ASYMPTOTIC BEHAVIOR OF SINGULAR SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS

HYUNJU BAN AND MINKYU KWAK

Dept. of Mathematics, Chonnam National University, Kwangju 500-757, Korea.

Abstract

We study the asymptotic behavior of nonnegative singular solutions of semilinear parabolic equations of the type

$$u_t = \Delta u - (u^q)_{\mathbf{v}} - u^p$$

defined in the whole space $\mathbf{x} = (x, y) \in \mathbf{R}^{N-1} \times \mathbf{R}$ for t > 0, with initial data a Dirac mass, $\delta(\mathbf{x})$. The exponents q, p satisfy

$$1$$

where $q^* = max\{q, (N+1)/N\}.$

1. Introduction

In this paper we study the asymptotic behavior of singular solutions of nonnegative diffusion-convection equations with absorption of the form

$$(F) u_t = \Delta u - (u^q)_y - u^p$$

defined in the domain

$$Q = \{(\mathbf{x}, t) = (x, y, t) : (x, y) \in \mathbf{R}^{N-1} \times \mathbf{R}, t > 0\}$$

with initial data a Dirac mass $\delta(\mathbf{x})$.

Received May 4, 1995.

This work was supported by Nondirect Research Fund, Korea Research Foundation, 1994, KOSEF-GARC, BSRI-94-1426 and MRC-CNU.

Back and Kwak (see [BK]) showed that there exists a unique nonnegative singular solution $u(\mathbf{x},t)$ of (F) such that $u(\mathbf{x},t) \to \delta(\mathbf{x})$ as $t \to 0$ in the sense of measures, that is,

$$\lim_{t\to 0} \int_{\mathbf{R}^N} u(\mathbf{x}, t) \phi(\mathbf{x}) d\mathbf{x} = \phi(0)$$

for all continuous and bounded function ϕ on \mathbb{R}^N if and only if 1 and <math>1 < q < (N+1)/(N-1). Here $q^* = max\{q, (N+1)/N\}$.

The behavior of solutions of (F) will be completely decided by that of the following equations:

$$(1.1) u_t = \Delta u$$

$$(1.2) u_t = \Delta u - u^p$$

$$(1.3) u_t = \Delta_x u - (u^q)_y$$

$$(1.4) u_t = \Delta_x u - (u^q)_y - u^p,$$

where Δ_x denotes the Laplace operator acting only on the variable x. The singular solution of (1.1) is the standard heat kernel

$$G(\mathbf{x},t) = (4\pi t)^{-\frac{N}{2}} e^{-\frac{|\mathbf{x}|^2}{4t}}.$$

We also recall that (1.2) has a unique very singular solution $W(\mathbf{x}, t)$ which has a stronger singularity at 0, i.e., such that

$$\lim_{t\to 0}\int W(\mathbf{x},t)d\mathbf{x}=+\infty,$$

see [BPT]. The existence of singular solutions of (1.3) is proved in [BK] and [EVZ]. The existence of singular solutions of (1.4) will be discussed in other space.

We denote by $\|\cdot\|_r$ the usual norm of $L^r(\mathbf{R}^N)$, $1 \le r \le \infty$, and we prove that

Asymptotic Behavior of Singular Solutions of Semilinear Parabolic Equations 109

THEOREM A. Suppose (N+2)/N and <math>(N+1)/N < q < (N+1)/(N-1). Then the singular solution of (F) satisfies

$$\lim_{t\to\infty} t^{\frac{N}{2}(1-\frac{1}{r})} ||u(\mathbf{x},t) - G(\mathbf{x},t)||_r = 0.$$

Let us denote by $C(\mathbf{x},t)$ the singular solution of (1.3) and then we prove

THEOREM B. Suppose 1 + 2q/(N+1) and <math>1 < q < (N+1)/N. Then the singular solution of (F) satisfies

$$\lim_{t\to\infty}t^{\frac{N+1}{2q}(1-\frac{1}{r})}\|u(\mathbf{x},t)-C(\mathbf{x},t)\|_{r}=0.$$

We also prove

THEOREM C. Let $q_* = min\{q, (N+1)/N\}$. If 1 , <math>(1+p)/2 < q < (N+1)/(N-1) and $u(\mathbf{x},t)$ is the singular solution of (F), then

$$t^{\frac{1}{p-1}}|u(\mathbf{x},t)-W(\mathbf{x},t)|\to 0$$
 as $t\to\infty$,

uniformly on the sets $\{\mathbf{x} \in \mathbf{R}^N : |\mathbf{x}| \le at^{\frac{1}{2}}\}, \forall a > 0.$

For the proof of theorems, we introduce a similarity transformation

$$u_{\lambda}(x,y,t) = \lambda^{\alpha} u(\lambda x, \lambda^{\beta} y, \lambda^{2} t)$$

with appropriate choice of constants α and β .

