ON THE VALUES OF p—ADIC q—L—FUNCTIONS*

HAN SOO KIM AND TAEKYUN KIM

Throughout this paper \mathbf{Q} , \mathbf{C} , \mathbf{Q}_p and \mathbf{C}_p will respectively denote the field of rational numbers, the complex number field, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbf{Q}_p .

Let v_p be the normalized exponential valuation of C_p with $|p|_p = p^{-v_p(p)} = p^{-1}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in C$, or p-adic number $q \in C_p$. If $q \in C$, one normally assumes |q| < 1. If $q \in C_p$, one normally assumes $|q - 1|_p < p^{-\frac{1}{p-1}}$, so that $q^x = \exp(x \log_p q)$ for $|x|_p \le 1$. In the complex case, Carlitz's q-Bernoulli numbers $\beta_k = \beta_k(q)$ can be determined inductively by

$$\beta_0 = 1, q(q\beta + 1)^k - \beta^k = \begin{cases} 1 & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases}$$

with the usual convention of replacing β^i by β_i .

The q-Bernoulli polynomials are defined by

$$\beta_k(x:q) = (q^x \beta + [x])^k,$$

where $[x] = [x:q] = \frac{1-q^x}{1-q}$. If $q \to 1$, we have the usual Bernoulli numbers and Bernoulli polynomials. Let $F_q(t)$ be generating function of $\beta_k(q)$:

$$F_q(t) = e^{\beta(q)t} = \sum_{k=0}^{\infty} \beta_k(q) \frac{t^k}{k!}.$$

Then this is the unique solution of the following q-difference equation:

$$F_a(t) = qe^t F_a(qt) + 1 - q - t.$$

Received April 12, 1995

^{*}Supported by the Basic Science Research Institute program, Ministry of Education and TGRC-KOSEF 1994

In [4], Koblitz constructed a q-analogue of the p-adic L-function $L_{p,q}(s,\chi)$ which interpolates the q-Bernoulli numbers. In section 2, we shall investigate the relation between Carlitz's q-Bernoulli numbers and q-Euler numbers. In section 3 and section 4, we study the values at s=1 of the p-adic q-interpolation function $l_{p,q}(u,s:\chi)$ for generalized q-Euler numbers constructed by Satoh [6]. From the relation between $l_{p,q}(u,s:\chi)$ and $L_{p,q}(s,\chi)$, we calculate the values of $L_{p,q}(s,\chi)$ at positive integers.

1. On q-analogue of L-functions

For a primitive Dirichlet character χ with conductor f, the generalized q-Bernoulli numbers $\beta_{k,\chi}(q)$ are defined by

$$\beta_{k,\chi}(q) = [f]^{k-1} \sum_{a=1}^f \chi(a) q^a \beta_k(\frac{a}{f}, q^f).$$

If $\chi = 1$, then we have

$$eta_{k,\chi}(q)=q,eta_k(1;q)=\left\{egin{array}{ll} q & ext{if } k=0 \ -qeta_1(q) & ext{if } k=1 \ eta_k(q) & ext{if } k>1. \end{array}
ight.$$

This is easily proved [3].

In [1], the q-L-functions are constructed by

$$L_q(s,\chi) = \frac{2-s}{s-1}(q-1)\sum_{n=1}^{\infty} \frac{q^n \chi(n)}{[n]^{s-1}} + \sum_{n=1}^{\infty} \frac{q^n \chi(n)}{[n]^s}$$

for $s \in \mathbf{C}$.

Thus we see that

$$L_q(1-k,\chi) = -\frac{\beta_{k,\chi}}{k}$$

for any positive integer k.

Let u be complex numbers with |u| > 1. Then Carlitz's the q-Euler numbers $H_k(u,q)$ and the q-Euler polynomials H(u,x:q) are defined inductively by

$$H_0(u,q) = 1, (qH+1)^k - uH_k(u,x:q) = 0$$
 for $k \ge 1$

with the usual convention of replacing H^k by $H_k(u,q)$ and $H_k(u,x:q) = (q^x H + [x])^k$ for $k \ge 0$.

Since the generalized Carlitz's q-Euler numbers $H_{k,\chi}(u,q)$ are defined by

$$H_{k,\chi}(u,q) = [f]^k \sum_{a=1}^f u^{f-a} \chi(a) H_k(u^f, \frac{a}{f} \cdot q^f)$$

for $k \geq 0$.

