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THE GENERALIZED HURWITZ ZETA FUNCTION

TAE YOUNG SEO AND BO MYouNG OK

1. Introduction and Preliminaries

In [2], Barnes defines the generalized Hurwitz zeta function as fol-
lows :

G 1
((svaw) = Y e,
nzzo (a + nw)

which can be continued analytically to the whole s-plaine except a
simple pole at s = 1. For all values s,a and w with Re( %) > 0 and
Re() > 0, we can represent by the contour integral

Il —s B

where the contour C ic a loop around the axis of w™! round the origin
from +0o to +o00 as in Fig.1, and (—z)*~! being equal to e(*~D1o8{~2)
where the real value of the logarithm is to be taken when z is negative.
The contour must not embrace any zeroes of 1 — e~** except the ori-
gin. It 1s clear that ((s,a,1) = {(s,a) where ((s,a) is the well-known
Hurwitz zeta function and ((s,1) = ((s), where ((s) is the Riemann
zeta function. In this note we deduce some properties of (s, e,w) and
generalize some results of (s, «).
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Fig. 1.

2. Some properties of {(s,a,w)

We can express ({s,a,w) as a series of circular functions.

THEOREM 2.1. We have , for Re( %) > 0 and Re{w) > 0,

((s,a,w)=T(1 - s)w™*2° " 1g*1

(2) X ,; m"@cos[%(s -1+ 1%2mvr].

Proof. For the proof we make use of the contour I';, = C, — C in

Fig.2. N >/
;Jé
o

Fig. 2.

We assume that the square C,, contains the points :bzmT"i, m=1,2,---,n
and the contour C reduce the contour to a straight line from +o0 to e,
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a small circle of radius € round the origin. and a straight line back from
+¢e to +o0. Since the contour I'y, has winding number one about the
points £ 225 with m = 1,... ,n. At these points z = :tm the func-

(w-~a
tion %FT(——Z)’ ! has simple poles with residues (o ]w(ZFQm’")S_

It follows that

1 e(w—a):( )3--1
2m1 Fn ews —1° 7

Zw 3(91’7?.71')3 12(:03( (5_1))[6-——2mm+ “2mml

m=1

If Re(s) < 0, the integral over C, will tend to zero as n — oo
Therefore. the integral over C,, — (' will tend to the integral over —C
as n — 00.

Hence,

1 e(u’—a)z

(—z)*"dz

2n1r J_oewr —1

o0
Cens—1_s— - ¥ a
= 2% gt Z m? l[’2cos(3(¢5 — 1)) cos( —2mn)
= 2 w
1r
- 73111’{)(» — 1))sm( ‘7m ).

We can thus have the desired expression {2)

COROLLARY 2.2. We have , letting w = a in (2), our generalized
Hurwitz zeta function can be reduced to the Ricmann zeta function as
follows:

(s)

s

C(s,w,w) =

Now, we define the generalized Bernoulli polynomials and numbers
and then cau evaluate ({2, a,w) for some special values of s.
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DEFINITION 2.3. The generiaized Bernoulli polynomials Bi(x,w)
and numbers By(0,w) are defined by respectively , for any complex
number x,

Z B;(:c w) 2 2] < 2n

euu

B Ou 2w
.—:“;—Z ! =l < op
=0

Note that By(x,1) = Bi(z) and Bi(0,1) = By, where Bi(z) and B,
are Bernoulli polynomials and numbers.

THEOREM 2.4, We have, for every nonnegative integers I,

Bi(z,w) = (—1)'Bi(w — z,1).

Proof. For 1z| < 2% we have

_ZBz(w—a w)

=0

ve(u’—x)z

Replacing z by —z in the resulting identity leades to

(_,,}e(x—w}:

z =, Bi(w - 2.w0) ;
_e___——wz__l =Z-—-——"—I! (““Z) .
=0

On the other hand

{ _T)C(r—u'lz

fe W)
z)e . zet? z By(x,w)
emws — 1  ew:..1 {1 N
{=0

Equating coefficients of z! |, we obtain the desired result.
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THEOREM 2.5. For every integer | > 0, we have

IBl+l(w - a,w)
[+1

((—la,w)=(-1)

Proof. ¥From (1), we have ((s,a,w) = I'(1 — s)I(s, a,w), where

1 e s s—1
I(S,G,'it)-——g;r—zj C‘l_—e;-;;;(—Z) dz
Hence,
e—az —iel
I(=1,a,w) = ~Res,mg———(~2)
1 —e~ws
_ (=1 1)1

From Theorems 2.4 and 2 5, we have the following.

COROLLARY 2.6 For every integer [ > 0, we have

((—lLaw)=— l+lB‘+'(a’ w)

THEOREM 2.7. From Theorems 2.1 and Corollary 2.6, we can ex-
press Fourier sine and cosine series of Byyyi(a,w) and Bayl(a, w):

Boir{a,w) = (=1 (2k + 1)l (2r)" 241 Z 2m %111(w2m1r)

m=1

Byi(a,w) = (= 1)M Y2k w1 (27) "2k Z‘hn —2k cos( ‘7m7r)

m=1

for k=1,2,3,
Proof. From (2), letting s = =2k, 2 =1.2,. .. Then
C{—2k,a,w) = T(2k + 1)w?r2—2A=1, 7241

=y —2h =1, _q A4l o Gy
(3) x ZZm (—1) sm(wdmir).

m=1
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And from Corollary 2.6, we get the following

1

Y 132k+1(fhw)~

(4) ((—2k,a,w) = —

Comparing (3) and (4) yields the desired results.

Letting a = 0 and w = 1 in Theorem 2.7, we have the followings.

COROLLARY 2.8. Fork =1,2,3,...,

Bok41(0,1) = Bag43 =0
B31(0,1) = Bog = (—1)¥1(20)1(2r) "2 2 (2k).

where the above equalities are well known result (see [4,p.332 ]}
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