Pusan KySngnam Math J 11{1995), No. 1, pp 73-80

SOME FIXED POINT THEOREMS
OF EXPANSION MAPPINGS

H. K. PATHAK, S. M. KANG, S. S. CHANG AND J. W. Ryu

1. Introduction.

Initially, the concept of 2-metric spaces has been investigated by
Gahler in a series of papers (3], [4] and [5] and has been developed
extensively by Gahler and many other researchers. On the other hand,
the several authors have studies the aspects of fixed point theory for
several types of contractive mappings in the setting of the 2-metric
spaces. Recently, Chang-Kang [2} and Kang-Chang-Ryu [6] proved
fiwed point theorems of expansive mappings which correspond some
contractive mappings in 2-metric spaces. In 1992, Chang (1] showed
that suitable conditions are necessary in their results.

In this paper, we prove some common fixed point theorems of ex-
pansive mappings. Some of our results improve the results obtained
by Chang-Kang [2] and Kang-Chang-Ryu {6].

2. Preliminaries
From Galler {3] and White (8], we have the following definitions.

DEFINITION 2.1. A 2-meiric space is a set X with a real-valued
function d on X x X x X satisfying the following conditions:

(M;} For distinct points z,y in X, there exists a point z in X such
that d(x,y,z) # 0,

(M) d(x,y,z) = 0 if at least two of 2,7y, z are equal,

(Mz) d(z,y,z) = d(z,z,y) = dy, 2,z),

(M) d{x,y,2} < d{z,y,u) + d(z,u,2) + d(u,y, z) for all 2,4, 2, u in
X.

The function d is called a 2-metric for the space X and (X, d) denotes
a 2-metric space. It has been shown by Gahler 3] that a 2-metric d is
non-negative.
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DEFINITION 2.2. A sequence {z,} in a 2-metric space (X, d) 1s said
to be convergent to a point  in X if lim, d(z,,,z,a) =0 for all ¢ in X.

DEFINITION 2.3. A sequence {z,} in a 2-metric space (X, d) is said
to be a Cauchy sequence if limp, , d(Zm,2p,¢) =0 for all ¢ in X. A
2-metric space (X, d) is said to be compleie if every Cauchy sequence
m X is convergent.

DEFINITION 2.4. A mapping S from a 2-metric space (X, d) into
itself is said to be seguentially continuous at a point z in X if for
every sequence {z,} in X such that lim, d{z,,z,a) =0 forallain X,
lim,, d(Szn, Sz,a) = 0 for all a in X.

Throughout this paper, let F be the family of mappings such that
for each ¢ € F, ¢ : [0,00) — [0,00) is upper semi-continuous from the
right and non-decreasing in each coordinate variable with ¢(t) < ¢ for
all ¢ > 0.

We also need the following Lemma due to Matkoski [7} in the proof
of our main theorems.

LEMMA. If ¢(t) < t for every t > 0, then lim, ¢™(t) = 0, where
¢™(t) denotes the composition of ¢(t) with n-times.

3. The Main Theorems

Now, we prove some common fixed point theorems which is moti-
vated by the expansive condition used by Kang-Chang-Ryu {6].

THEOREM 3.1. Let S and T be mappings from a 2-metric space
(X.d) into itself such that S(X) C S*(X), S(X) C TS(X) and S(X)
is complete. Suppose that there exists ¢ € F such that for each z,y
and a in X, at least one of the following conditions holds:

@) é(d(S%, TSy, a)) > d(Sz, Sy, a).
G)  $(d(S%,TSy,a)) > %[d(Sa:, Sy,a) + d(T Sy, Sy, a)].
(i) $(d(5%2,TSy,a)) 2 %[d(Sm, S$%2,a) + d(Sz, Sy, o).

(v)  $(d(S%,TSy,a)) > %[d(S’x, $%z.4) + d(TSy, Sy, a)
+ d(Sz, Sy, a)].
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Then either S or T has a fixed point, or S and T have a common fixed
point.

