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ASYMPTOTIC BEHAVIOR OF SINGULAR SOLUTIONS
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Abstract

We study the asymptotic behavior of nonnegative singular solutions of
semilinear parabolic equations of the type

ue = Au — (u?)y —uf

defined in the whole space x = (z,y) € RN~! x R for t > 0, with initial
data a Dirac mass, §(x). The exponents g, p satisfy

2¢* N+1
14 —— 1 —
l<p< +N+1’ <q<N_1

where ¢* = maz{q,(N +1)/N}.

1. Introduction

In this paper we study the asymptotic behavior of singular solutions of
nonnegative diffusion-convection equations with absorption of the form

(F) uy = Au — (u?), — u?
defined in the domain
Q = {(x,t) = (z,,t) : (z,y) e RV x R, ¢ > 0}

with initial data a Dirac mass 6(x).
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Baek and Kwak (see [BK]) showed that there exists a unique nonneg-
ative singular solution u(x,t) of (F) such that u(x,t) — é(x) ast — 0 in
the sense of measures, that is,

lim /R u(x,1)g(x)dx = 4(0)

for all continuous and bounded function ¢ on RV if and only if 1 < p <
1+2¢*/(N+1)and 1 < ¢ < (N+1)/(N-1). Here ¢* = maz{q,(N+1)/N}.

The behavior of solutions of (F') will be completely decided by that of
the following equations :

(1.1) uy = Au

(1.2) uy = Au — uf

(1.3) ur = Azu — (uf),

(1.4) ug = Agu — (u?)y — u?,

where A, denotes the Laplace operator acting only on the variable z. The
singular solution of (1.1) is the standard heat kernel

G(x, t).== (47rt)"¥e"l%3.

We also recall that (1.2) has a unique very singular solution W(x,t) which
has a stronger singularity at 0, i.e., such that

%iné/W(x,t)dx = 400,

see [BPT]. The existence of singular solutions of (1.3) is proved in [BK]
and [EVZ]. The existence of singular solutions of (1.4) will be discussed
in other space.

We denote by || - || the usual norm of L"(RV), 1 < r < oo, and we
prove that
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THEOREM A. Suppose (N + 2)/N < p < 1+2¢/(N +1) and (N +
1)/N < ¢ < (N +1)/(N —1). Then the singular solution of (F') satisfies

Jim ¢¥0=ux,1) - 60,0l = 0.

Let us denote by C(x, t) the singular solution of (1.3) and then we prove

THEOREM B. Suppose 1 +2¢/(N+1)<p<(N+2)/Nandl<g<
(N 4+ 1)/N. Then the singular solution of (F) satisfies

5 0-Dju(x, t) — C(x,t)]|» = 0.

lim ¢
00

We also prove

THEOREM C. Let g. = min{q,(N+1)/N}. 1< p <1+2¢./(N+1),
(1+p)/2 < ¢ < (N +1)/(N —1) and u(x,t) is the singular solution of
(F), then

t7T ju(x,t) — W(x,2)| - 0 as t— oo,

uniformly on the sets {x € RV : x| < at?}, Va > 0.
For the proof of theorems, we introduce a similarity transformation

ua(z,y,t) = A*u(Az, APy, 23*t)

with appropriate choice of constants a and f.

By applying compactness arguments, we deduce that us converges to
one of the singular solutions G(x,t), C(x,t), W(x,t) as A — oo. As
converting to the behavior as t — oo, we obtain Theorem A, B and C.

2. Proof of Theorem A
For the singular solution u of (F), we define

ux(x,t) = ANu(dx, A%t).
Then u) satisfies the equatién
(2.1) upt = Auy — ANFI=Na(y ), — AN+2=Ney b

For A\ very large, we may view (2.1) as a small perturbation of the lin-
ear heat equation (1.1) since AN*1~N¢ and AN+2-NP hecome sufficiently
small.
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Now note that
lua(x,1) = G(x,1)| = MV u(Ax, A?) — G(x,1)|
N/2

= |r

u(%, 7) - G(-—j—.;, 1))
= TV (%, 7) — G, )|

where X = Ax and \? =T.
Therefore, if ux(x,1) converges to G(x,1) as A\ — oo, then we obtain
u(x,t) — G(x,t) in the same norm. In particular, if

lua(x,1) = G(x, 1)}y =0 as A — oo

then
'r%(l“‘*)ﬂu(x,r) - G(x,7)||lr =0 as T — 00.

