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ON THE SUBFACTORS
RELATED TO GROUP ACTIONS

JEONG HEE HONG

Introduction

After V. Jones’s work ([4]) on index for subfactors, the classsification
of the subfactors of a type I'I; factor has been one of the central subjects
in the theory of operator algebras.

In the theory of subfactors, principal graphs and, more generally,
paragroups of inclusions are most important invariants for finite index
subfactors with trivial relative commutants (see {2], {9], [13]}). Unfor-
tunately, direct computation of the principal graphs is quite difficult
even for the subfactors constructed explicitly. For this reason, several
authors have tried to understand a more managable case about sub-
factors associated to crossed product construction by group actions,
more generally Hopf algebra actions ([3], [9], [14]). In particular, for
crossed products by a finite group, it is well-known that finite group
theory and the representation theory of groups determine the principal

graphs ( (6], {7}).

D. Bisch and U. Haagerup have recently investigated in [1} a class of
subfactors P# C P x K, where the finite groups H and K act outerly
on a hyperfinite type II; factor P. By using bimodule techniques,
they studied the properties like irreducibility, finite depth (see {2] for
the definitions), amenability, and strong amenability (in the sense of
S. Popa in [13]) of the inclusion. Also they were succesful to provide
various examples of subfactors. In spite of those examples of subfactors,
it 1s still difficult to sketch the explicit algorithm of the paragroups
for PH¥ C P x K as in the case of crossed products construction,
for example P ¢ P x G by a finite group G outer action. In this
paper, we are going to compute the basic construction of the inclusion
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36 Jeong Hee Hong

PH C Px K, when P is an arbitrary type I} factor. As a consequence,
this will provide a better understanding of the principal graphs for the
inclusion.

The author would like to express her sincere thanks to Professor Wo-
jciech Szymanski of the University of Newcastle for valuable discussions
and helpful comments.

2.Preliminaries

2.1 Group actions and subfactors

Let P be a type I} factor with a unique normalized trace 7. Let
H and K be finite groups acting outerly on P via

a: K — Aut(P) and B:H — Aut(P)

respectively. In this section we quote some preliminary materials and
fix notations which will be needed in the sequel.

1 Identities in all algebras will be denoted by I. The complex

mimbers are denoted by C. And C|{G} denotes the complex

group algebra of a finite group G.

For s € K, a,(2) = szs™!, (2 € P), where s is viewed as a

unitary element implementing the automorphism a, . Then

Pxo K ={} e tsstz, € P}

3 Similarily, Sy(z) = hah™! (z € P), for h € H. Then PH
denotes the fixed point algebra of P under the action .

4 The vector space I° of linear functionals on C[K] is a Hopf
*— algebra dual to . Then there is a dual action & of K° on
P x4 K, defined by

o

ai{zs) =zxk(s)s, fors€ K, and r € P,

when % is an element of K°. Then the dual crossed product is
given by

(P xa K) xo K Py = {3 yep | 4 € P %o K},
fER
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where p; denotes the minimal projection in A°. Hence

Pl = { Z xs.tspllzs,t EP})

s, iEH

and d(p,) = kpsk™" = pi, for k € K°.

Since the involved actions are outer, it is well-known that P and

Px o K are type IT; factors with (PHY NP =CI, P'(\(Px,K) =CI.

Let G be the group generated by H and K in the outer automorphisms
Out(P) = Aut(P)/Int(P), where Int(P) denotes the set of inner au-
tomorphisms of P. It is shown that some properties of the inclusion
can be expressed in terms of properties of the group G, by using the
bimodule techniques ([1]). In this article, our aim is to study the in-
clusion

PR c Px, K,

based on the representation theory of finite groups. Since P¥ ¢ P C
P x, K, the Jones index ({4]) of the inclusion is

[P x, K :P* =[P x,K:P|P:PH) =|K||H|,
where | - | denotes the order of a group.
2.2 The algebra P,

At first we describe the algebra Py, with the help of Y. Nakagami and
M. Takesaki’s duality theorem in {8] and some results in [10]. We denote
by L3(K) the Hilbert space, whose inner product < a,b >= w(b*a)
with the Haar trace ¢ of K (¢,b € K'). Also we denote by End(L%*(K))
the C*— algebra of lincar endomorphisms of £L2(}).