In [6], the complex function $l_q(u, s : \chi)$ is constructed by

$$l_q(u,s:\chi) = \sum_{n=1}^{\infty} u^{-n} \chi(n)[n]^s$$

for $q \in \mathbb{C}$. This function interpolate the q-Euler numbers as follows [5]:

$$l_q(u, -k: \chi) = \frac{1}{uf-1} H_{k,\chi}(u, q).$$

Now we shall investigate the relation between Carlitz's q-Bernoulli numbers and q-Euler numbers. We take d as an element of positive integer with (d, fp) = 1 and $\chi(d) \neq 1$. Let ζ_d be primitive d-th root of unity, then we have

$$\begin{split} \sum_{j=1}^{d-1} l_p((q\zeta_d^j)^{-1}, s : \chi) &= \sum_{n=1}^{\infty} \frac{q^n \chi(n)}{[n]^s} \sum_{j=1}^{d-1} \zeta_d^{jn} \\ &= -\sum_{n=1}^{\infty} \frac{q^n \chi(n)}{[n]^s} + \sum_{n=1}^{\infty} \frac{q^n \chi(n)}{[n]^s} \sum_{j=0}^{d-1} \zeta_d^{jn} \\ &= -\sum_{n=1}^{\infty} \frac{q^n \chi(n)}{[n]^s} + d[d]^{-s} \chi(d) \sum_{n=1}^{\infty} \frac{q^{dn} \chi(n)}{[n : q^d]^s}. \end{split}$$

Thus we have

$$\begin{split} &-\frac{2-s}{s-1}(q-1)\sum_{j=1}^{d-1}l_q((q\zeta_d^j)^{-1},s-1:\chi)-\sum_{j=1}^{d-1}l_q((q\zeta_d^j)^{-1},s:\chi)\\ &=\frac{2-s}{s-1}(q-1)\sum_{n=1}^{\infty}\frac{q^n\chi(n)}{[n]^{s-1}}-d[d]^{-s+1}\chi(d)\frac{2-s}{s-1}(q-1)\sum_{n=1}^{\infty}\frac{q^{dn}\chi(n)}{[n:q^d]^{s-1}}\\ &+\sum_{n=1}^{\infty}\frac{q^n\chi(n)}{[n]^s}-d[d]^{-s}\chi(d)\sum_{n=1}^{\infty}\frac{q^{dn}\chi(n)}{[n:q^d]^s}\\ &=L_q(s,\chi)-d[d]^{-s}\chi(d)(\frac{2-s}{s-1}(q^d-1)\sum_{n=1}^{\infty}\frac{q^{dn}\chi(n)}{[n:q^d]^{s-1}}+\sum_{n=1}^{\infty}\frac{q^{dn}\chi(n)}{[n:q^d]^s})\\ &=L_q(s,\chi)-d[d]^{-s}\chi(d)L_{q^d}(s,\chi). \end{split}$$
 We set $s=1-k$ for $k>1$.

$$L_{q}(1-k,\chi) - d[d]^{k-1}\chi(d)L_{q^{d}}(1-k,\chi)$$

$$= \frac{1+k}{k}(q-1)\sum_{j=1}^{d-1}l_{q}((q\zeta_{d}^{j})^{-1}, -k:\chi)$$

$$-\sum_{j=1}^{d-1}l_{q}((q\zeta_{d}^{j})^{-1}, 1-k:\chi).$$

Thus we obtain the following

LCMMA 1. For $k \in \mathbb{Z}$ with k > 1.

$$-\frac{\beta_{k,\chi}(q)}{k} + d[d_i^{1k-1}\chi(d)\frac{\beta_{k,\chi}(q^d)}{k}$$

$$= \frac{1+k}{k}(q-1)\sum_{j=1}^{d-1} \frac{1}{((q\zeta_d^j)^{-j}-1)} H_{k,\chi}((q\zeta_d^j)^{-1},q)$$

$$-\sum_{j=1}^{d-1} \frac{1}{((q\zeta_d^j)^{-j}-1)} H_{k-1,\chi}((q\zeta_d^j)^{-1},q).$$