By applying compactness arguments, we deduce that u_{λ} converges to one of the singular solutions $G(\mathbf{x},t)$, $C(\mathbf{x},t)$, $W(\mathbf{x},t)$ as $\lambda \to \infty$. As converting to the behavior as $t \to \infty$, we obtain Theorem A, B and C.

2. Proof of Theorem A

For the singular solution u of (F), we define

$$u_{\lambda}(\mathbf{x},t) = \lambda^N u(\lambda \mathbf{x}, \lambda^2 t).$$

Then u_{λ} satisfies the equation

$$(2.1) u_{\lambda,t} = \Delta u_{\lambda} - \lambda^{N+1-Nq} (u_{\lambda}^q)_y - \lambda^{N+2-Np} u_{\lambda}^p.$$

For λ very large, we may view (2.1) as a small perturbation of the linear heat equation (1.1) since λ^{N+1-Nq} and λ^{N+2-Np} become sufficiently small.

Now note that

$$\begin{split} |u_{\lambda}(\mathbf{x},1) - G(\mathbf{x},1)| &= |\lambda^N u(\lambda \mathbf{x},\lambda^2) - G(\mathbf{x},1)| \\ &= |\tau^{N/2} u(\tilde{\mathbf{x}},\tau) - G(\frac{\tilde{\mathbf{x}}}{\sqrt{\tau}},1)| \\ &= \tau^{N/2} |u(\tilde{\mathbf{x}},\tau) - G(\tilde{\mathbf{x}},\tau)| \end{split}$$

where $\tilde{\mathbf{x}} = \lambda \mathbf{x}$ and $\lambda^2 = \tau$.

Therefore, if $u_{\lambda}(\mathbf{x}, 1)$ converges to $G(\mathbf{x}, 1)$ as $\lambda \to \infty$, then we obtain $u(\mathbf{x}, t) \to G(\mathbf{x}, t)$ in the same norm. In particular, if

$$||u_{\lambda}(\mathbf{x},1) - G(\mathbf{x},1)||_r \to 0$$
 as $\lambda \to \infty$

then

$$\tau^{\frac{N}{2}(1-\frac{1}{r})} \|u(\mathbf{x},\tau) - G(\mathbf{x},\tau)\|_r \to 0$$
 as $\tau \to \infty$.

For the completion of proof we first recall two basic estimates for singular solution of (F).

$$(2.2) 0 \le u(\mathbf{x}, t) \le C(t^{-\frac{N}{2}} + t^{(1-Nq)/2}), \forall t > 0.$$

(2.3)
$$0 \le u(\mathbf{x}, t) \le C(q, N) t^{-(N+1)/2q}, \quad \forall t > 0.$$

The former is proved in [EZ] and the latter is proved in [BK] and in [EVZ]. We also need the following lemma.

LEMMA 2.1. For every $\tau > 0$, there exists a constant C_{τ} such that

$$\|\nabla u_{\lambda}(t)\|_1 \le C_{\tau}(t-\tau)^{-1/2}$$

for every $t > \tau$ and for all $\lambda \ge 1$.

Proof. In view of equation (2.1), u_{λ} satisfies

$$\begin{split} u_{\lambda}(t+\tau) = & G(\mathbf{x},t) * u_{\lambda}(\tau) \\ & - \lambda^{N+1-Nq} \int_0^t \left(G(\mathbf{x},t-s) * (u_{\lambda}{}^q(s+\tau))_y \right) ds \\ & - \lambda^{N+2-Np} \int_0^t \left(G(\mathbf{x},t-s) * u^p(s+\tau) \right) ds, \end{split}$$

where * denotes the convolution in \mathbb{R}^N . Differentiating, we get

$$\begin{split} \nabla u_{\lambda}(t+\tau) = & \nabla G(t) * u_{\lambda}(\tau) \\ & - \lambda^{N+1-Nq} \int_0^t \nabla G(t-s) * (u_{\lambda}{}^q(s+\tau))_y ds \\ & - \lambda^{N+2-Np} \int_0^t \nabla G(t-s) * u^p(s+\tau) ds, \end{split}$$