LEMMA 2.1 {10]. Let Q = {K,K°} ()P, , where ' denotes the
commutants. Then the following hold.
1 The subalgebra {K, K°}" of P;, generated bv K and K°, is
isomorphic to End(L?*(IV)).
2 There is a *— isomorphism from P onto Q, given by z s
Esel‘-as(l‘)ps, for r € P.
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Proof. Note that A'° acts on i via k - s = k(s)s, for s € K and
k € K°. Thus the crossed product algebra is i x K° = {K,K°}".
Then there is a *— isomorphism from & x K° onto End(L*(K)). This
gives the first assertion. )

For the second assertion, choose ¢ = Zs’, ZTgsps € Q, withz, ¢ € P.
Then ¢ commutes with K if and only if z,-1 ,, = ap(T,-14,) for
rt.s € K. Also ¢ commutes with K° if and only if z, ,-1, = 0 for
s(# e),t € K. Therefore Q = {}, . as(z)psiz € P}. Then the map
given by = ~ 3 . a,(z)p, determines a *— isomorphism from P
onto ¢, for x € P.

The following theorem is essentially the Duality theorem of Y. Nak-
agami and M. Takesaki ([8]).

THEOREM (DUALITY THEOREM). P, & Q @ End(L2(K)).

Proof. Tt follows from tha fact 1 of Lemma 2.1 that P,
End(L*(K)). Therefore, by the fact 2 of Lemma 2.1, P,
End(L*(K)).

2.3 An action o of H on P,

To estabilish a crossed product of P, by H, we define an action o
of H on P, as follows;

DEFINITION 2.1. For h € H, the action o} : H — Aut(P,) is
defined by

1 op(s)=s,fors € K,
2 op(ps) = ps, for s € K,

3 O-h(z"eh' oy(z)p,) = zseh’ as(Bu(z))ps, for z € P.

From now on, §, ; denotes the Kronecker’s delta as usual.

PROPOSITION 2.1. If r € P, then we have
on(x) = 3 cxlasBra; Y a)ps. Also oy : H — Aut(Py) is outer if
h# e
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Proof. Let + € P. Then

an{z) = on( Y _ zps)

seN

E Oh[z 03(0"3—](33))}33]

seX

= > aBrla; (2))lps

sEN

=Y (asBra;" Yz)ps

sEXK

by the property 3 in Definition 2.1. The outerness of o now comes from
the outerness of & and 3.

Therefore, the crossed product aigebra

Py xo H = { Z ZTopnspih|zssn € P}
s teEN hEH

1s a type Il factor. Note that the normalized trace Tr on P; X, H is
given by
) .
Tr{zsph) = —%;i)-bs,e&,,e, for x € P.

where r denotes the normalized trace on P.

3.The Jones tower for P c P x, K

3.1 The Jones basic construction

In this section, we are going to show that P, x, H is the desired
basic construction for P C P x, K under a proper assumption. In or-
der to compute the basic construction for P ¢ P x, I, it is enough
to find the Jones projection for the inclusion. Note that the corrre-
sponding Jones projection lies in the relative commutant algebra of
PH in the basic construction. We need the following observations for
the element’s form of the Jones projection.
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LEMMA 3.1. Lets,t € K, h € H, and 8 be an arbitrary outer action
of K on P. If z,,, € P satisfies x4, ,8(y) = yzap forally € PH,
then there is a function us .4 : K x K x H — U(P)|J{0} such that

8(y) = ug ¢ pYtis,t . for all y € PH,

whenever u,, n # 0. Here U(P) denotes the set of unitaries in P.

Proof. Fors,t € Kand h € H,let x,,,40{y) = yzs1,4 for 2, p € P,
y € P Then O(y)x:,i’h = xYs by taking the adjoint of both sides.
Since
x:,r,h cxs,,08(y) = x:,t,hy Xt h = e(y)x:.t,hms,t,hm

we see that

Teralsth € {G(PH)]'nP or 07 (% 4xexn) € (PTY ﬂP =aI
. Hence, there 1s a scalar A €  and a wmtary 1w, € U(P)J{0} such
that z,¢8 = Ausgp, i ug e n #0.

Thus, €, 20(y) = Atts ¢ 28(y) and yz, 0.0 = YA, ¢ n. It now follows
that i,he(y) = YUg by OT a(y) = u;,g‘hyus.t,h-

Due to Lemma 3.1, we now give an explicit proof of the following
fact, described in [1] without proof. 7 will denote the torus.

