IRREDUCIBLE MODULES FOR
SOME METACYCLIC GROUPS

Hyo-Seob Sim

The aim of this note is to give an explicit description of all isomorphism types of irreducible modules over a finite field for a metacyclic group presented by \(\langle x, y \mid x^m = 1, y^n = 1, y^{-1}xy = x^r \rangle \) where \(q \) is a prime and \(r \) is a \(q \)-th roots of 1 modulo \(m \). The main results of this note generalize the investigation by Barlotti [1] for metacyclic groups of order \(pq \) (\(p, q \) . primes).

1. Background Results

We first set up some notation which will be kept throughout this note. Let \(F \) be a finite field and let \(a(n) \) denote the multiplicative order of \(|F| \) modulo \(n \) for every positive integer \(n \). Let \(G(m, n) \) be a metacyclic group defined by

\[
G(m, n) = \langle x, y \mid x^m = 1, y^n = 1, y^{-1}xy = x^r \rangle
\]

where \(r \) is a primitive \(n \)-th root of 1 modulo \(m \); note that all possible such \(r \) give the same group for the fixed integers \(m \) and \(n \). When \(n \) is a prime, for each positive divisor \(d \) of \(m \) the group defined by

\[
\langle x, y \mid x^d = 1, y^n = 1, y^{-1}xy = x^r \rangle
\]

is \(G(d, n) \) provided that \(d \) does not divide \(r - 1 \), while the group is abelian if \(d \) divides \(r - 1 \).

Most of notation and terminology which are not defined in this note are standard, or can be found in [3] or [2].

We continue with some important construction of faithful irreducible modules for the group \(G(m, n) \).

Received April 4, 1995
CONSTRUCTION 1.1. Let \(m \) be a positive integer not divisible by the characteristic of \(\mathbb{F} \) and let \(n \) be a divisor of \(a(m) \). Let \(K \) be the field with \(|\mathbb{F}|^{a(m)} \) elements, let \(u \) be an element of multiplicative order \(m \) in \(K \), and write \(V \) for the \(K \) viewed as a vector space over \(\mathbb{F} \).

(a) There is an action of \(G(m,n) \) on \(V \) such that for every \(v \) in \(V \),

\[vx = vu \quad \text{and} \quad vy = v^{a(m)/n}. \]

(b) Under the action in (a), \(V \) is a faithful irreducible module for \(G(m,n) \) over \(\mathbb{F} \); denote the module by \(V(u) \).

(c) \(\text{End}_{\mathbb{F}G(m,n)} V(u) \) is the field with \(|\mathbb{F}|^{a(m)/n} \) elements; in particular, if \(n = a(m) \) then \(V(u) \) is an absolutely irreducible faithful module for \(G(m,n) \) over \(\mathbb{F} \).

Note that this construction is well known for \(d = 1 \) from the representation theory of cyclic groups, while the proof for the general case can be found in [1]. It is also well known that every faithful irreducible module for a finite cyclic group (say, \(G(m,1) \) here) is realized as such a module described in this construction, and \(V(u) \) and \(V(v) \) are isomorphic if and only if \(u \) and \(v \) are roots of the same irreducible factor of \(x^m - 1 \) in \(\mathbb{F}[x] \).

Let \(A \) be a finite abelian group and \(V \) an irreducible \(\mathbb{F}A \)-module. The factor group of \(A \) by the kernel \(\{ g \in A : vg = v \text{ for all } v \in V \} \) of \(V \) is cyclic. Conversely, every subgroup of \(A \) with cyclic quotient becomes the kernel of a certain irreducible \(\mathbb{F}A \)-module, provided that the characteristic of \(\mathbb{F} \) does not divide the order of the cyclic quotient. This leads to a complete description of the irreducible modules for a finite abelian group over a finite field.