We take L^1 -norm in space variable and use (2.3) to obtain

$$\|\nabla u_{\lambda}(t+ au)\|_{1} \leq C_{1}(au)t^{-rac{1}{2}} + C_{2}(au) \int_{0}^{t} (t-s)^{-1/2} \|\nabla u_{\lambda}(s+ au)\|_{1} ds$$

for t > 0 and $\lambda \ge 1$.

By applying the Gronwall's inequality we obtain the Lemma.

Equation (2.1), (2.2), (2.3) and Lemma 2.1 imply that

- (i) $\{u_{\lambda}^{q+r}\}_{\lambda}$ is uniformly bounded in $L^{\infty}\left((\tau,\infty):W^{1,1}(\mathbf{R}^N)\right)$ for every r>0 and $\tau>0$.
- (ii) $\{u_{\lambda,t}\}_{\lambda}$ is uniformly bounded in $L^2_{loc}((0,\infty):H^{-s}(\Omega))$ for some s>0 and every bounded domain Ω of \mathbb{R}^N .
- (iii) $\{u_{\lambda}\}$ is uniformly bounded in $L^{\infty}_{loc}\left((0,\infty):L^{2}_{loc}(\mathbf{R}^{N})\right)$.

Taking into account that $L^2(\Omega)$ is compactly embedded in $H^{-\epsilon}(\Omega)$ for every ϵ , and that $H^{-\epsilon}(\Omega)$ is continuously embedde in $H^{-s}(\Omega)$ for every $s > \epsilon$, combining (ii) and (iii) we deduce that

(iv) $\{u_{\lambda}\}$ is relatively compact in $C([t_1, t_2]: H^{-\epsilon}(\Omega))$ for some $\epsilon > 0$.

Here for some sequence $\lambda_n \to \infty$, we may assent that (2.4) $u_{\lambda_n} \to U$ in $C([t_1, t_2] : H^{-\epsilon}(\Omega))$ for every bounded domain Ω . As a consequence of (i), we conclude that $u_{\lambda}(t)$ is relatively compact in $L^r_{loc}(\mathbf{R}^N)$ for every $1 \le r < \infty$ and t > 0. In view of (2.4), we get $u_{\lambda_n} \to U$ in $L^r_{loc}(\mathbf{R}^N)$. And U is a solution of the heat equation in the sense of distribution.

We now check the initial condition of U. We multiply equation (2.1) by a test function $\phi(\mathbf{x}) \in C_0^{\infty}(\mathbf{R}^N)$ and integrate over $\mathbf{R}^N \times (0,t)$. Then

$$\left| \int u_{\lambda}(\mathbf{x}, t) \phi(\mathbf{x}) d\mathbf{x} - \int u_{\lambda}(\mathbf{x}, 0) \phi(\mathbf{x}) d\mathbf{x} \right|$$

$$= \left| \int_{0}^{t} \int u_{\lambda}(\mathbf{x}, t) \Delta \phi(\mathbf{x}) d\mathbf{x} ds + I_{1}(\lambda, t) - I_{2}(\lambda, t) \right|$$

$$\leq \|\Delta \phi\|_{L^{\infty}} t + |I_{1}(\lambda, t)| + |I_{2}(\lambda, t)|,$$

where

$$I_1(\lambda,t) = \lambda^{N+1-Nq} \int_0^t \int u_\lambda^q(\mathbf{x},s) \phi_y(\mathbf{x}) d\mathbf{x} ds,$$

$$I_2(\lambda,t) = \lambda^{N+1-Np} \int_0^t \int u_\lambda^p(\mathbf{x},s) \phi(\mathbf{x}) d\mathbf{x} ds.$$

Since $\int u_{\lambda} dx \leq 1$, from (2.3) we obtain

$$\begin{split} |I_1(\lambda,t)| &\leq C(q,N) \|\phi_y\|_{L^\infty} \lambda^{\frac{N+1-Nq}{q}} \int_0^t s^{-\frac{(N+1)(q-1)}{2q}} ds, \\ |I_2(\lambda,t)| &\leq C(q,N) \|\phi\|_{L^\infty} \lambda^{\frac{2q-(N+1)(p-1)}{q}} \int_0^t s^{-\frac{(N+1)(p-1)}{2q}} ds. \end{split}$$

If p < 1 + 2q/(N+1) and q > (N+1)/N, then both I_1 and I_2 tend to 0 as $\lambda \to \infty$ and $t \to 0$. Since $\int u_{\lambda}(\mathbf{x}, 0) d\mathbf{x} = \phi(0)$, we see that $\lim_{t\to 0} U(\mathbf{x}, t) = \delta(\mathbf{x})$.

