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ON CERTAIN AREA FUNCTIONS
ASSOCIATED WITH APPROACH REGIONS

CHOON-SERK SUH

1.Introduction

In this paper we first define a group of homogeneous type &, which
1s a more general setting than R", and we also consider the space
G x (0,00). which is a kind of generalized upper half-space over G.
Then we shall assume that to each boundary point £ € G, there is
associated an approach region I'y(z) C G x (0, 0). Let f be a function
defined on G x {0, c0). For z € G and « > 0, we define an area function
Sa( f) associated with I'y(z), by

1/2
du(y)d
So(f)($)=( i ( )|f<y,f)|’%f,—)f—t> :

where u denotes the Borel measure on G. For simplicity, we put S(f) =
51(f). The purpose of this paper is to study inequalities for the L?
norms of area functious S,(f) and S(f) for a > 1; more precisely, let
0 < p < ooand a > 1, then there is a constant C such that

NSa( M eriany < CUSUF N Lrcdp)-

Throughout this paper we shall use the letter C' to denote a constant
which need not be the same at each occurrence.

Recerved March 29. 1995



28 Choon—S8erk Suh

2.Preliminaries

Let G be a topological group. Assume that d is a pseudo-distance
on G, i.e., a nonnegative function defined on G x G with properties

(1) d(z,2) = 0;d(z,y) > 0if r £y,
(i) d(a.y}=d(y,z), and
(i) there is a constant R such that

d{v,z) < K{d(z,y) +d(y,2)] forallr,y,z€G.

Assume also that

(a) the balls B(z,p) = {y € G : d(z,y) < p}, p > 0, form a basis
of open neighborhoods at z € G,

and that g4 is a Borel measure on G, and
(b) there is a constant A such that

0 < pu(B(z,2p)) < Au(B(z,p)) < 00 forallz € G,p > 0.

Assume further that g is left-invariant:
(¢) u(zE) = p(E) for z € G, measurable E C G, and
(d) w(E™!) = p(E),

and that d is left-invariant:
(e) zB(y,p) = B(zy,p) forall 2,y € G, p > 0.

Then we call (G.d, )} a group of homogeneous type. Let (G, d, ) be a
group of homogeneous type and p > 0. Then an automorphism §, of
G is called a dilation of G if there is a positive integer n such that

(1) H{6p(E)) = p"p(E)
for any measurable £ C G, and in particular,
(2) w(6,(Ble.1))) = u(Ble, p)) = Cup",

where (', denotes the volume of the unit ball B(e, 1), and e denotes
the identity element of G. Frequently, we shall write pz instead of 8,z
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for p > 0 and z € G. For details see [6]. A. Koranyi and S. Végi {3]
studied that d is left-invariant if and only if

d(z,y) = |z 7y,

where | - | is a nonnegative function on &G with properties
(i) || =0 if and only if =z = e,
{(i1) there is a constant K such that {zy| < K{|z| + |y|), and
(iii) [z ={z|.
For z,y € G and p > 0, the set

B(z,p)={y € G:|z7'y| <p}

is called the ball centered at * € G with radius p. Now consider the
space G x (0,00}, which is a kind of generalized upper half-space over
G We then introduce the analogue of nontangential or conical region.
For 2z € G and a > 0, set

Po(2) = {(y,t) € G x (0,00} : |z y| < at}.

For simplicity, we put I'(z) = I'y(z). For any closed subset F' C G and
a > 0, set

Ral(F) = | Tal2).

zeF

Then the tent over an open subset O = °F of G, denoted by T(0), is
given as

T(0) = “Ry(F).

We define an area function associated with an approach region as fol-
lows. Let f be a function defined on G x (0,00). For r € G and a > 0,

set 2
d d
Salf)z) = ( /r ( )|f(y,t)|2—‘§:(,%—t) -

Let f be a locally integrable function on G. For 2 € ¢, we define

1
#(B)

M(f)(z) = sup / | f(y)|du(y),
r€EB B
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where the supremum is taken over all balls B containing z. Then
M{f) 1s called the Hardy-Littlewood mazimal function of f. We need
the notion of points of density. Suppose F' is a closed subset of G and
v 1s a fixed parameter, 0 < 7 < 1. Then we say t hat a point z € G
has global v-density with respect to F, if

MENB) N
wB)

for all balls B centered at z in G. Let F* be the set of points of global
v-density with respect to F; then F* is closed, F* C F, and

F*={z€G: M(xer)(z) >1 -7},

where y:p is the characteristic function of the open set “F.

