STRUCTURE OF A HYPERSURFACE IMMERSED IN A PRODUCT OF TWO SPHERES

Shin,Yong Ho

0.Introduction

Submanifolds immersed in a sphere or a product of spheres have been objects of study in differential geometry. In particular, real hypersurfaces of a sphere could be found out their intrintic character under some specific conditions. Recently, many authors ([7],[10],[11],[12],[16], [23]) have researched the so-called generic submanifolds of a Riemannian manifold which are general notions real hypersurfaces of a Riemannian manifold Among them, the study on generic submanifolds of an odd-dimensional sphere or an even-dimensional Euclidean space was carried out succcessfully. But, the investigation about generic submanifolds of an even-dimensional sphere or a product of two spheres $S^{n} \times S^{n}$ has not been reported yet.

Of course, real hypersurfaces of $S^{n} \times S^{n}$ a product of two spheres have not had nice results as those of a sphere even though several geometers examined real hypersurfaces of $S^{n} \times S^{n}([5],[13],[14])$.

So, many geometers are desiring earnestly to suggest the epochmaking models of real hypersurfaces immersed in $S^{n} \times S^{n}$.

By the way, K.Yano and M.Okumura [20] defined the (f, g, u, v, λ)structure induced on submanifolds of codimension 2 of an almost Hermitian manifold or real hypersurfaces of an almost contact metric manifold, which is a very useful method in studying Riemannian manifolds admiting that structure. Also, Yano[18] studied the differential geometry of $S^{n} \times S^{n}$ and prove that the (f, g, u, v, λ)-structure is naturally induced on $S^{n} \times S^{n}$ as a submanifold of codimension 2 of a $(2 n+2)$-dimensional Euclidean space or a real hypersurface of $(2 n+1)$ dimensional unit sphere $S^{2 n+1}(1)$.
G.D. Ludden and Okumura[13] stuided the so-called invariant hypersurface of $S^{n} \times S^{n}$, which is derived from the almost product structure defined by its projection operators on $S^{n} \times S^{n}$.

On the other hand, it is well-known that the so-called (f, g, u, v, w, λ,
$\mu, \nu)$-sructure is naturally induced on submanifolds of codimension 3 of an almost Hermitian manifold or real hypersurfaces of a manifold with (f, g, u, v, λ)-structure (cf.[8], $[9],[22]$). Therefore, real hypersurfaces immersed in $S^{n} \times S^{n}$ admit the the (f, g, u, v, λ)-structure deduced from the (f, g, u, v, λ)-structure defined on $S^{n} \times S^{n}$. From this point of view, S.-S.Eum, U-H.Ki and Y.H.Kim [5] researched partially real hypersurfaces of $S^{n} \times S^{n}$ by using the concept of k-invariance.

The purpose of the present paper is devoted to study some intrinsic characters of hypersurfaces immersed in $S^{n} \times S^{n}$, characterize global properties of them by using some intergrable condition and prove that the generic submanifold of $S^{n} \times S^{n}$ with the almost contact metric structure is the real hypersurface.

In section 1, we recall the intrinsic properties of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ and have some algebraic relationships and structure equations of hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.

In section 2, we determine mainly a minimal hypersurface of $S^{n}(1 / \sqrt{2})$ $\times S^{n}(1 / \sqrt{2})$ satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$.
In section 3, we find the necessary and sufficient condition for a hypersurface of $S^{n} \times S^{n}$ being k-antiholomorphic and prove its global properties.

1.Structure equations of hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$

Let E^{n+1} be an ($n+1$)-dimensional Euclidean space and 0 the orgin of the Cartesian coordinate system in E^{n+1}, and denote by X the position vector of point p in E^{n+1} relative to the orgin 0 .

We consider a hypersurface $S^{n}(1 / \sqrt{2})$ in E^{n+1} with center at the orgin 0 and radius $1 / \sqrt{2}$. Suppose that $S^{n}(1 / \sqrt{2})$ is covered by a system of coordinate neighborhoods $\left\{U ; x^{\alpha}\right\}$, where here and in the sequel the indices $\alpha, \beta . \gamma, \delta, \cdots$ run over the range $\{1,2, \cdots, n\}$. Then $X \cdot X=1 / 2$ for the position vector X of the point $S^{n}(1 / \sqrt{2})$, where the dot means the usual inner product of E^{n+1}.