According to the uniqueness of the singular solution of the heat equation, we see that U is infact the heat kernel $G(\mathbf{x},t)$.

We have shown that u_{λ} converges locally in $L^{r}(\mathbf{R}^{N})$. We now prove that u_{λ} converges to G in $L^{r}(\mathbf{R}^{N})$. Fix a positive time, say t=1. Then given $\epsilon>0$ and sufficiently large R satisfying $\int_{|\mathbf{x}|>R} G(\mathbf{x},t)d\mathbf{x} \leq \epsilon$, there exists λ_{0} such that

$$\int_{|\mathbf{x}| < R} |u_{\lambda}(\mathbf{x}, 1) - G(\mathbf{x}, 1)| d\mathbf{x} \le \epsilon \quad \text{for} \quad \lambda > \lambda_0.$$

Since $\int u_{\lambda}(\mathbf{x}, 1) d\mathbf{x} \leq \int G(\mathbf{x}, 1) d\mathbf{x} = 1$, we obtain $\int_{|\mathbf{x}| < R} u_{\lambda} d\mathbf{x} \geq 1 - 2\epsilon$ and $\int_{|\mathbf{x}| > R} u_{\lambda}(\mathbf{x}, 1) d\mathbf{x} \leq 2\epsilon$. These imply that

$$\int_{\mathbb{R}^N} |u_{\lambda}(\mathbf{x},1) - G(\mathbf{x},1)| d\mathbf{x} \le 4\epsilon.$$

Note that in view of (2.2), $u_{\lambda}(\mathbf{x}, 1)$ is uniformly bounded for $\lambda \geq 1$. Hence we get

$$||u_{\lambda}(\mathbf{x},t) - G(\mathbf{x},t)||_{r} \le ||u_{\lambda} - G||_{\infty}^{(r-1)/r} ||u_{\lambda} - G||_{L^{1}}^{1/r},$$

which tends to 0 as $\lambda \to \infty$.

3. Proof of Theorem B

For the singular solution u of (F), we now consider

$$u_{\lambda}(x, y, t) = \lambda^{(N+1)/q} u(\lambda x, \lambda^{\alpha} y, \lambda^{2} t),$$

where $\alpha = (N+1+q-Nq)/q$. Then u_{λ} satisfy the equation

$$(3.1) \ u_{\lambda,t} = \Delta_x u_{\lambda} + \lambda^{2(Nq-N-1)/q} u_{\lambda,yy} - (u_{\lambda}^q)_y - \lambda^{(-Np-p+N+1+2q)/q} u_{\lambda}^p.$$

For λ very large, we may view (3.1) as a small perturbation of (1.3). Since the solution $C(\mathbf{x},t)$ of (1.3) is scaling invariant under the above transformation, it is enough to show that $u_{\lambda}(\mathbf{x},1)$ converges to $C(\mathbf{x},1)$.

From the estimate (2.3), $u_{\lambda}(\mathbf{x},t)$ is uniformly bounded in $L^{\infty}(\mathbf{R}^{N} \times (\tau,\infty))$ for any $\tau > 0$ and we may extract a subsequence $\{u_{\lambda_{j}}\}_{j=1}^{\infty}$ which converges in the weak * topology of L^{∞} . By applying the compensated compactness argument (see [E] and [T], Theorem 2.6), we may conclude that along such a solution

$$u_{\lambda_j} \to U$$
 in $L^r_{loc}(Q)$ $\forall 1 \le r < \infty$,

where U is an entrophy solution of the reduced equation (1.3). (See [EVZ]) In order to check the initial condition, it is enough to show that $I_3(\lambda, t)$ and $I_4(\lambda, t)$ tend to 0 as $\lambda \to \infty$ and $t \to 0$, where