PROPOSITION 3.1. Thereisa 2-cocyclew : (HNRK)x{HNK) — T
such that (PH) (WP x4 K) 2 C,{H N K], the complex group algebra
twisted by w

Proof. Let 3 o, 758 € (PHY (P x4 K), with z, € P. If y € PH,
then

Z TS Yy =y Z T,8, Or Z zsa,s(y)s = Z YT 4S.

sEN seh SEN sciv

So we have a,0,(y) = yz, for all s € K. By Lemma 3.1, there exists
a unitary element u, € P such that a4{y) = uiyu,, if ©u, # 0. Thus
2,0ty = yrout, and so vut € (PHY (P = C, if us # 0. Therefore
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Z, = A,u, for some A, € C, if u, # 0. This implies that v,a,(y) =y
for y € P2 or adusa, € G(PH,P) = B(H). Here G(PH,P denotes
the Galois group of the inclusion P C P (see [5]). Hence there is a
h € H such that 8 = adusa,, i.e., a, = By in OQut(P), for s € K and
h € H. In other words,

(PHY (P xa K) = {3 Aussls € HN K in Out(P)}.
sei

On the other hand, if y € PH, then
usulyyuguuy = () lay tag)(y) =y

This implies that u,u,ut, € (P?) ()P = CI. Therefore there is a
2-cocycle w : (HNK) x (HNK) — T, given by u,u; = w(s,t)ust,
such that

(PHY(YP xo K} CJHNK].

This completes the proof.

The following corollary comes immediately.

COROLLARY 3.1. PH ¢ Px,N isirreducible ifand only if H (1 K =
{e} in Out(P), where e denotes the neutral element of the group G.

From now on, we assume that H [ K = {e} in Out(P). Under this
assumption, the unitaries u,, ; in Lemma 3.1 also determine the form
of elements in (PHY (P, x, H).

LEMMA 3.2. If H(A = {e} in Qut(P), then every element of the
algebra (P) (P, x, H) has the form

z Aot s, h8peh( A n € C).

s,tER hEH

Proof. Let y € PH commute with Y etckoneH TansPth € PAXoH,
with 7, ., € P. Then we have

Yy Z -’x"s,t,hspth = Z xg‘r‘hszh ‘Y

steEN hEH s, tEN hEH
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implies that

-1 . -1
E Y- ZTsasph-h™° = E Zotaspehy - h
s i€l heH s,teR hEH

= Z Zs, e n3pon(Y)

s, tEN hEH

= Z xa.t.hsoh(y)pt

s,tel( he H

= Y zeeas[Y_(agBra; Mypelpe

s,teN ,heH geK

=8y Z ms,ghs(atﬂha;])(?})m

s,1€EK,heH

=650 Y. Teenos((aeBrai )y))spe

st€N hEH
=60 Y TasnlasBra; ) y)spe,

s, t€ER heH
by the property 3 of Definition 2.1 and the fact that p, € P’. Thus,
for all s,t € K and h € H, we have yz,,) = z g n{earBra; )(y)-
Then, by Lemma 3.1, there are unitaries uq,. s € U(P)(J{0} such that
(aseBrar  Ny) = Up o wYUs,ths if ws,e0 # 0. Therefore

3‘s,l,hu;)¢,};yu8,!,h = YZTs,t,hy OF Ts,t,hu;‘t‘hy = yxa,t,hu:,t,h'

e Tsepuy,, € (PEYNP = CI, and so we see that x4 =
As,t.hlis,en Tor some scalar A, 4. This completes the proof.

Note that the trace preserving conditional expectation E : P X K —
PH s given by

. 1
E(Z m,.s) = EgﬂEgXK(Z 3533) = E}};H(:re) = m Z ﬂh(xc)ﬁ
se K seR heH

where ¢ denotes the neutral element of a group G. Also, the trace
preserving conditional expectation F' : P} X H — P x, I is given

by
i
F( Z Ty aspeh) = ﬁ z TseeS,

steK heH sekK
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it a similar way. We now can determine the Jones projection due to
Lemma 3.2, i.e., it has of the form Es,tek'.belf As s ¢ h 5Pk, with
/\s.f.h € C.

PROPOSITION 3.2. Let H (K = {e} in Out(P) Then

Z peh € Py X H
heH

1H]

is the Jones projection for P C P x4 K.