Putting $X_{\alpha}=\partial_{\alpha} X, M_{1}=-\sqrt{2} X, g_{\alpha \beta}=X_{\alpha} \cdot X_{\beta}$, where $\partial_{\alpha}=$ $\partial / \partial x^{\alpha}$, and denoted by ∇_{α} the operator of the covariant differentiation formed with the first fundamental form $g_{\alpha \beta}$, the equations of Gauss and Weingarten are respectively given by

$$
\begin{equation*}
\nabla_{\alpha} X_{\beta}=\sqrt{2} g_{\alpha \beta} M_{1}, \quad \nabla_{\alpha} M_{1}=-\sqrt{2} X_{\alpha} \tag{1.1}
\end{equation*}
$$

Similary, an n-dimensional sphere $S^{n}(1 / \sqrt{2})$ is also assumed to be covered by a system of coordinate neighborhoods $\left\{V ; y^{\kappa}\right\}$. Then the position vector Y of a point of $S^{n}(1 / \sqrt{2})$ satisfies $Y \cdot Y=1 / 2$. Here and in the sequel, the indices κ, μ, ν, \cdots run over the range $\{n+1, \cdots, 2 n\}$. Now, we put $Y_{\kappa}=\partial_{\kappa} Y, M_{2}=-\sqrt{2} Y, g_{\kappa \mu}=Y_{\kappa} \cdot Y_{\mu}\left(\partial_{\kappa}=\partial / \partial y^{\kappa}\right)$ and denoted ∇_{κ} the operator of covariant differentiation formed with the first fundamental form $g_{\kappa \mu}$ of $S^{n}(1 / \sqrt{2})$. Then the equations of Gauss and Weingarten are respectively given by

$$
\begin{equation*}
\nabla_{\kappa} X_{\mu}=\sqrt{2} g_{\kappa \mu} M_{2}, \quad \nabla_{\kappa} M_{2}=-\sqrt{2} Y_{\kappa} . \tag{1.2}
\end{equation*}
$$

Thus we give the differential structure to $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ naturally as a product manifold which is covered by a system of coordinate neighborhoods $\left\{U \times V ;\left(x^{\alpha}, y^{\kappa}\right)\right\}$.

Therefore as a submanifold of codimension 2 in a ($2 n+2$)-dimensional Euclidean space $E^{2 n+2}, S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ has a position vector Z of a point in $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ such that

$$
Z\left(z^{k}\right)=\binom{X\left(x^{\alpha}\right)}{Y\left(y^{\kappa}\right)}
$$

where, here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1,2, \cdots, n, n+1, \cdots, 2 n\}$. Then we have

$$
Z \cdot Z=X \cdot X+Y \cdot Y=1
$$

and hence we see that $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ is a hypersurface of a $(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$ in $E^{2 n+2}$.

Letting $Z_{i}=\partial_{1} Z$ and $g_{j 2}=Z, Z_{i}$, we get

$$
Z_{\alpha}=\binom{X_{\alpha}}{0}, \quad Z_{\kappa}=\binom{0}{Y_{\kappa}}
$$

$$
g_{j \imath}=\left(\begin{array}{cc}
g_{\alpha \beta} & 0 \tag{1.3}\\
0 & g_{\kappa \mu}
\end{array}\right), \quad g^{j^{z}}=\left(\begin{array}{cc}
g^{\alpha \beta} & 0 \\
0 & g^{\kappa \mu}
\end{array}\right)
$$

$g^{3}, g^{\alpha \beta}$ and $g^{\kappa \mu}$ are contravariant components of $g_{y z}, g_{\alpha \beta}$ and $g_{\kappa \mu}$ respectively.

Letting

$$
\begin{equation*}
C=\binom{-X\left(x^{\alpha}\right)}{-Y\left(y^{\kappa}\right)}, \quad D=\binom{-X\left(x^{\alpha}\right)}{Y\left(y^{\kappa}\right)} \tag{1.4}
\end{equation*}
$$

we can easily see that

$$
Z_{\imath} \cdot C=0, Z_{\imath} \cdot D=0, C \cdot D=0, C \cdot C=1, D \cdot D=1
$$

and hence C and D are mutually orthogonal normal vectors to $S^{n}(1 / \sqrt{2})$ $\times S^{n}(1 / \sqrt{2})$ as a submanifold of codimension 2 in $E^{2 n+2}$.

Let $h_{j_{z}}$ and $k_{j t}$ be the components of the second fundamental tensors respectively relative to the unit normals C and D to $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$. Then the equations of Gauss for $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ can be given of the form

$$
\nabla_{j} Z_{i}=h_{j} C+k_{y_{i}} D
$$

From (1.1) and (1.2), h_{32} and k_{32} are of the form

$$
\left(h_{\jmath ı}\right)=\left(\begin{array}{cc}
g_{\alpha \beta} & 0 \tag{1.5}\\
0 & g_{\kappa \mu}
\end{array}\right), \quad\left(k_{\imath \imath}\right)=\left(\begin{array}{cc}
g_{\alpha \beta} & 0 \\
0 & -g_{\kappa \mu}
\end{array}\right)
$$

and consequently we find

$$
\left(h_{j}^{2}\right)=\left(\begin{array}{cc}
\delta_{\alpha}^{\beta} & 0 \tag{1.6}\\
0 & \delta_{\kappa}^{\mu}
\end{array}\right), \quad\left(k_{j}^{i}\right)=\left(\begin{array}{cc}
\delta_{\alpha}^{\beta} & 0 \\
0 & -\delta_{\kappa}^{\mu}
\end{array}\right)
$$

where $h_{j}^{t}=h_{j h} g^{h_{1}}$ and $k_{j}^{t}=k_{j h} g^{h_{3}}$.