2. On p-adic q-L-functions

In this section, we assume that q is an element of C_p with $|1-q|_p < p^{-\frac{1}{p-1}}$. Let u be an element of C_p with $|1-u|_p \ge 1$. Then the Euler measure is defined on \mathbb{Z}_p by

$$E_u(a+p^n\mathbf{Z}_p) = \frac{u^{p^n-a}}{1-u^{p^n}}$$

for $a \in \mathbb{Z}$ with $0 \le a \le p^n - 1$ and $n \ge 0$. Let f be a positive integer. We denote

$$X = \lim_{\overline{N}} (\mathbf{Z}/fp^N \mathbf{Z}).$$

$$X^* = \bigcup_{\substack{0 < a < fp \\ (a,p)=1}} a + fp \mathbf{Z}_p,$$

$$a + fp^N \mathbf{Z}_p = \{x \in X | x \equiv a \pmod{fp^N}\},$$

where $a \in \mathbf{Z}$ lies in $0 \le a < fp^N$.

Note that the natural map

$$\mathbf{Z}/fp^N\mathbf{Z} \to \mathbf{Z}/p^N\mathbf{Z}$$

induces

$$\pi:X\to \mathbf{Z}_p.$$

If g is a function on \mathbb{Z}_p , we denote by the same g the function $g \circ \pi$ on X. Namely we consider g as a function on X [2],[3].

We can express the q-Euler numbers as an integral over X, by using the measure E_u , that is,

$$\int_X \chi(x)[x]^k dE_u(x) = \begin{cases} \frac{1}{1-u^T} H_{k,\chi}(u,q) & \text{if } \chi \neq 1\\ \frac{u}{1-u} H_k(u,q) & \text{if } \chi = 1. \end{cases}$$

Let ω denote the Teichmüller character $\mod p$ (if $p=2, \mod 4$). For $x \in X^*$, we set |x| > 0 and |x| < 1 and

 $p^{-\frac{1}{p-1}}$, $\langle x \rangle^s$ is defined by $\exp(s \log_p \langle x \rangle)$ for $|s|_p \leq 1$. In [6], an interpolation function $l_{p,q}(u,s:\chi)$ for q-Euler numbers is defined by

$$l_{p,q}(u,s:\chi) = \int_{X^*} \langle x \rangle^{-s} \chi(x) dE_u(x)$$

for $s \in \mathbf{Z}_p$.

It is known in [6] that

$$\begin{split} & l_{p,q}(u, -k : \chi \omega^k) \\ &= \frac{1}{1 - u^f} H_{k,\chi}(u, q) - \frac{[p]^k \chi(p)}{1 - u^{fp}} H_{k,\chi}(u^p, q^p) & \text{if } \chi \neq 1. \end{split}$$

We define the operator $\chi^y = \chi^{y,k,q}$ on f(q) by $\chi^y f(q) = [y]^{k-1} \chi(y) f(q^y)$, and we define multiplication of these symbols by $\chi^x \chi^y = \chi^{x,k,q^y} \circ \chi^{y,k,q} = \chi^{xy}$.

Koblitz constructed a p-adic q-L-function, for arbitrary fixed $\alpha \in X^*$, as follows:

$$L_{p,q}(1-k,\chi) \approx -\frac{1}{k}(1-\chi_k^p)(1-\frac{1}{\alpha}\chi_k^{\frac{1}{\alpha}})\beta_{k,\chi_k},$$

where $\chi_k = \chi \omega^{-k}(x)$.

Now we refine the above result

$$\begin{split} &L_{p,q}(1-k,\chi\omega^{k})\\ &= -\frac{1}{k}(\beta_{k,\chi}(q) - [p]^{k-1}\chi(p)\beta_{k,\chi}(q^{p}) - \frac{1}{\alpha}[\frac{1}{\alpha}]^{k-1}\chi(\frac{1}{\alpha})\beta_{k,\chi}(q^{\frac{1}{\alpha}})\\ &+ \frac{1}{\alpha}[\frac{p}{\alpha}]^{k-1}\chi(\frac{p}{\alpha})\beta_{k,\chi}(q^{\frac{p}{\alpha}})). \end{split}$$

Here we shall investigate the relation between $l_{p,q}(u,s:\chi)$ and $L_{p,q}(s,\chi)$. We set $\frac{1}{\alpha}=d$.