$$I_3(\lambda,t) = \int_0^t \int_{\mathbf{R}^N} u_\lambda^q(\mathbf{x},s) \phi_y(\mathbf{x}) d\mathbf{x} ds,$$

$$I_4(\lambda,t) = \lambda^{(-Np-p+N+1+2q)/q} \int_0^t \int_{\mathbf{R}^N} u_\lambda^p(\mathbf{x},s) \phi(\mathbf{x}) d\mathbf{x} ds$$

for any $\phi(\mathbf{x}) \in C_0^{\infty}(\mathbf{R}^N)$. This follows from the following estimates

$$|I_3(\lambda,t)| \leq C(q,N) \|\phi_y\|_{L^{\infty}} \int_0^t s^{-(N+1)(q-1)/(2q)} ds,$$

$$|I_4(\lambda,t)| \leq C(q,N) \|\phi\|_{L^{\infty}} \lambda^{(-Np-p+N+1+2q)/q} \int_0^t s^{-(N+1)(p-1)/(2q)} ds.$$

Note that 1+(2q)/(N+1) < p and q < (N+1)/(N-1). Hence we obtain $\lim_{t\to 0} U(\mathbf{x},t) = \delta(\mathbf{x})$.

According to the uniqueness result of the singular solution of (1.3), we may conclude that $U(\mathbf{x},t) = C(\mathbf{x},t)$. The proof of L^r -convergence of $u_{\lambda}(\mathbf{x},1)$ to $C(\mathbf{x},1)$ is similar to the proof of Theorem A.

4. Proof of Theorem C

For the proof we need a priori estimates in terms of space variables as well as time variables.

Let u(x, y, t) be the singular solution of (F), then

$$(4.1) 0 \le u(x,y,t) \le (p-1)^{-\frac{1}{p-1}} t^{-\frac{1}{p-1}}$$

holds since the right member is a supersolution of (F). It is also easy to see that if we choose M > 0 so that $M^p \ge \frac{4pM}{(p-1)^2} + \frac{M}{p-1}$, then $\frac{M}{(|x|^2+t)^{1/(p-1)}}$ is a supersolution and

$$(4.2) 0 \le u(x,y,t) \le \frac{M}{(|x|^2+t)^{1/(p-1)}}.$$

For y-variable, when $y \leq 0$, if we choose L > 0 so that $L^p \geq \frac{2L(p+1)}{(p-1)^2}$, then the Comparison Principle yields

(4.3)
$$0 \le u(x, y, t) \le \frac{L}{|y|^{2/(p-1)}}.$$

Now for y > 0, let z(x, y, t) = u(x, y + h(t), t), then z satisfies

$$z_t = \Delta z + (h'(t) - qu^{q-1})z_y - z^p.$$

We take h(t) so that $h'(t) \ge qu^{q-1}$. For example, let

$$h'(t) = q(p-1)^{-(q-1)/(p-1)}t^{-(q-1)/(p-1)}$$

and

$$h(t) = \begin{cases} q(p-1)^{-\frac{q-1}{p-1}} \frac{p-1}{p-q} t^{\frac{p-q}{p-1}}, & \text{for } p \neq q \\ q(p-1)^{-\frac{q-1}{p-1}} \ln t, & \text{for } p = q. \end{cases}$$

Applying the Comparison Principle again, we obtain

$$(4.4) 0 \le z(x,y,t) = u(x,y+h(t),t) \le \frac{L}{|y|^{2/(p-1)}}, \quad y > 0$$

as before (see (4.3)). Here h'(t) and u(x, y, t) become singular as $t \to 0$ but taking smooth initial data approximating $\delta(\mathbf{x})$, we first obtain estimates similar to (4.4) and we get (4.4) in the limit. From (4.4) we obtain

(4.5)
$$0 \le u(x, y, t) \le \frac{L}{([y - h(t)]^+)^{2/(p-1)}}, \quad y > 0.$$

Asymptotic Behavior of Singular Solutions of Semilinear Parabolic Equations 115

Here $[x]^+ = \max\{0, x\}.$

We now turn to the proof of Theorem C.