It follows from thr first equation of (1.5) and the second equation of (1.6) that

$$
\begin{equation*}
h_{j ı}=g_{j 1}, \quad k_{t}^{t}=0, \quad k_{j}^{t} k_{t}^{t}=\delta_{j}^{2} . \tag{1.7}
\end{equation*}
$$

Hence, we see that k; determines an almost product syructure on $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.

On the other hand, as the first fundamental from $g_{j z}$ has the form (1.3), the Chiristoffel symbols $\left\{_{j}{ }^{h} \quad{ }_{i}\right\}$ form with g_{μ} are all zero but $\left\{\begin{array}{lll}\gamma^{\alpha} & & \beta\end{array}\right\}$ and $\left\{\begin{array}{lll} & & \\ & & \\ \end{array}\right\}$.

Using this fact and differentiating the second fundamental tensor k_{2}^{j} covariantly, we have

$$
\nabla, k_{i}^{h}=0 .
$$

Denoting by l_{3} the third fundamental tensor relative to the normals C and D, we can write

$$
\begin{equation*}
\nabla_{3} C=-h_{j}^{t} Z_{t}+l_{3} D, \quad \nabla_{3} D=-k_{j}^{t} Z_{t}-l_{3} C . \tag{1.8}
\end{equation*}
$$

From (14),(1.6) and (1.8) it follows that (cf. [3],[19])

$$
l_{3}=0 .
$$

Consequently, the equations of Gauss and Weingarten fo $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$ regared as a submanifold of codimension 2 in $E^{2 n+2}$ become respectively

$$
\nabla_{3} Z_{2}=h_{3} C+k_{32} D, \quad \nabla_{3} C=-Z, D, \quad \nabla_{3} D=-k_{j}^{t} Z_{t} .
$$

Thus we can deduce the so-called equations of Gauss

$$
\begin{equation*}
K_{k j t}^{h}=\delta_{k}^{h} g_{\jmath t}-\delta_{j}^{h} g_{k t}+k_{k}^{h} k_{3 \mathrm{z}}-k_{j}^{h} k_{k t} \tag{1.9}
\end{equation*}
$$

$K_{k j 2}^{h}$ being the components of the curvature tensor of $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$.

But, a $(2 n+2)$-dimensional Euclidean space $E^{2 n+2}$ admits a natural Kaehler structure

$$
F=\left(\begin{array}{cc}
0 & -I_{1} \\
I_{1} & 0
\end{array}\right)
$$

where I_{1} denotes the identity matrix of degree $n+1$. It follows that $F^{2}=-I, F U \cdot F V=U \cdot V$ for arbitary vectors U and V in $E^{2 n+2}, I$ being the identity transformation in $E^{2 n+2}$. Linear transformation of Z_{3}, C and D by f give respectively

$$
\begin{align*}
F Z_{3} & =f_{j}^{t} Z_{t}+u_{j} C+v_{j} D, \quad F C=-u^{t} Z_{t}+\lambda D \tag{1.10}\\
F D & =-v^{t} Z_{t}-\lambda C
\end{align*}
$$

where f_{i}^{h} are components of a tensor field of type (1.1), u_{i} and v_{i} those of 1-forms and λ a function on $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$, and u^{h} and v^{h} are the associated vector fields with u_{2} and v_{2} respectively given by $u^{h}=u_{2} g^{i h}$ and $v^{h}=v_{2} g^{i h}$.

Applying F to (1.10) respectively, we get the so-called (f, g, u, v, λ)structure given by ([1], [2], [6], [17], [18], [20],

$$
\begin{align*}
& f_{3}^{t} f_{t}^{t}=-\delta_{3}^{1}+u_{3} u^{2}+v_{3} v^{t} \\
& u_{t} f_{3}^{t}=\lambda v_{3}, \quad f_{t}^{h} u_{t}=-\lambda v^{h}, \quad v_{t} f_{j}^{t}=-\lambda u_{3} \\
& f_{t}^{h} v^{t}=\lambda u^{h}, \quad u_{t} u^{t}=v_{t} v^{t}=1-\lambda^{2}, \quad u_{t} v^{t}=0 \tag{1.11}\\
& f_{j}^{t} f_{2}^{s} g_{t s}=g_{j 2}-u_{j} u_{2}-v_{3} u_{t}
\end{align*}
$$

It is easily verified that $f_{3 t}=f_{j}^{t} g_{t t}$ is skew-symmetric in \jmath and $?$.
By letting $J=\alpha$ and $J=\kappa$ in (1.10), we find respectively

$$
\begin{equation*}
f_{\alpha}^{\beta}=0, \quad u_{\alpha}+v_{\alpha}=0, \quad X_{a}=f_{\alpha}^{\kappa} Y_{\kappa}-2 u_{\alpha} Y \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\kappa}^{\mu}=0, \quad u_{\kappa}=v_{\kappa}, \quad Y_{\kappa}=-f_{\kappa}^{\alpha} X_{\alpha}-2 u_{\kappa} X \tag{1.13}
\end{equation*}
$$