$$\begin{split} L_{p,q}(1-k,\chi\omega^k) \\ &= -\frac{1}{k}(\beta_{k,\chi}(q) - [p]^{k-1}\chi(p)\beta_{k,\chi}(q^p) - d[d]^{k-1}\chi(d)\beta_{k,\chi}(q^d)) \\ &+ d[pd]^{k-1}\chi(pd)\beta_{k,\chi}(q^{pd}) \\ &= \frac{1}{k}[p]^{k-1}\chi(p)(\beta_{k,\chi}(q^p) - d[d:q^p]^{k-1}\chi(d)\beta_{k,\chi}(q^{pd})) \\ &- \frac{1}{k}(\beta_{k,\chi}(q) - d[d]^{k-1}\chi(d)\beta_{k,\chi}(q^d)). \end{split}$$

By using Lemma 1, we have

$$\begin{split} & L_{p,q}(1-k,\chi\omega^k) \\ & = \frac{1+k}{k}(q-1)\sum_{j=1}^{d-1}(\frac{H_{k,\chi}((q\zeta_d^j)^{-1},q)}{(q\zeta_d^j)^{-f}-1} - \frac{[p]^k\chi(p)H_{k,\chi}((q^p\zeta_d^j)^{-1},q^p)}{(q^p\zeta_d^j)^{-f}-1}) \\ & - \sum_{j=1}^{d-1}(\frac{H_{k-1,\chi}((q\zeta_d^j)^{-1},q)}{(q\zeta_d^j)^{-f}-1} - \frac{[p]^{k-1}\chi(p)H_{k-1,\chi}((q^p\zeta_d^j)^{-1},q^p)}{(q^p\zeta_d^j)^{-f}-1}) \\ & = -\frac{1+k}{k}(q-1)\sum_{j=1}^{d-1}l_{p,q}((q\zeta_d^j)^{-1},-k:\chi\omega^k) \\ & + \sum_{j=1}^{d-1}l_{p,q}((q\zeta_d^j)^{-1},1-k:\chi\omega^k) \\ & = -\frac{1+k}{k}(q-1)\sum_{j=1}^{d-1}\int_{X^*}\chi(x)[x]^kdE_{(q\zeta_d^j)^{-1}}(x) \\ & + \sum_{j=1}^{d-1}\int_{X^*}\chi(x)[x]^{k-1}dE_{(q\zeta_d^j)^{-1}}(x). \end{split}$$

Since we see that $|1 - \zeta_d^{-1}|_p \ge 1$ for (d, fp) = 1 in [5]. Therefore we obtain the following

PROPOSITION 1.. For any positive integer k, we have

$$\begin{split} &L_{p,q}(1-k,\chi\omega^k)\\ &= -\frac{1+k}{k}(q-1)\sum_{j=1}^{d-1}\int_{X^*}\chi(x)[x]^kdE_{(q\zeta_d^j)^{-1}}(x)\\ &+\sum_{i=1}^{d-1}\int_{X^*}\chi(x)[x]^{k-1}dE_{(q\zeta_d^j)^{-1}}(x). \end{split}$$

For χ a primitive Dirichlet character $\mod f$, ζ_f a fixed primitive f-th root of unity, $\tau(\chi) = \sum \chi(j)\zeta_f^j$, $\epsilon \neq 1$ a d-th root of unity, and

(d, fp) = 1, we have for any continuous $f: X^* \to \mathbf{C}_p$ [5]

$$\int_{X^{\bullet}} \chi(x) f(x) d\mu_{\epsilon}(x) = \frac{\tau(x)}{f} \sum_{0 \leq a \leq f} \bar{\chi}(a) \int_{X^{\bullet}} f(x) d\mu_{\zeta_{f}^{-a} \epsilon}(x).$$

Let $f(x) = [x]^k$ and $\epsilon = \zeta_d^{-1}$. Thus we have

$$\begin{split} & L_{p,q}(1-k,\chi\omega^k) \\ &= -\frac{1+k}{k}(q-1)\sum_{j=1}^{d-1}\int_{X^*}\chi(x)[x]^kdE_{(q\zeta_d^j)^{-1}}(x) \\ &+ \sum_{j=1}^{d-1}\int_{X^*}\chi(x)[x]^{k-1}dE_{(q\zeta_d^j)^{-1}}(x) \\ &= -(\frac{1+k}{k}(q-1)\frac{\tau(x)}{f}\sum_{0\leq a< f}\bar{\chi}(a)\sum_{j=1}^{d-1}\int_{X^*}[x]^kdE_{\zeta_f^{-a}(q\zeta_d^j)^{-1}}(x)) \\ &+ \frac{\tau(x)}{f}\sum_{0\leq a< f}\bar{\chi}(a)\sum_{j=1}^{d-1}\int_{X^*}[x]^{k-1}dE_{\zeta_f^{-a}(q\zeta_d^j)^{-1}}(x)). \end{split}$$