3.Main result

We state the four lemmas we need.

LEMMA 1 {6]. Assume F is a closed subset of G. Then there is a
constant C such that
p(*F") < Cp(°F),

where F™* is the set of points of global y-density with respect to F.

LEMMA 2. Suppose a > 0 is given Then there is a constant C so
that whenever F is a closed subset of G and A(y,t) is any nonnegative
measurable function on G x (0,00), then

/ ( / A(y,t)dp(y)dt) ey € [ A du)
F Calz) Ral(F)

Proof. Fubini’s theorem gives

f ( / A(y,t)dn(y)df) du(z)
F Ta(z)

[t ([ xoeofz)duto) ) duturas
Gx(0,00) F
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and so, for given (y,t) € R4(F), it will suffice to show that there is a
constant ¢ so that

/F X B(y.on(x)dp(z) < C1".

In fact, let (y.1) € Ro(F). Then

[ xpon(@du(z) < [ oy ao(e)dute)
= Ct",
as desired. The proof is therefore complete.

LEMMA 3 {6]. Suppose a > 0 is given Then there are constants
C and v, 0 < ¥ < 1, sufficiently close to 1, so that whenever F is a
closed subset of (7 and A(y,t) is a nonnegative measurable function on
G X (0,00), then

/ Ay, tt"dpu(y)dt < C / ( A(y,t)du(y)dt) du(z),
R&(F*) F F(x)

where F* is the set of points of global y-density with respect to F'.

LEMMA 4. Let f be a nonnegative function defined on G. Sup-
pose

MA@ = 3 [ Yo @Hutz). t>0

Then there is a constant C such that

Aot f) < CA(M(f)).

Proof. If f > 0, then

Aaelf) € CAlNai(f))
< CA(M(f))

simce Age(f) < CM(f). The proof is therefore complete.

Our main result is the following:
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THEOREM 5. Let 0 < p < o0 and a > 1. Then there is a constant
C such that

1Sal ) Lreany < CUS M Lrian-
with S(f) = S(/).

Proof. Assume first that 0 < p < 2. For each A > 0, we define the
open set O by

O= ‘F={zeG:S5(f)(z)> A}

Let O* = °“F*. Then we take F* C F to be the set of points of
global y-density with respect to . Apply Lemma 2 with A(y,f)} =
If(y,t)|>¢~ ! (and F* in place of F), and we obtain

¢ [ saneraasc [ iapOt,
Y Ra(F*}

Next apply Lemma 3, again with A(y,t) = |f(y.t)]?¢t™ "1, and we
obtain

2dﬂ{y)dt
(@) L o 00

du{y)d
<cf ( / . If(y,t)lz%f) du(z).

Then (3) and (4) imply that

(5) /F Salf)z)dp(z) £C /ﬁ S(f)x) dplz).
Thus 1t foliows from Lemma 1 and (5) that
(6)  p({z €G- Salf)(z) > A})

< w07+ 55 [ SN dute)

C (p(O) + A—l, S(f)(a‘)zd#(ﬂ:))
-

=C (#{{:r €G:S(fUz)> A\ + ;—2 /); S(f)(.?:]gdp(:t:)) .
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Multiply both sides of () by A?~? and integrate, then we get that

Sal( )llerauy < ClSHILrcdn

for 0 < p < 2. Assume second that 2 < p < oo. Then observe that
ISl M ey =500 | Sut e ble)n(z),

where the supremum is taken over all i which belong to L™(dg) with
r dual to 2/p, and |{¥||1-(4,) < 1. Then it follows from Lemma 4 that

(1) ]G Sul F)(@)245(x)du(z)

dp(y)dt

= ity 0 Aty 2

JGx(O,oo)

<cC |y O A M () () AL

Gx(0,00) t
_c¢ f S(F) () M()(2)dp()

G
< CUSINNEr (o 1M (DML (apn)

< CUS(ANLr a1 L () (by r > 1)
< CHS(A T ca)-

Taking the supremum over all ¥ in (7). Then

Sa(ileraw < CUSUN Lacdw

with 2 < p < co. The proof is therefore complete.
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