For the completion of proof we first recall two basic estimates for singular
solution of (F).

(2.2) 0 < u(x,t) < Ct~ ¥ +t0-N/2y w5,

(2.3) 0 < u(x,t) < C(g, N)t~(N+D/2a vy 5 q,

The former is proved in [EZ] and the latter is proved in {BK] and in [EVZ].
We also need the following lemma.

LEMMA 2.1. For every T > 0, there exists a constant’C, such that
IVua(®llh < Cr(t = 7)™

for every t > v and for all A > 1.

Proof. In view of equation (2.1), uy satisfies
ua(t + 1) =G(x, ) * ux(r)

~\N+1-Ng /Ot (G(x,t —8)* (uprT(s +7))y)ds

t
—\N+2-Np / (G(x,t — s)xuP(s+7))ds,
0
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where * denotes the convolution in RY. Differentiating, we get

Vux(t + 1) =VG(2) * ux(7)
~AN+1-Ng /Ot VG(t — 5) * (ur¥(s + 7))yds
_N+2-Np /0 VGt — )% wP(s + 1)ds,
We take L'-norm in space variable and use (2.3) to obtain

[Vua(t + 1)l < Ca(m)t™F + C'z(‘f)/0 (t— )" 2| Vur(s + 7)1 ds

fort >0and A > 1.
By applying the Gronwall’s inequality we obtain the Lemma.

Equation (2.1), (2.2), (2.3) and Lemma 2.1 imply that
(i) {u%*"}» is uniformly bounded in L* ((r, o) : WLLH(RN))) for ev-
eryr>0and 7 >0.
(i1) {ux.}x is uniformly bounded in L, ((0, oo) : H7*(Q)) for some
s > 0 and every bounded domain £ of RN
(iii) {ua} is uniformly bounded in L§2, ((0, oo) RM)).
Taking into account that L2(Q) is compactly embeded in H ~¢(£) for every
e, and that H~¢(Q) is continuously embeded in H~*(Q) for every s > e,
combining (ii) and (iii) we deduce that

loc

(iv) {ux} is relatively compact in C([t;,t2] : H™¢(2)) for some ¢ > 0.

Here for some sequence A, — 00, we may assent that (2.4) uy, — U
in C([t1,t2] : H™¢(2)) for every bounded domain (. As a consequence
of (i), we conclude that uy(t) is relatively compact in L}, (R") for every
1<r <ooandt>0. In view of (2.4), we get uy, — U in L], (R"). And
U is a solution of the heat equation in the sense of distribution.

We now check the initial condition of U. We multiply equation (2.1)
by a test function ¢(x) € C°(RYN) and integrate over RV x (0,%). Then

/ ur (%, £)(x)dx — / ux(x, 0)p(x)dx

ux(x,t)A¢(x)dxds + I (A, t) — I;(,\,t)‘
< “A¢I|L°°t + III()"t)' + 112(’\7t)|»
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where
Li(\t) = AN+1-Ne /0 t / ul(x, 8)¢,(x)dxds,
L(\ t) = AN+1=Np /0 t / u? (x, 3)¢(x)dxds.
Since [uxdz < 1, from (2.3) we obtain
R0 O, Mgl 257 [ o,
(0 8)] < Cg, N[ gl ¥ =552 ] -ty

Ifp<1+2¢/(N+1)and g > (N +1)/N, then both I; and I, tend
to 0 as A — oo and t — 0. Since [ux(x,0)dx = ¢(0), we see that
lim—o U(x,t) = 6(x). ,

According to the uniqueness of the singular solution of the heat equa-
tion, we see that U is infact the heat kernel G(x,1).