Consequently, $f_{i}^{h}, u_{i}, u^{h}, v_{2}$ and v^{h} are respectively of the form

$$
\left(f_{z}^{h}\right)=\left(\begin{array}{cc}
0 & f_{\kappa}^{\alpha} \tag{1.14}\\
f_{\alpha}^{\nu} & 0
\end{array}\right)
$$

$$
\begin{equation*}
u_{i}=\left(u_{\alpha}, u_{\kappa}\right), \quad u^{h}=\binom{u^{\alpha}}{u^{\kappa}}, \quad v_{2}=\left(u_{\alpha}, u_{\kappa}\right), \quad v^{h}=\binom{-u^{\alpha}}{u^{\kappa}} \tag{1.15}
\end{equation*}
$$

where $u^{\alpha}=u_{\beta} g^{\alpha \beta}, u^{\kappa}=u_{\mu} g^{\kappa \mu}$.
Then, (1.6) and (i.14) imply that

$$
\begin{equation*}
k_{t}^{h} f_{j}^{t}+f_{t}^{h} k_{j}^{t}=0 \tag{1.16}
\end{equation*}
$$

that is, K_{j}^{-h} and f_{3}^{h} anticommute each other.
We also find from (1.6) and (1.15)

$$
\begin{equation*}
k_{j}^{h} u^{j}=-v^{h}, \quad k_{j}^{h} v^{j}=-u^{h} . \tag{1.17}
\end{equation*}
$$

If we differentiate (1.10) covariantly and make use of $\nabla F=0$, then we have ([2], [21])

$$
\begin{align*}
& \nabla_{3} f_{2}^{h}=-g_{32} u^{h}+\delta_{3}^{h} u_{i}-k_{32} v^{h}+k_{j}^{h} v_{2} \\
& \nabla_{3} u_{1}=f_{32}-\lambda k_{32}, \quad \nabla, v_{i}=-k_{3 t} f_{t}^{t}+\lambda g_{3 t} \tag{1.18}\\
& \nabla_{3} \lambda=-2 v_{j}
\end{align*}
$$

Let M be a hypersurface immersed isometrically in $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$ and suppose that M is covered by the system of coordinate neighborhoods $\left\{\bar{V} ; \bar{x}^{a}\right\}$, where here and in the sequel, the indices a, b, c, d, \cdots run over the range $\{1,2, \cdots, 2 n-1\}$.

We put $B_{c}^{h}=\partial_{c} x^{h}\left(\partial / \partial \bar{x}^{c}\right)$. Then B_{c}^{h} are $2 n-1$ linearly independent vectors of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ tangent to M and consequently B_{c}^{h} span the tangent space at each point in M. Denote by N^{h} the unit normal vector field to M and hence $\left\{B_{c}^{h}, N^{h}\right\}$ generates the tangent space at each point in $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.

Since the immersion $i: M \rightarrow S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ is isometric, the induced metric $g_{c b}$ on M is given by

$$
g_{c b}=g_{j} B_{c}^{J} B_{b}^{z} .
$$

Next transforming B_{c}^{j} and N^{J} by f_{j}^{h}, we can express them respectively as follows

$$
\begin{equation*}
f_{3}^{h} B_{z}^{J}=f_{c}^{a} B_{a}^{h}+w_{r} N^{h}, \quad f_{3}^{h} N^{\jmath}=-w^{a} B_{a}^{h} \tag{1.19}
\end{equation*}
$$

where f_{c}^{a} denote the components of tensor field of type (1.1). $w_{c} 1$ form and w^{a} vector field associated with w^{a} given by $w^{a}=w_{c} g^{c a}, g^{c a}$ being the contravariant components of the induced metric tensor $g^{c a}$. We also express the vector field u^{h} and v^{h} respectively as follows

$$
\begin{equation*}
u^{h}=u^{a} B_{a}^{h}+\mu N^{h}, \quad v^{h}=v^{a} B_{a}^{h}+\nu N^{h}, \tag{1.20}
\end{equation*}
$$

where u^{a} and v^{a} are vector fields, μ and ν functions on M.
Applying the operator f_{h}^{k} to (1.19) and (1.20) respectively, and making use of (1.10), we obtain the so-called ($f, g, u, v, u, \lambda, \mu, v$)-structure given by

$$
\begin{align*}
& f_{b}^{e} f_{e}^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{a}, \tag{1.21}\\
& f_{e}^{a} u^{e}=-\lambda v^{a}+\mu w^{a}, \\
& f_{e}^{a} v^{e}=\lambda u^{a}+\nu w^{a}, \tag{1.22}\\
& f_{e}^{a} w^{e}=-\mu u^{a}-\nu v^{a}
\end{align*}
$$

or, equivalently

$$
\begin{align*}
& u_{e} f_{a}^{e}=\lambda v_{a}-\mu w_{a}, \quad v_{e} f_{a}^{e}=-\lambda u_{a}-\nu w_{a}, \quad w_{e} f_{a}^{e}=\mu u_{a}+\nu v_{a} \tag{1.23}\\
& u_{e} u^{e}=1-\lambda^{2}-\mu^{2}, \quad u_{e} v^{e}=-\mu \nu, \quad u_{e} w^{e}=-\lambda \nu \\
& v_{e} v^{e}=1-\lambda^{2}-\nu^{2}, \quad v_{e} w^{e}=\lambda \mu \\
& w_{e} w^{e}=1-\mu^{2}-\nu^{2}
\end{align*}
$$