Proof. Since py commutes with h € H, the straightforward compu-

tation gives that ¢ is a projection in P; X, H. Also, ¢ commutes with
PH . Indeed, for y € PH,

g = ]Hl Z ypeh = Z yhpe.

h€EH heH

But hype = 0!&(./ hp( Zfe[\(aﬂjhat Wy )pe - hpe Efel\ (Otﬁhat )
()hpipe = by Bnly}hpe = yhp,, for y € P, Therefore,

Z hpe— ! Zhype— Z PeY =
1l &,

bEH hEH

because y € P and p, € P,
It now suffices to show ¢zg = E(z)g for = € P X, I{. Let x,5 €
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P x, K, with z, € P. Then

i
glxss)g = — z Peh - T8 - Peg

1

T
1

= —x z h.‘C,'peSpe‘g

1
= o5 z hay - sps-1pey

— > D (auBrar Nze)pilhgpe

hgeH te K

—3 Y (O (aBrar Nz Shgpipe

A gEH tek

= d¢.e0 8,¢ ﬁh("'e)hgpe
tHI hge:}f

5:4: se[ Zﬂh(z Z Pchg]

hEH h ,9€H

iHI

IHI

= E(z4s)q.

This completes the proof.
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Note that
(¢) = (] hezﬁp )= (};{p )= IHI [“
=[P xa K : PH]‘II,
and
1

heEH keH
=[P xo K : P”]“.
Now we are in a position to conclude the basic construction for PH ¢
Px, K.
THEOREM 3 1. Let H(\ A = {e} in Out(P). The basic construc-
tion for the inclusion P¥ C P x4 K is isomorphic to Py x, H

Proof.. By Proposition 3.2, the projection ¢ € P, x, H satisfies
L qe PPy,
2 F(q)=|P xo K : PH]71],
where F' denotes the trace preserving conditional expectation from
Py x, H onto P x5 K. Then it follows from [4] {or [11]) that P, x, H
is isomorphic to the basic construction for P¥ ¢ P x, K.

3.2 The Jones tower

Let :,11._1 = PH, A/IO =P X o I and AI] = (E’f,e_l) = Pl Xg H,
where e_; denotes the corresponding Jones projection for the inclusion
M_y C Mp. Note that n, (s € K). given by

ns(xtpy) = tp,e-1, forz € Pt,r € K,
determines an outer action 5 : K — Aut(Py).

LEMMA 3.3. Pxo K = My = (P}", the fixed point algebra under
the action n of K on Py.

Proof. Since 1 fixes P and s € K, it is clear that Px K C (PR C
P;. Thus we have

[Py (P)R] =[Py P xq K] = I,
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and so [(P)N : P x, K] = 1. Hence, the result follows from the
properties of Jones index (see {4}).

With the help of Lemuma 3.3, we conclude that there are outer actions
o: H — Aut(P)),nl\ — Aut(P;),

such that My = (P))X C Py x, H = M. This situation is exactly
like Af_; C My , when M_; is replaced by My, M, replaced by M;,
P replaced by Py, K replaced by H, and H replaced by K. The
next result follows immediately after repeating the same process as in
Section 3.1. Also note that there is a dual action & of the dual Hopf
*— algebra H® on P} x, H.
PROPOSITION 3.3. Let Py = (P X, H) x, H°. Then, py(s € K),
given by
1 ps(h)=h,forhe H,
2 pa(ph) = Ph forhe H,
3 pslz) = Fpeplonnsoy Nz )ps, fora € Py,
4 ps(Xnen on(2)pn) = Xhep onlns(x))ps, for 2 € Py,
determines an outer action p of I on Py such that My = P, X, K.

For the Jones tower, we use P x K instead of P x, K by dropping
the involved actions in our notations, since no confusion is possible.

COROLLARY 3.2. Let
M.y=PH My=PxKand M, = {M,_1,e,_1),

where e, denotes the corresponding Jones projection for Mu_s C
M, _1,{(n >0). Then
M‘Zn = P2n X I{1

Af?ﬂ-f} = P2n+l X H)

where Py = (Pon-1 X K) x K° and Pypgy = (Pon x H)x H® (n > 0).
Here the involved actions on P, arc as described in Theorem 3.1.

Proof. The result follows from Theorem 3.1 and 3.2, inductively.
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