We have shown that u) converges locally in L"(RN). We now prove
that ux converges to G in L"(RN). Fix a positive time, say ¢ = 1. Then
given € > 0 and sufficiently large R satisfying ftxl> r G(x,t)dx < ¢, there
exists Ag such that

/ lua(x,1) = G(x,1)jdx <e  for A > Ap.
jxj<R

Since [ ux(x,1)dx < [ G(x,1)dx = 1, we obtain [, puidx > 1—-2cand
f|x|>R ux(x,1)dx < 2e. These imply that

/ lua(x, 1) — G(x, 1)|dx < 4e.
RN

Note that in view of (2.2), ux(x, 1) is uniformly bounded for A > 1. Hence
we get

ur(x,t) — G(x, )]ls < flur = G/ |lur - G,

which tends to 0 as A — oc.
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3. Proof of Theorem B
For the singular solution u of (F), we now consider

ux(z,y,t) = ANTD/ a0y (A, A%y, A2t),
where o = (N + 1+ g — Ng)/q. Then u, satisfy the equation
(3.1) uae = Azur+ I\Z(Nq_N_l)/q“A,yy —(ul)y— ’\(—Np_p+N+l+2”/q“§-

For A very large, we may view (3.1) as a small perturbation of (1.3).
Since the solution C(x,t) of (1.3) is scaling invariant under the above
transformation, it is enough to show that ux(x,1) converges to C(x, 1).

From the estimate (2.3), ux(x,t) is uniformly bounded in L®(R¥ x
(1,00)) for any 7 > 0 and we may extract a subsequence {uy; }5%; which
converges in the weak * topology of L*°. By applying the compensated
compactness argument (see [E] and [T], Theorem 2.6), we may conclude
that along such a solution

uy, = U in L, (Q) V1<r<oo,

J

where U is an entrophy solution of the reduced equation (1.3). (See [EVZ])
In order to check the initial condition, it is enough to show that I3(A, )
and I4(\,t) tend to 0 as A — oo and ¢ — 0, where

Y = | t [, o) (xjexds,

t
Lt = A(“N”‘”N““")/"/ /nN u}(x, s)p(x)dxds
0

for any ¢(x) € C°(RYN). This follows from the following estimates

t
(0 8)] < Cla, Nlidy Iz / s~ (N4D-1) /G g,
0

t
II.()\,t)] € C(g, N)||¢]l L )\(—Np-p+N+l+29)/q/ s~ (N+1)(p—1)/(29) 4o
0

Note that 1+(2¢)/(N+1) < pand ¢ < (N+1)/(N —1). Hence we obtain
limg—o U(x,t) = 6(x).

According to the uniqueness result of the singular solution of (1.3),
we may conclude that U(x,t) = C(x,t). The proof of L"-convergence of
ua(x,1) to C(x,1) is similar to the proof of Theorem A.
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4. Proof of Theorem C

For the proof we need a priori estimates in terms of space variables as
well as time variables.

Let u(z,y,t) be the singular solution of (F), then

(4.1) 0 < u(z,y,t) < (p— 1)~ 7Tt 7T

holds since the right member is a supersolution of (F). It is also easy to see
that if we choose M > 0 so that M? > :f;” + ;—Af-f, then (Iﬂ’#gﬂ =7y 18
a supersolution and

M

(4.2) 0 < u(z,y,t) < (eF 3 /G

For y-variable, when y < 0, if we choose L > 0 so that L? > ”;(__f +, then
the Comparison Principle yields

L
(4.3) 0 <u(z,y,t) < WG

Now for y > 0, let 2(z,y,t) = u(z,y + h(t),t), then 2 satisfies
zy = Az + (h'(t) — qui™)zy — 2°.
We take h(t) so that h'() > qu?™!. For example, let
R'(t) = g(p — 1)~ (@~ D/(~D4—(e=D/(p-1)

- {1 EEE e
q(p—-l)’"ﬁ_:lnt, for p=g.

Applying the Comparison Principle again, we obtain

(4.4) 0 < 2(z,y,t) = u(z,y + h(t),t) < y>0

L
‘ylz/(P‘l) ’

as before (see (4.3)). Here h'(t) and u(z,y,t) become singular as t — 0 but
taking smooth initial data approximating 6(x), we first obtain estimates
similar to (4.4) and we get (4.4) in the limit. From (4.4) we obtain

L
PEDOREIRE

(4.5) 0 L u(z,y,t) < ( y > 0.
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Here [z]* = max{0, z}.
We now turn to the proof of Theorem C.
Let uy = A2/ (P=Dy(Az, Ay, A?t), then u) satisfies

2 413
une = Duy = AFTHTET (0], — o

4.6
(4.5) ua(x,0) = AT N §(x).