where u_{a}, v_{a} and w_{a} are 1 -forms associated with u^{a}, v^{a} and w^{a} respectively given by $u_{a}=u^{b} g_{b a}, v_{a}=v^{b} g_{b a}$ and $w_{a}=w^{b} g_{b a}$. By putting $f_{l a}=f_{b}^{c} G_{c a}, f_{c b}$ is skew-symmetric because $f_{,}$is skew-symmetric.

Transvecting the last equation of (1.1) with $B_{c}^{J} B_{b}^{2}$ and substituting (1.20), we get

$$
f_{c}^{e} f_{b}^{d} g_{e d}=g_{c b}-u_{c} u_{b}-v_{c} u_{b}-w_{c} w_{b}
$$

We now put

$$
\begin{align*}
& k_{j}^{h} B_{b}^{J}=k_{b}^{a} B_{a}^{h}+k_{b} N^{h} \\
& k_{j}^{h} N^{\prime}=k^{a} B_{a}^{h}+\alpha N^{h} \tag{1.24}
\end{align*}
$$

where k_{b}^{a} are components of a tensor field of type (1,1), $k_{b} 1$-form, k^{a} a vector field associated with k_{b} and α some function on M.

If we put

$$
k_{b a}=k_{b}^{\mathrm{c}} g_{c a}
$$

then $k_{b a}$ is symmetric because k_{j} is symmetric, also, we see easily verify that $k_{b a}$ is a second fundamental tensor of M with respect to the unit normal D if M is regarded as a submanifold of codimension 3 in $E^{2 n+2}$.

When the action of the tangent space is invariant under the tensor field k_{j}^{2} at every point of M, that is, k_{s} vanishes identically along M, we call M to be k-invaraant. We will see (1.28) which is equivalent to $a^{2}=1$.

When the action of the nomal space is antholomorphic under k_{j}^{2} at every point of M, that is, α vanishes identically along M, we call M to be k-antzholomorphic.

From the first equation of (1.24) we can see that

$$
\begin{equation*}
k_{e}^{e}=-\alpha \tag{1.25}
\end{equation*}
$$

Applying k_{j}^{h} to (1.24) respectively and making use of (1.7) and these equations, we obtain

$$
\begin{align*}
& \dot{k}_{c}^{c} \dot{k}_{e}^{n}=\hat{o}_{c}^{c}-\dot{n}_{c}^{n^{n}} \tag{1.26}\\
& k_{c}^{e} k_{e}=-\alpha k_{c} \tag{1.27}\\
& k_{e} h^{e}=1-\alpha^{2} \tag{1.28}
\end{align*}
$$

Transvecting (1.24) with f_{h}^{k} and taking account of (1.16), (1.19) and (1.24) itself, we find

$$
\begin{align*}
& k_{c}^{e} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=k_{c} w^{a}-w_{c} h^{a} \tag{1.29}\\
& k_{c}^{\epsilon} w_{e}+f_{c}^{e} k_{\epsilon}=-a w_{c} \tag{130}
\end{align*}
$$

From (1.17), (1.20) and (1.24), it follows that

$$
\begin{align*}
& k_{c}^{\epsilon} u_{\epsilon}=-v_{c}-\mu k_{c} . \quad k_{c}^{\epsilon} v_{\epsilon}=-u_{c}-\nu k_{c} . \tag{131}\\
& k_{e} u^{\epsilon}=-\nu-\alpha \mu . \quad k_{e} v^{\epsilon}=-\mu-a \nu . \tag{1.32}
\end{align*}
$$

Denoting by ∇_{c} the operator of the van der Waerden-Bortoloticovariant differentiarion, we can write the equations of Gauss and Weingarten respectively

$$
\begin{equation*}
\nabla_{c} B_{l}^{h}=l_{c b} N^{r h} \quad \nabla_{c} N^{h}=-l_{c}^{a} B_{a}^{h} \tag{1.33}
\end{equation*}
$$

where l_{c}^{b} denote the components of the second fundamental tensor with respect to the unit normal vector N^{h} and $l_{c}^{a}=l_{c b} g^{b a}$. Then, from (1.9)
and the above equations the equations of Gauss and Codazzi are given by respectively

$$
\begin{equation*}
K_{d c b}^{a}=\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}+k_{d}^{a} k_{c b}-k_{c}^{a} k_{d b}+l_{d}^{a} l_{c b}-l_{c}^{a} l_{d b}, \tag{1.34}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{d} l_{c b}-\nabla_{c} l_{d b}=k_{d} k_{c b}-k_{c} k_{d b} . \tag{1.35}
\end{equation*}
$$