Proof. Let xp be an arbitrary point X. Since S(X) C S§%(X) and
S(X) C TS(X), we have for zg € X, there exists a point z; in X such
that S%z; = Sz¢ = vy, say, and for this point z;, there exists a point
z3 in X such that TSz, = Sz; = yy, say. Inductively, we can define a
sequence {y,} in S(X) such that

5%2n11 = 520 = yan and TSToniz = STont1 = Yant1-
It is easy to show that, for each of the inequalities (i)~(iv), that we

have ¢(d(yzn,Y2n+1,a)) 2 d(y2n+1,Y2nt2,a). Then one can show that
¢(d(y2n11, Y2n+2,@)) > d(Y2nt2, Y2nts, a), hence for arbitrary n,

$(d(Yns Ynt1,@)) 2 d(Yn+1,Yns2,0)
for all ¢ in X. Now, if y2, = y2n41 for any n, one has that y,, is a
fixed point of S, from the definition {y,}. It then follows that, also,

Y2n+1 = Yantz, Which implies that i, is also a fixed point of T.
For an arbitrary n, we have

d(yn»yn+1,a) < ¢(d(yn—l7yn’a)) s qS“(d(yo,yl,a))

for all @ in X. By Lemma, lim, d(y,, ¥ny1,a) =0 for all ¢ in X.

Now, using the technique of Kang-Chang-Ryu [6], one would prove
that {yn} a Cauchy sequence and it converges to some point ¥ in S(X).
Consequently, the subsequences {y2}, {y2n+1} and {y2n42} converge
to y. Let y = 5%u and y = T'Sv for some u and v in X, respectively.
From inequalities (1)~(iv), it follows that at least one of the following
mequalities must be true for an infinite number of values of n: for all
ain X,

¢(d(y2na ysa}) 2 d(5$2n+1,5'l},a}
1
¢(a'(y2n.y,a.)) > -z—[d(Sa:zﬂ.,.,,Sv,a) + d(T'Sv, Sv,a)]
, 1
¢(d(yan.y,a)) > é[d(sm2n+la S ty041,0) + d(Stony1, Sv,a)]

(dlyan, v, ) > %[d(s:zzm,s%z.m,a) + d(TSv, Sv, a)
+ d(Sz2041,5v,a)}
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Taking the hmit as n — oo in each case yields y = Sv. A similar
argument applies to proving that y = Su. Therefore, y is a common
fixed point of S and T. This completes the proof.

THEOREM 3.2. Let S and T be sequentially continuous mappings
from a 2-metric space (X,d) into itself such that S(X) C S%(X),
S(X) € TS(X) and S(X) is complete. Suppose that there exists
¢ € F such that

#(d(S*x,TSy,a)) > min{d(Sz. %z, a),d(T Sy, Sy, a),d(Sz, Sy, a)}

for all z,y and a in X, where } ., $™(t) < oo for all £ > 0.
Then S or T has a fixed point or S and T' have a common fixed point.

Proof. Define a sequence {y,} as in Theorem 3.1. If y, = ynp4; for
any n, then S or T has a fixed point.

It is easy to show that, for each of the given inequality, that we
have ¢(d(yan, Yonti, a)) 2 d{y2n+1,Y2n+2,¢). Then one can show that

¢(d(y2n+1,Y2ns2, a)) > d(y2n42, Y2n43,a), hence for arbitrary n,

¢(d(yn,yn+1,a)) > d(yn-i-layn-i-‘z’ a)

for all @ in X. As in Theorem 3.1, we have that lim, d(y,, yn+1,2) =0
for all @ in X. From ¢(0) = 0, we have for every non-negative integer
n,

d(yo, 1, Ym) < d(Yo, Y1, ym—1) + AYms Ym—1,%0) + AYm, Ym-1,41)
< dyo, y1,Ym—1) + ¢™ 7 (d(y1. 0, Yo} + d(y1y0,¥1))
= d(Y0, 91, Ym—1) < d(Yo,¥1,Ym—2) < - -
< d(yo,y1,1) = 0.

Therefore, we obtain d(y,, Ynt1,ym) = 0. For arbitrary non-negative
integers 2,7 and k (0 <2< 7 < k),

d(yn y_}ayk) S d(yn y)ayr-H) + d{yr‘-yﬂrls yk) + d(yz-}—lay])yk)
= d(y:-i-hypyk)
<--- L dlyy—15y5.9x) = 0.
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Thus, d(y,,y,,yx) = 0. For any m < n, for all a in X,

A Ym> Yns @) £ AYm, Ynr Yma1) + AYmy Yms1,a) + AYm1,Yn, @)
= d(Ym, Ym+1,2) + HYm+1,Yn, 6}
L d(Ym, Ym+1,8) + AYms1, Ymt2,0) + -
+ d(Yn—1,Yn, a)
< ¢™(d(yo,y1,a)) + - + 6" {d(yo, y1,2)).