Assume B%T +1-— ;%-_QT < 0, that is, 2¢ > p + 1, then it is easy to see

that {u,} are uniformly bounded in every compact subset of Q@ {(0,0)}
and {Vu,} are uniformly Holder continuous in every compact set of Q.
Hence there exists a subsequence {uy; } and function U € C(Q) such that

uy; (x,t) = U(x, 1),
Vuy;(x,t) = VU(x,t) as Xj = o0

uniformly on every compact subset of . Clearly U satisfies (1.2) in the
sense of distribution and becomes a classical solution in @ from the stan-
dard regularity theory.

In order to check the initial condition, let ¢;(> 0) € CP(RN), i =1,2,3
and

suppé: C {(z,y) € RN : z # 0},
suppéz C {(z,y) € RN 1y < 0},
supp¢s C {(z,y) € RV : y > 0}.

We mutiply these test functions to (4.6) and integrate to obtain
[ s tioitavidody - [ use,v,06i(z,)dedy
t
= [ [ @ t)ndiev)dedya
0
t
ARt / /ug(m,y,t)«ﬁ;y(m,y)dxdydt
0

t
~—/ /UK(m,y,t)¢s(w,y)dxdydt-
0
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Since the second term on the left side becomes 0 and the last term on the
right side is negative, we have that

/ ux(z, v, t)i(z, y)dzdy — / ux(z, ¥, 0)6:(z, y)dzdy
t
< / / ua(2, Y, )| A | Lo ddydt
0 Jsuppe;

t
4o / / uS(z, y, )l sy || Lo dadyat.
suppe;

From (4.2) and (4.3), ux, ui are integrable over (0,t) X supp¢;, ¢ = 1,2.
Thus taking A — oo and t — 0 we obtain

@) lim [ U ydedy =0
for i = 1,2. On suppds, from (4.5)

ur(z,y,t) = AP Tu(Az, Ay, A%t)
A2/ (-1
. ([Ay = R(A2)]+)2/(=1)

For p < ¢, h(X*t) < 0 and ux(2,y,1) < =y

For p = ¢, 1/AR(A?t) = 1/AIn(A\?t), which goes to 0 as A — oo and
t—0.
Forqg<p<2¢-—-1,

*h(/\zt)—-Q(p—l)"’ ‘p q/\‘“ S,

which goes to 0 as A — oo and t — 0. Hence we see that for sufficiently |
large A and small ¢, u) and u{ are uniformly integrable over (0,t) x suppés
and

(4.8) lim / Uz, )s(z, y)dedy = 0.

From (4.7), (4.8), we may conclude that

49)  lim [Ule,n,06(a,u)dady =0 Vo€ CERY - {0]),
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Finally for any M > 0, consider the solution v of

2
vae = Avy = AT (o), — o}

(4.10)
v;(x, 0) = M&(X).

For all sufficiently large A, AFET-N > M and from the Comparison
Principle we get 0 < va(x,?) < ux(x,t). It is easy to see that {va} con-

verges to a singular solution Ppy(x,t) of (1.2) with total mass M. Hence
we obtain 0 < Pp(x,t) < U(x,t). In particular

M = }in%/PM(x,t)dx < }ir%/U(x,t)dx.
This shows that
(4.11) }ir:%/U(x,t)dx = 00.

From (4.9), (4.11) and the uniqueness result we conclude that U(x,1?) is
in fact the very singular solution of (1.2).(See [O], [KPV])

5. Final Remarks

The case 1 < p < 1 +(2¢x)/(N+1) and 1 < ¢ < (1 + p)/2 is not
considered here. Recall that ¢, = min{q,(N + 1)/N}. We only presume
that the singular solution of (F) behaves like a very singular solution of
(1.4). But as far as we know, no research has been made on the singular
solution of (1.4). Hence we have to make a little more efforts for the proof,
which will be postponed to the forthcoming paper.

The borderline cases are not considered neither here. We believe that
those solutions have self-similar profiles and we leave these cases to the
interested reader.(See [EZ])
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