By differentiating (1.19), (1.20) and (1.24) covariantly along M and taking account of (1.18), (1.33) and the fact that $\nabla, k_{2}^{h}=0$, we obtain the structure equations on M as follows

$$
\begin{equation*}
\nabla_{c} f_{b}^{a}=-g_{c b} u^{a}+\delta_{c}^{a} u_{b}-k_{c b} v^{a}+k_{c}^{a} v_{b}-l_{c b} w^{a}+l_{c}^{a} w_{b}, \tag{1.36}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} u_{b}=\mu l_{c b}-\lambda k_{c b}+f_{c b}, \tag{1.37}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} v_{b}=k_{c}^{e} f_{e b}-k_{c} w_{b}+\nu l_{c b}+\lambda g_{c b}, \tag{1.38}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} w_{b}=-m \mu g_{c b}-\nu k_{c b}+k_{c} v_{b}-l_{c e} f_{b}^{e}, \tag{1.39}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} \lambda=-2 v_{c}, \nabla_{c} \mu=w_{c}-\lambda k_{c}-l_{c e} u^{\epsilon}, \nabla_{c} \nu=k_{c e} w^{e}-l_{c e} v^{e}, \tag{1.40}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} k_{b}^{a}=l_{c b} k^{a}+l_{c}^{a} k_{b} \tag{1.41}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} k_{b}=-k_{b a} l_{c}^{a}+a l_{c b}, \tag{1.42}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} \alpha=-2 l_{c e} k^{\varepsilon} . \tag{1.43}
\end{equation*}
$$

From these structure equations, we can easily see that the 1 -form k_{c} is the third fundamental tensor when M is considered as a submanifold of codimension 2 immersed in $S^{2 n+1}(1)$.

Finally, we introduce the following theorems for later use.

Theorem A [5]. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ ($n>1$) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. If we take v^{h} as the unit normal vector, M as a submanifold of codimension 3 of a Euclidean space $E^{2 n+2}$ is an intersection of a complex cone with generator C and a $(2 n+1)$-dimensional sphere $S^{2 n+1}(1)$.

Theorem B [5], [13]. Let M be a compact orientable totally geodesic invariant hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$. Then M is $S^{n-1} \times S^{n}$.

Theorem C [5]. Let M be a compact orientable hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>1)$. If $k_{c}^{e} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=0, l_{c}^{e} f_{e}^{a}+f_{c}^{e} l_{e}^{a}=0$ and $\mu\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)$ does not vanish almost everywhere, then M is $S^{n-1} \times S^{n}$.

2. Hypersurface with $\lambda^{2}+\mu^{2}+\nu^{2}=1$

In this section we assume that the ($f, g, u, v, w, \lambda, \mu, \nu$)-structure induced on M satisfies $\lambda^{2}+\mu^{2}+\nu^{2}=1$ and $n>1$.

Using(1.23) and the fact of $\lambda^{2}+\mu^{2}+\nu^{2}=1$, we can easily verify that

$$
\begin{equation*}
\mu u_{b}+\nu v_{b}=0, \lambda u^{a}+\nu w^{a}=0,-\lambda v^{a}+\mu v^{a}=0 \tag{2.1}
\end{equation*}
$$

and hence $w_{e} f_{b}^{e}, u_{e} f_{b}^{e}$ and $v_{e} f_{b}^{e}$ vanish identically on M.
The function ν is a nonzero constant along M. In fact, if ν vanishes on some open set on M, we have $u_{b}=0$ because of the first equation of (1.23) and $1-\lambda^{2}-\mu^{2}=0$. Differentiating this corvariantly and using (1.37) we find

$$
\mu l_{c b}-\lambda k_{c b}+f_{c b}=0,
$$

which implies that $f_{c b}=0$ because and $k_{c b}$ are symmetric and $f_{c b}$ is skew-symmetric with respect to b and c. Contracting (1.21) with respect to a and b, we obtain $n=1$ with the aid of (1.23).

It contradicts $n>1$. Therefore, the function ν takes nonzero value at some point of M.

If we differentiate the first equation of (2.1) covariantly and take the skew-symmetric part, then we obtain

$$
\begin{aligned}
& \left(\nabla_{c} \mu\right) u_{b}-\left(\nabla_{b} \mu\right) u_{c}+\mu\left(f_{c b}-f_{b c}\right)+\left(\nabla_{c} \nu\right) u_{b}-\left(\nabla_{b} \nu\right) u_{c} \\
& +\nu\left(f_{e b} k_{c}^{e}-k_{c} w_{b}-f_{e c} k_{b}^{e}+k_{b} w_{c}\right)=0 .
\end{aligned}
$$

This equation together with (1.29) becomes

$$
\left(\nabla_{c} \mu\right) u_{b}-\left(\nabla_{b} \mu\right) u_{c}+2 \mu f_{c b}+\left(\nabla_{c} \nu\right) v_{b}-\left(\nabla_{b} \nu\right) v_{c}=0,
$$

from which, transvection $f^{c b}$ gives

$$
\mu f_{c b} f^{c b}=0
$$

with the aid of $f_{e}^{a} u^{e}=f_{e}^{u} v^{e}=0$. Thus, we see that the function

$$
\begin{equation*}
\mu=0 \tag{2.2}
\end{equation*}
$$

on M. From (1.23), (2.2) and the assumption $\lambda^{2}+\mu^{2}+\nu^{2}=1$, we have

$$
\begin{equation*}
v_{b}=0, \tag{2.3}
\end{equation*}
$$

which also show that the function λ is a constant because of the first equation of (1.40).