Let $u_{\lambda} = \lambda^{2/(p-1)} u(\lambda x, \lambda y, \lambda^2 t)$, then u_{λ} satisfies

(4.6)
$$u_{\lambda,t} = \Delta u_{\lambda} - \lambda^{\frac{2}{p-1}+1-\frac{2q}{p-1}} (u_{\lambda}^{q})_{y} - u_{\lambda}^{p}$$
$$u_{\lambda}(\mathbf{x},0) = \lambda^{\frac{2}{p-1}-N} \delta(\mathbf{x}).$$

Assume $\frac{2}{p-1} + 1 - \frac{2q}{p-1} < 0$, that is, 2q > p+1, then it is easy to see that $\{u_{\lambda}\}$ are uniformly bounded in every compact subset of \overline{Q} $\{(0,0)\}$ and $\{\nabla u_{\lambda}\}$ are uniformly Holder continuous in every compact set of Q. Hence there exists a subsequence $\{u_{\lambda_i}\}$ and function $U \in C(Q)$ such that

$$u_{\lambda_j}(\mathbf{x}, t) \to U(\mathbf{x}, t),$$

 $\nabla u_{\lambda_j}(\mathbf{x}, t) \to \nabla U(\mathbf{x}, t) \quad \text{as} \quad \lambda_j \to \infty$

uniformly on every compact subset of Q. Clearly U satisfies (1.2) in the sense of distribution and becomes a classical solution in Q from the standard regularity theory.

In order to check the initial condition, let $\phi_i(\geq 0) \in C_0^\infty(\mathbf{R}^N)$, i=1,2,3 and

$$\begin{aligned} &\operatorname{supp} \phi_1 \subset \{(x,y) \in \mathbf{R}^N : x \neq 0\}, \\ &\operatorname{supp} \phi_2 \subset \{(x,y) \in \mathbf{R}^N : y < 0\}, \\ &\operatorname{supp} \phi_3 \subset \{(x,y) \in \mathbf{R}^N : y > 0\}. \end{aligned}$$

We mutiply these test functions to (4.6) and integrate to obtain

$$\begin{split} \int u_{\lambda}(x,y,t)\phi_{i}(x,y)dxdy &- \int u_{\lambda}(x,y,0)\phi_{i}(x,y)dxdy \\ &= \int_{0}^{t} \int u_{\lambda}(x,y,t)\Delta\phi_{i}(x,y)dxdydt \\ &+ \lambda^{\frac{2}{p-1}+1-\frac{2q}{p-1}} \int_{0}^{t} \int u_{\lambda}^{q}(x,y,t)\phi_{iy}(x,y)dxdydt \\ &- \int_{0}^{t} \int u_{\lambda}^{p}(x,y,t)\phi_{i}(x,y)dxdydt. \end{split}$$

Since the second term on the left side becomes 0 and the last term on the right side is negative, we have that

$$\begin{split} &\int u_{\lambda}(x,y,t)\phi_{i}(x,y)dxdy - \int u_{\lambda}(x,y,0)\phi_{i}(x,y)dxdy \\ &\leq \int_{0}^{t} \int_{\sup p\phi_{i}} u_{\lambda}(x,y,t) \|\Delta\phi_{i}\|_{L^{\infty}} dxdydt \\ &\quad + \lambda^{\frac{2}{p-1}+1-\frac{2q}{p-1}} \int_{0}^{t} \int_{\sup p\phi_{i}} u_{\lambda}^{q}(x,y,t) \|\phi_{iy}\|_{L^{\infty}} dxdydt. \end{split}$$

From (4.2) and (4.3), u_{λ} , u_{λ}^{q} are integrable over $(0, t) \times \operatorname{supp} \phi_{i}$, i = 1, 2. Thus taking $\lambda \to \infty$ and $t \to 0$ we obtain

(4.7)
$$\lim_{t\to 0} \int U(x,y,t)\phi_i(x,y)dxdy = 0$$

for i = 1, 2. On supp ϕ_3 , from (4.5)

$$\begin{split} u_{\lambda}(x,y,t) &= \lambda^{\frac{2}{p-1}} u(\lambda x, \lambda y, \lambda^2 t) \\ &\leq \frac{\lambda^{2/(p-1)} L}{([\lambda y - h(\lambda^2 t)]^+)^{2/(p-1)}}. \end{split}$$

For p < q, $h(\lambda^2 t) < 0$ and $u_{\lambda}(x, y, t) \le \frac{L}{|y|^{2/(p-1)}}$.