Suppose that the abelian group \(A \) is metacyclic. Then \(A \) is a direct product of two finite cyclic groups \(C_m \) and \(C_n \) for some nonnegative integers \(m \) and \(n \) such that \(n \) divides \(m \). For any positive divisor \(d \) of \(m \) we define \(\#(d) \) to be the number of all cyclic quotients of order \(d \) of \(A \). If the characteristic of \(\mathbb{F} \) does not divide \(m \), there exists precisely \(\sum_{d|m} \#(d) \cdot \phi(d)/a(d) \) pairwise nonisomorphic irreducible modules for \(A \) over \(\mathbb{F} \).

2. Main Results
Let \(p \) be the characteristic of \(F \), let \(q \) be a fixed prime, let \(m \) be a fixed positive integer and let \(d \) be a positive divisor of \(m \). Let \(G \) be a finite group whose factor group by the largest normal \(p \)-subgroup \(O_p(G) \) is isomorphic to \(G(m, q) \). Since \(O_p(G) \) is contained in the kernels of all irreducible \(FG \)-modules, there is a natural one-to-one correspondence between the irreducible \(FG \)-modules and the irreducible \(FG(m, q) \)-modules.

We now consider faithful irreducible modules for \(G(m, q) \) whose order is not divisible by \(p \). The cyclic normal subgroup generated by \(x \) in \(G(m, q) \) is denoted by \(M \).

Theorem 2.1. If \(q \) divides \(a(m) \), every faithful irreducible module for \(G(m, q) \) over \(F \) is isomorphic to an \(FG(m, q) \)-module described in Construction 1.1. So there exist precisely \(\phi(m)/a(m) \) isomorphism types of faithful irreducible modules for \(G(m, q) \) over \(F \).

Proof. Let \(V_1, \ldots, V_n \) be pairwise nonisomorphic faithful irreducible modules for \(M \) over \(F \), where \(n = \phi(m)/a(m) \). Let \(W_1, \ldots, W_n \) be the faithful irreducible modules for \(G(m, q) \) over \(F \), as described in Construction 1.1, such that \((W_i)_M \cong V_i \) for all \(i = 1, \ldots, n \). Then \(FM = V_0 \oplus V_1 \oplus \cdots \oplus V_n \) for some \(FM \)-module \(V_0 \). It follows that \(FG(m, q) \cong V_0^{G(m, q)} \oplus V_1^{G(m, q)} \oplus \cdots \oplus V_n^{G(m, q)} \). For each \(i = 1, \ldots, n \), the multiplicity of \(W_i \) as a composition factor in the head of \(V_i^{G(m, q)} \) is \((\dim \text{End}_{FM} V_i)/(\dim \text{End}_{FG(m, q)} W_i) = a(m)/(a(m)/q) = q \) by Construction 1.1 (c) and Theorem 4.13 in [2]. Therefore, \(V_i^{G(m, q)} \) is isomorphic to the direct sum of \(q \) copies of \(W_i \).

Let \(W \) be an irreducible \(FG(m, q) \)-module which is not isomorphic to \(W_i \) for all \(i = 1, \ldots, n \). Then \(W \) is a homomorphic image of \(V_i^{G(m, q)} \) for some irreducible submodule \(V \) of \(V_0 \), and hence \(V \) is isomorphic to a submodule of \(W_M \). It follows that \(\text{Ker} W \cong \text{Ker} V^{G(m, q)} = \text{Core}_{G(m, q)} \text{Ker} V = \text{Ker} V \neq 1 \), which implies \(W \) is not faithful. Consequently, every faithful irreducible module for \(G(m, q) \) over \(F \) is isomorphic to one of the \(W_i \). □

Lemma 2.2. Let \(V \) a faithful irreducible module for \(M \) over \(F \). If \(q \) does not divide \(a(m) \), then \(V \) is not isomorphic to \(V \otimes y \).

Proof. There are precisely \(\phi(m)/a(m) \) isomorphism types of faithful irreducible modules for \(M \) over \(F \), which are transitively permuted by
Aut M. It follows that the stabilizer in Aut M of the isomorphism type of V is a subgroup of index $\phi(m)/a(m)$ in Aut M (equivalently, of order $a(m)$).