Hence

$$
\nu= \pm \sqrt{1-\lambda^{2}-\mu^{2}}= \pm \sqrt{1-\lambda^{2}}=\text { constant } .
$$

Since ν takes nonzero value at some point of M, we conclude

$$
\begin{equation*}
\nu=\text { constant }(\neq 0) \tag{2.4}
\end{equation*}
$$

Lemma 2.1. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>$ 1) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. Then M is minimal if and only if $\lambda=0$ on M.

Proof. From (1.32), (2.2), (2.3) and (2.4), it follows that

$$
\begin{equation*}
\alpha=0 \tag{2.5}
\end{equation*}
$$

that is, M is k-antiholomorphioc, which together with (1.28) implies

$$
\begin{equation*}
k_{e} k^{e}=1 \tag{2.6}
\end{equation*}
$$

So k^{a} is a unit vector. Moreover, using (1.31). we find

$$
\begin{equation*}
u_{c}=-\nu k_{c} \tag{2.7}
\end{equation*}
$$

because of (2.3).
On the other hand, the second equation of (2.1) together with (2.4) and (2.7) yields

$$
\begin{equation*}
w_{c}=\lambda k_{c} \tag{2.8}
\end{equation*}
$$

Transvecting $g^{c b}$ to (1.38) and taking account of (2.3), (2.6) and (2.8), we find

$$
\begin{equation*}
l=-2 \lambda(n-1) / \nu \tag{2.9}
\end{equation*}
$$

because of (2.4), where we have put

$$
l=g^{c b} l_{c b}
$$

Therefore, we have the lemma.

REMARK 1. If $\lambda^{2}+\mu^{2}+\nu^{2}=1$ on the hypertsurface M, we see that

$$
\mu=0, \nu=\operatorname{constant}(\neq 0), v_{c}=0 \quad \text { and } \quad \alpha=0
$$

And if the function λ vanishes on some open set, then we have $v_{c}=0$ and $\mu=0$. Moreover, if the 1 -form u_{b} is zero on an open set in M, then (1.37) implies $f_{c b}=0$, which contradicts $n>1$ as is shown above.

Theorem 2.2. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. If M is a minimal hypersurface of $(f, g, u, v, w, \lambda, \mu, \nu)$-structure, then M is Sasakian C-Eienstein manifold.

Proof. Since M is minimal, by lemma 2.1, we find

$$
\nu^{2}=1
$$

with the aid of (2.3), or equivalently

$$
\begin{equation*}
\nu= \pm 1 \tag{2.10}
\end{equation*}
$$

From (2.7) and (2.8), it follows that

$$
\begin{equation*}
u_{b}= \pm k_{b}, \quad w_{b}=0 \tag{2.11}
\end{equation*}
$$

Substituting (2.3) and (2.11) into (1,21), we find

$$
f_{b}^{c} f_{e}^{a}=-\delta_{b}^{a}+k_{b} k^{a}
$$

or, equivalently

$$
f_{c}^{d} f_{b}^{e} g_{d \epsilon}=g_{c b}-k_{c} k_{b},
$$

so that these together with (2.6) and the fact of $f_{e}^{a} u^{e}=0$ imply that the aggregate ($f_{c}^{a}, g_{c b}, k_{a}$) defines an almost contact metric structure.

But, from (2.3) and (2.10), the second equation of (1.20) means the vector fields v^{h} is a unit normal vector to M in the direction of N^{h} or the opposite direction of N^{h}.

We will show that M is a Sasakian C-Eienstein manifold in case of $\nu=-1$. Then (2.11) is

$$
\begin{equation*}
u_{b}=k_{b}, \quad w_{b}=0 \tag{2.12}
\end{equation*}
$$

Differentiating (2.12) covariantly and taking account of (1.37), (1.39), (2.2) and (2.3), we get

$$
\begin{align*}
& f_{c b}=-l_{c e} k_{b}^{e}, \tag{2.13}\\
& k_{c b}=l_{c e} f_{b}^{e} . \tag{2.14}
\end{align*}
$$

Also, we have

$$
\begin{equation*}
\nabla_{c} k_{b}=f_{c b} \tag{2.15}
\end{equation*}
$$

Substituting (2.3) and (2.12) into (1.36), we obtain

$$
\begin{equation*}
\nabla_{\mathrm{c}} f_{b}^{a}=-g_{\mathrm{c} b} k^{a}+\delta_{\mathrm{c}}^{a} k_{b} \tag{2.16}
\end{equation*}
$$

