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THE GENERALIZED HURWITZ ZETA FUNCTION

Tae Young Seo and Bo Myoung Ok

1. Introduction and Preliminaries

In [2], Barnes defines the generalized Hurwitz zeta function as fol­

lows :

8 1
<(s,a,s) = V -一-rj,

(a + 〃復)$71 = 0 '

which can be continued analytically to the whole 5-plaine except a 

simple pole at s = 1. For all values 3, a and w with Re(우)〉0 and 

Re(w) > 0, we can represent by the contour integral

(1)
一 s) 

2?r

where the contour C ic a loop around the axis of w-1 round the origin 

from +。。to +oo as in Fig.l, and ( —z)5-i being equal to e(n)log(-% 

where the real value of the logarithm is to be taken when z is negative. 

The contour must not embrace any zeroes of 1 — e~wz except the ori­

gin. It is clear that 지 where is 나此 well-known
Hurwitz zeta function and <(s"L) = <(s), where <(s) is the Riemann 

zeta function. In this note we deduce some properties of a, w) and 

generalize some results of C(s,a).
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2. Some properties of

We can express（7（s, a, w） as a series of circular functions.

Theorem 2.1. We have , for Re（으） > 0 and Re（w） > 0,

C（5, a, w） = r（l - s）tp-s2a-17r3-1

oo
（2） x E ws~12cos[^（5 — 1） + 으2m찌.

m=l

Proof. For the proof we make use of the contour Fn = Cn — C in 

Fig.2.

Wc assume that the square Cn contains the points 士흐므프知 m = 1,2, ••- , n 

and the contour C reduce the contour to a straight line from +oo to e, 
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a small cir시e of radius e round the origin, and a straight line back from 

+e to +oo. Since the contour Fn has winding number one about the 

points 士 흐号f으 with m = 1,... , n. At these points z — ±끄끄, the func­

tion £丄：, (-has simple poles with residues (두 )음(干气끄)‘一七 
It follows that

n
= £ u厂"2m찌3_12cos(：(s - ]))[厂읂侦泌 + e은总까]. 

m=l 2

If Re(5)< 0, the integral ove호 Cn will tend to zero as ?? —> oo 

Therrfore. the integral over Cn — C will tend to the integral over —C 

as n —> oo.

Hence,

1 广 e^w-a)z
-—/ -----------------
2m J_c e미— 1、

oo
= zv~32s~17ts~1 m$T[2cos(：(s — 1))cos(으2m兀) 

m=l
7F a

—2sin(—(s _ 1))sin(—2?7?7t)].
2 w

We can thus have the desired expression (2)

COROLLARY 2.2. We have , letting w = a in (2). our generalized 

Hurwitz zeta function can be reduced to the Riemann zeta function as 

follows:

建)=一一厂
ws

Now、we define the generalized Bernoulli polynomials and numbers 
and then can evaluate C(s, a, w) for some special values of s.
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DEFINITION 2.3. The generlaized Bernoulli polynomials w) 

are deSned by respectively , for my complexand numbas B/(0, w) 

number z,

=立 Bi(x,w) j 

z=o ”

.ma(o,w)[
_ 乙—7i z，

Z=0 ,

2%
지*표'

..2tt
\z\ <厂〒

Ml

Note that B((x^ 1) = Bi(x) and 1) = B、where B((x) and B( 

are Bernoulli polynomials and numbers.

THEOREM 2.4. We have, for every nonnegative integers Z,

= （——宀紗）.

Proof. Fb호 I，히 < 끄, we have

)2 _ ~ Bi(w-x,w) t 

ewz - 1 — 2丿 l\ ~
/=0

Replacing 2 by — ? in the resulting identity leades to

(_z)e(i)= 

e~wz — 1~wz

00
B【(w

wz _ y

z •

On the other hand

渣z

必以_ 1

(—
S 一 1 =2或 一n —z 

z=o

Equating coefficients of zl , we obtain the desired result.
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THEOREM 2.5. For every integer Z > 0, we have

"e=(t)邑브曾三으2
t + 1

Proof. From (1), we have <(s,a, s) = F(1 一 s)I(s,a,w), where

1 f f-az 
I(s,a,w) = / ------------------

2m Jc 1 - e~wz '

Hence,

e~az
1(-1,a,w) = 一 Resz=o；----

(T)‘
=(m)!Sz+i(w~o,w)-

From Theorems 2.4 and 2 5, we have the following.

COROLLARY 2.6 For every integer I > Q7 we have

<(-Z,a,w)= 一厂‘瓦+i(a,後)
，十丄

THEOREM 2.7. From Theorems 2.1 and Corollarjr 2.6, we can ex- 

p호ess 及)urie호 sine and cosine series of B2jt+i(a, w) and w):

8
3a+i(a,w) = (-1)*(次 + 1)!必江(服厂"-I £ 277广久-七也(으27“찌 

m = l
oo

B2k(a,w) = (一 1)서T(2幻！把7(27匚厂이。V' 2m~이。cos(으277顼)
£1 W
m = l

for k = 1,2,3,

Proof. From (2), letting s = -2A\ k = 1.2,. . . Then 

“_2E,a、幻)=r(2k + l)w2k2~2k~1TT~2k~1

oo
x V 2m~厲T(-1)서4 sin(으2m찌. 
m= 1

(3)
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And from Corollary 2.6, we get the following

(4) ((-2^,a,w) = - —B2jt+i(a,w).
十 x

Comparing (3) and (4) yields the desired results.

Letting a = 0 and w = 1 in Theorem 2.7, we have the followings.

Corollary 2.8. Fork = 1,2,3,,

B2fc+i(0,1) = = 0

B2fc(0,l) = B2k = (T)*(次)!(2眾-이女(次).

where the above equalities are well known result (see [4,p.332 ]).
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