For p = q, $1/\lambda h(\lambda^2 t) = 1/\lambda \ln(\lambda^2 t)$, which goes to 0 as $\lambda \to \infty$ and $t \to 0$.

For q ,

$$\frac{1}{\lambda}h(\lambda^2 t) = q(p-1)^{-\frac{q-1}{p-1}} \frac{p-1}{p-q} \lambda^{-1 + \frac{2(p-q)}{p-1}} t^{\frac{p-q}{p-1}},$$

which goes to 0 as $\lambda \to \infty$ and $t \to 0$. Hence we see that for sufficiently large λ and small t, u_{λ} and u_{λ}^{q} are uniformly integrable over $(0, t) \times \operatorname{supp} \phi_{3}$ and

(4.8)
$$\lim_{t\to 0}\int U(x,y,t)\phi_3(x,y)dxdy=0.$$

From (4.7), (4.8), we may conclude that

$$(4.9) \qquad \lim_{t\to 0}\int U(x,y,t)\phi(x,y)dxdy=0 \qquad \forall \phi\in C_0^\infty(\mathbf{R}^N-\{0\}).$$

Finally for any M > 0, consider the solution v_{λ} of

(4.10)
$$v_{\lambda,t} = \Delta v_{\lambda} - \lambda^{\frac{2}{p-1}+1-\frac{2q}{p-1}} (v_{\lambda}^{q})_{y} - v_{\lambda}^{p}$$
$$v_{\lambda}(\mathbf{x},0) = M\delta(\mathbf{x}).$$

For all sufficiently large λ , $\lambda^{\frac{2}{p-1}-N} \geq M$ and from the Comparison Principle we get $0 \leq v_{\lambda}(\mathbf{x},t) \leq u_{\lambda}(\mathbf{x},t)$. It is easy to see that $\{v_{\lambda}\}$ converges to a singular solution $P_{M}(\mathbf{x},t)$ of (1.2) with total mass M. Hence we obtain $0 \leq P_{M}(\mathbf{x},t) \leq U(\mathbf{x},t)$. In particular

$$M = \lim_{t \to 0} \int P_{M}(\mathbf{x}, t) d\mathbf{x} \le \lim_{t \to 0} \int U(\mathbf{x}, t) d\mathbf{x}.$$

This shows that

(4.11)
$$\lim_{t\to 0}\int U(\mathbf{x},t)d\mathbf{x}=\infty.$$

From (4.9), (4.11) and the uniqueness result we conclude that $U(\mathbf{x},t)$ is in fact the very singular solution of (1.2). (See [O], [KPV])

5. Final Remarks

The case 1 and <math>1 < q < (1+p)/2 is not considered here. Recall that $q_* = \min\{q, (N+1)/N\}$. We only presume that the singular solution of (F) behaves like a very singular solution of (1.4). But as far as we know, no research has been made on the singular solution of (1.4). Hence we have to make a little more efforts for the proof, which will be postponed to the forthcoming paper.

The borderline cases are not considered neither here. We believe that those solutions have self-similar profiles and we leave these cases to the interested reader. (See [EZ])

References

- [E] L.C. Evans, Weak convergence methods for nonlinear partial differential equations, Conference board of the mathematical sciences, Regional conference series in Mathematics 74, A.M.S., Providence, 1988.
- [PW] M.H. Protter and H.F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984.
- [T] L. Tartar, Compensated compactness and applications to partial differential equations, Research notes in Mathematics 39, 1979.

- [BK] J.S. Back and M. Kwak, Singular solutions of semilinear parabolic equations in several space dimensions, Preprint series in GARC-SNU 94-36 (1994).
- [EZ] M. Escobedo and E. Zuazua, Large time behavior for convection diffusion equations in R^N, Jour. of Functional Analysis 100 (1991), 119-161.
- [EVZ] M. Escobedo, J.L. Vazquez, and E. Zuazua, A diffusion-convection equation in several space dimensions, Indiana Univ. Math. Jour. 42 No. 4 (1993), 1413-1440.
- [O] L. Oswald, Isolated positive singularities for a nonlinear heat equation, Houston J. of Math. 14, No. 4 (1988), 543-572.
- [KPV] S.Kamin, L.A. Peletier, and J.L. Vazquez, Classification of singular solutions of a nonlinear heat equation, Duke Math. Jour. 58, No. 3 (1989), 601-615.