From oo ¢"(t) < oo for allt > 0, it follows that {y»} is a Cauchy se-
quence and it converges to some point y in S(X). Consequently, {2},

{y2n31} and {yzn42} converge to y. By the sequentially continuity of
Sand T,

2
S I2ngl = Sy2n+1 = Yon & 53}
o as 17 — 00.
TSzont2 = Lyanyz = Yanyr— Ty

Thus, § and T have a common fixed point.

COROLLARY 3.3. (1) Let S and T be mappings from a 2-metric
space (X, d) into itself such that S(X) C S*(X), S(X) C T'S(X) and
S(X) is complete. Suppose that there exists real numbers h > 1 such
that for each z,y and « in X, at least one of the following conditions

holds:
d(S*z,TSy,a) > hd(Sz,Sy,a).
d(S%z,TSy,a) > g[d(S'a:, Sy,a) + d(T Sy, y, a)].
h
d(§%x, TSy, a) > 5[(!(5:{:, S%z,a) + d(Sz, Sy, a)).
h
d(5%x. TSy, a) > g[d(S:r, S%z,a) + d(TSy, Sy,a) + d(Sz, Sy, a)).
Then either S or T has a fixed point, or § and T have a common fixed
point
(2) Let § and T be sequentially continuous mappings from a 2-metric
space (X, d) into itself such that S{X) C S*(X), S(X) C TS(X) and
S(X') is complete. Suppose that there exists h > 1 such that

d{S*z, TSy, a) > hmin{d(Sz,5*z,a),d(TSy, Sy,a),d(Sz,Sy,a)}
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for all z,y and a in X.
Then S or T has a fixed point or § and T have a common fixed point.

Proof. For ¢ € F, we define ¢ : [0,00) — [0,00) by ¢(t) = # £, where
h > 1. From Theorem 3.1 and 3.2, we obtain (1) and (2}, respectively.

THEOREM 3.4. Let § and T be mappings from a 2-metric space
(X.d) into itself such that S(X) C §%(X), S(X) C TS(X) and S(X) is
complete. Suppose that there exists non-negative real numbers a < 1,

B <1andy{a+pF+v>1)such that
d(S*x,TSy,a) > ad(Sz,S%z,a) + Bd(TSy, Sy,a) + vd(Sz, Sy, a)

for all x,y and a in X.
Then S and T have a common fixed point.

Proof. Define a sequence {y.} as in Theorem 3.1. Suppose that
Y2n = Y2n+1 Tor some n. Then, for all @ m X,

d(Y2n,Y2n+1,0) = d(32$2n+1, TSzony2,a)
> ad(S23041,5%T2n41,0) + BA(TSz2n42, ST2nt2,0)
+7d{(Sx2n41,ST2n42,0)
= ad(Y2n, Y2n+1,a) + B d(y2n+1, Y2n+2,a)
+ ¥ Y2041, Y2n42,0),

that is, d(y2n,yons1.0) 2 ({L_t%)d(yznﬂ,yznw,a) which says that
Y2n+1 = Yan42 since B+ v # 0. Thus, ys, is a common fixed point of
S and T'. Similarly, y2,41 = Yon2 gives that 4,44 is a common fixed
point of S and T.

Now, suppose that y, # y,41 for each n. Then, for all @ in X,

d(y2n, Yan+1,0) = d(S*22041, TST2n42. @)
Z ad(yon, Yon+1,a) + Bd(yant1, Y2n+2,9)
+ v d(Y2n+1, Y2n+2. ).
Thus, we have

l—o

<1
B+

d(y2n+lay2n+2sa) < de(mn, yzn+1,a), where =
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for all @ in X'. Similarly, we have, for all a in X,

1-4
o+

d(y2n+2, Y2n+3, @) < pad(Y2nt1.Y2n12,8), where p2 = <L

Putting p = max{p,, p;}, we have, for all a in X,

d(yna yn-}l;a) < Pd(yn—layn} a)‘

Therefore, {y,} is a Cauchy sequence and it converges to some point y
in S(X). Consequently, the subsequences {y2,}. {¥2n+1} and {yz,42}
converge to y. Let y = S?u and y = TSv for some u and v in X,
respectively. Then, for all a in X,

d(y2n,y, a) = d(S*t3041. TS0, a).

Letting n — oo, we have 0 > (8 + v)d(y, Se.a) for all a in X, so that
y = Sv. Similarly, ¥ = Su. Therefore, § and T have a common fixed
point.

REMARK. Our results improve several results of Chang-Kang (2]
and Kang-Chang-Ryu [6] {see, Chang [1]). Furthermore, we have used
non-surjective mappings.
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