PROPOSITION 2.. For any positive integer k,

$$\begin{split} & L_{p,q}(1-k,\chi\omega^k) \\ &= -(\frac{1+k}{k}(q-1)\frac{\tau(x)}{f}\sum_{0\leq a< f}\bar{\chi}(a)\sum_{j=1}^{d-1}\int_{X^*}[x]^k dE_{\zeta_f^{-a}(q\zeta_d^j)^{-1}}(x)) \\ &+ \frac{\tau(x)}{f}\sum_{0\leq a< f}\bar{\chi}(a)\sum_{j=1}^{d-1}\int_{X^*}[x]^{k-1} dE_{\zeta_f^{-a}(q\zeta_d^j)^{-1}}(x)). \end{split}$$

3. The value at s=1 of $l_{p,q}(\zeta_d^{-1}, s:\chi)$

 $l_{p,q}(u,s:\chi)$ is constructed in [6]. In particular we take $u=\zeta_d^{-1}$. Then

$$\begin{split} &l_{p,q}(\zeta_d^{-1}, 1 - k : \chi \omega^k) \\ &= \int_{X^*} [x]^{k-1} \chi(x) dE_{\zeta_d^{-1}}(x) \\ &\frac{\tau(x)}{f} \sum_{0 \le a \le f} \bar{\chi}(a) \int_{X^*} [x]^{k-1} dE_{\zeta_d^{-1} \zeta_f^{-a}}(x). \end{split}$$

Thus we have

$$l_{p,q}(\zeta_d^{-1},1:\chi) = \frac{\tau(x)}{f} \sum_{0 \le a \le f} \bar{\chi}(a) \int_{X^*} [x]^{k-1} dE_{\zeta_d^{-1} \zeta_f^{-a}}(x).$$

Now we define the function $log_{[p]}$ as follows:

$$\log_{[p]}(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{[n]}.$$

It is easily proved in [5] that

$$\begin{split} & \int_{X^*} \frac{1}{[x]} dE_{\zeta_d^{-1}\zeta_f^{-a}}(x) \\ & = -\log_{[p]} (1 - \zeta_d^{-1}\zeta_f^{-a}) + \frac{1}{[p]} \log_{[p|q^p]} (1 - (\zeta_d^{-1}\zeta_f^{-a})^p). \end{split}$$

Therefore we obtain the following

THEOREM 1. For χ a primitive Dirichlet $(\mod f)$, ζ_f a fixed primitive f-th root of unity, $\tau(\chi) = \sum \chi(j)\zeta_f^j$, $\zeta_d \neq 1$ a d-th root of unity, and (d, fp) = 1, we have

$$l_{p,q}(\zeta_d^{-1},1:\chi)$$

$$=\frac{\tau(x)}{f}\sum_{0\leq a\leq f}\bar{\chi}(a)(-\log_{[p]}(1-\zeta_d^{-1}\zeta_f^{-a})+\frac{1}{[p]}\log_{[p,q^p]}(1-(\zeta_d^{-1}\zeta_f^{-a})^p)).$$

In particular

$$\lim_{q \to 1} l_{p,q}(\zeta_d^{-1}, 1, \chi) = l_p(\zeta_d^{-1}, 1, \chi).$$

References

- 1. T.Kim, On explicit formulars of p-adic q-L-functions, Kyushu J Math. 48 (1994), 73-86
- 2 H.S Kim and T.Kim, On p-adic differentiable and bounded functions, to appear in Kyungpook Math.J. 34 (1994).
- 3. H.S.kim, PS Lim and T.Kim, On p-adic q-Bernoulli measures, J.Korean Math.Soc (submitted).
- 4. N Kobhtz, On Carlitz's q-Bernoulli numbers, J Number Theory 14 (1982), 332-339
- N Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math J. 46 (1979), 455-468
- 6 J.Satoh, q-analogue of Riemann's ζ-function and q-Euler numbers, J.Number Theory 31 (1989), 346-362

Department of Mathematics College of Natural Sciences Kynngpook National University