The statement $V \cong_{FM} V \otimes y$ says that the element which maps x to x^r (of order q) in Aut M lies in this subgroup of order $a(m)$. It follows that $V \cong_{FM} V \otimes y$ implies $y \mid a(m)$. □

Theorem 2.3. If q does not divide $a(m)$, then
 (a) every $FG(m,q)$-module induced from a faithful irreducible module for M over F is faithful and irreducible;
 (b) every faithful irreducible module for $G(m,q)$ over F is induced from a faithful irreducible module for M over F.

Proof. (a) Let V be a faithful irreducible module for M over F. Then $V^{G(m,q)}$ is faithful, since the kernel of $V^{G(m,q)}$ is the core of the kernel of V in $G(m,q)$. By Lemma 2.2 and Theorem 9.6 b) in [3], $V^{G(m,q)}$ is irreducible.

(b) Let V_1, \ldots, V_n be the $\phi(m)/a(m)$ pairwise nonisomorphic faithful irreducible modules for M over F. Suppose $FM = V_0 \oplus V_1 \oplus \cdots \oplus V_n$. Then $FG(m,q) \cong V_0^{G(m,q)} \oplus V_1^{G(m,q)} \oplus \cdots \oplus V_n^{G(m,q)}$. No irreducible constituent of V_0 is faithful, so every faithful irreducible module for $G(m,q)$ over F is isomorphic to one of the $V_i^{G(m,q)}$. □

Corollary 2.4. Assume that the characteristic of F does not divide d. There exist precisely $\phi(d)/[a(d),q]$ isomorphism types of faithful irreducible modules for $G(d,q)$ over F, where $[a(d),q]$ is the least common multiple of $a(d)$ and q.

Proof. If q divides $a(d)$, then from Theorem 2.1, there exist precisely $\phi(d)/a(d)$ isomorphism types of faithful irreducible modules for $G(d,q)$ over F.

If q does not divide $a(d)$, then $V_i \cong V_i \times y^j$ for all $j = 0, \ldots, q - 1$, by Lemma 2.2. Since $V_i^{G(m,q)} \cong V_j^{G(m,q)}$ if and only if $V_i \cong V_j \otimes y^k$ for some $k = 0, \ldots, q - 1$, the multiplicity of V_i as a composition factor in $V_1^{G(m,q)} \oplus \cdots \oplus V_n^{G(m,q)}$ is q for all $i = 1, \ldots, n$. Hence there are exactly $\phi(d)/a(d)q$ isomorphism types of faithful irreducible modules for $G(d,q)$ over F. □

Let d_0 be the greatest common divisor m and $r - 1$, and let Δ be
the set of all positive divisors of m which do not divide $r - 1$. Then we have

Theorem 2.5. Let G be a finite group whose factor group by the largest normal p-subgroup is isomorphic to $G(m, q)$. There is a one-to-one correspondence between the set of isomorphism types of all irreducible $\mathbb{F}G$-modules and the union of the following two sets: (i) the set of isomorphism types of all faithful irreducible $\mathbb{F}G(d, q)$-modules, where d runs through Δ. (ii) the set of isomorphism types of all irreducible $\mathbb{F}(C_{d_0} \times C_q)$-modules.

Proof. Suppose N is a normal subgroup of $G(m, q)$. If N contains the commutator subgroup $G(m, q)'$ then $G(m, q)/N$ is abelian; otherwise, N is contained in M, so $G(m, q)/N \cong G(d, q)$ for some d in Δ. On the other hand, for each d in Δ there exists a unique normal subgroup N such that $G(d, q) \cong G(m, q)/N$. Since $G(m, q)' = \langle x^{r-1} \rangle$ it follows easily that $G(m, q)/G(m, q)' \cong C_{d_0} \times C_q$, and hence the theorem is proven. □

References

Department of Natural Sciences
Pusan National University of Technology
Pusan 608-739