > r. Forl = I, +1, we
obtain from (2.6) that < ¢pm,¢r >= 0. Thus ¢, = 4,v. Hence ¢; = ;v for
all: € {1, -, k}. For | = 2l,;,, we obtain from (2.5) that < by, bm, >= 0.
Thus by, = Bm,u whereu = (1,1)oru = (~1,1). Forl = lp,+Im,—1 (2.6)
implies that b,,,—1 = fm,—1u. Suppose that b, = Gyu for all mg > ¢t > r.



Finite Type Curves in the Lorentz Minkowski Plane 47

For | = I, + 1, we obtain < by, by >= 0. Thus b, = f,u. Hence b; = f;u
forall: € {1,--- ,mp}.

(i) If u = v, then similarly as in (1) of (Casel), we have b; = f;u for
all i € {1,--- ,mp} and ¢; = ysuforall i € {1,---,m}. Forl = I, and
| = Iy, we obtain < a,cm >=< a,bm, >= 0. Thus a = Bou. Hence we
have < z'(s),z'(s) >= 0. This is a contradiction.

(ii) If u # v, then similarly as in (2) of (Case 1), we have a = 0. Hence
we obtain < z'(s),z'(s) >= 0. This is a contradiction.

Thus we know that m = 0 and that z(s) is of the following form:

z(s) = ag + as.
Therefore we obtain the following classification theorem :

THEOREM. Let z : R — L? be a curve parametrized by arclength s.
Then x(s) is of finite type if and only if z(s) is, up to congruences on L2,
an open part of one of the following 1-type curves :

(1) a straight line

(2) 5i(r)
(3) H'(r)
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