Thus, the aggregate ($f_{c}^{a}, g_{c b}, k_{a}$) defines a Sasakian structure.
On the other hand, if we transvect (2.13) with k_{d}^{b}, then we get

$$
\begin{equation*}
l_{c b}=-f_{c e} k_{b}^{\epsilon} . \tag{2.17}
\end{equation*}
$$

Transvecting this with l_{d}^{c} and making use of (2.14), we have

$$
\begin{equation*}
l_{d c} l_{b}^{e}=k_{d \epsilon} k_{b}^{e}=g_{d b}-k_{d} k_{b} \tag{2.18}
\end{equation*}
$$

with the aid of (1.26).
Contracting (1.34) with respect to the indices d and a, using (1.25), (1.26),(2.5), (2.18) and the minimality of M, we have the Ricc tensor of the form

$$
K_{c b}=2(n-2) g_{c b}+2 k_{c} k_{b},
$$

that is. M is C-Einstein.
In case of $\nu=1$, putting ' $k_{a}=-k_{a}$, we can easily verify that ($f_{c}^{a}, g_{c b},{ }^{\prime} k_{a}$) defines a Sasakian C-Einstein structure on M by the same described above. Therefore Theorem 2.2 is completely proved.

Now, let's consider the following inneddings :

$$
M \xrightarrow{i} S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2}) \xrightarrow{i} E^{2 n+2}
$$

that is. M is regarded as a submanifold of codimension 3 in $E^{2 n+2}$ by the imbedding $\tilde{i} \circ \imath$. Putting $Z_{a}=B_{a}^{J} Z_{j}$ and $N=N^{J} Z_{j}$, we see that Z_{a} is vector field on M and N a unit vector field normal to M with respect to the ambient space $E^{2 n+2}$. Denoting by $h_{c b}=h_{j l} B_{c}^{\jmath} B_{b}^{2}$, we see that $l_{c b}, h_{c b}$ and $k_{c b}$ are the second fundamental tensors with respect to the normals N, C, and D respectively. But, as h_{μ} is of the form $h_{\jmath_{2}}=g_{j t}$, we have

$$
\begin{equation*}
h_{c b}=g_{c b} . \tag{2.19}
\end{equation*}
$$

Suppose that M is minimal, we can see that M is a pseudo-umbilical manifold by considering (1.25), (2.5) and (2.19) ([3], [4]). Hence, by making use of Theorem A in section 1, we have:

Theorem 2.3. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ ($n>1$) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. If M is minimal. then M as a submanifold of codimension 3 of a $(2 n+2)$ dimensional Euchdean space $E^{2 n+2}$ is an intersection of a complex cone with generator C and a $(2 n+1)$-dimenstonal unit sphere $S^{2 n+1}(1)$.
(1.38) together with (2.3) implies

$$
\begin{equation*}
\nu l_{c b}=k_{c e} b_{b}^{e}+\lambda\left(k_{c} k_{b}-g_{c b}\right) \tag{220}
\end{equation*}
$$

with the aid of (2.8). From (1.43) with (2.5), it follows that

$$
\begin{equation*}
l_{c e} k^{e}=0 \tag{2.21}
\end{equation*}
$$

Also, making use of (1.30), the first equation of (1.21), (2.2), (2.3) and (2.4), we find

$$
\begin{align*}
& k_{c e} w^{e}=0 \tag{2.22}\\
& k_{c t} u^{e}-0
\end{align*}
$$

Transvecting (2.20) with f_{a}^{b} and making use of (2.22) and (2.23), we have

$$
\begin{equation*}
\nu l_{c e} f_{b}^{e}=-k_{c b}+\lambda f_{c b} . \tag{2.24}
\end{equation*}
$$

Therefore, from (2.20), ti follows that

$$
\begin{equation*}
l_{c e} l_{b}^{\alpha}=-2 \frac{\lambda}{\nu} l_{c b}+\left(g_{c b}-k_{c} k_{b}\right) \tag{2.25}
\end{equation*}
$$

with the aid of $(1.26),(2.4),(2.21)$ and (2.24), which implies

$$
l_{c b} c^{c b}=2(n-1)-2 \frac{\lambda}{\nu} l
$$

or, using (2.9)

$$
\begin{equation*}
l_{c b} l^{c b}=2(n-1)+4 \frac{\lambda^{2}}{1^{2}}(n-1) \tag{2.26}
\end{equation*}
$$

Assuming $\left\|l_{c b}\right\|^{2}-2(n-1) \leqq 0$ at every point of M, we then have $\lambda=0$. By Lemma 2.1, M is minimal.

Thus we have:

Theorem 2.4. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>$ 1) with ($f, g, u, v, w, \lambda, \mu, \nu$)-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. If the square of length of the second fundamental form is not greater than $2(n-1)$ at every point of M, then M is the same type as that of Theorem 2.3.

From (2.25), we have, in the consequence of (2.21),

$$
\begin{equation*}
l_{c e} l_{b}^{e} b_{a}^{b}=l_{c a}-(2 \lambda / \nu) l_{c e} l_{a}^{e} . \tag{2.27}
\end{equation*}
$$

Therefore, by using the Caley-Hamilton's Theorem, we obtain 3 constant principal curvature of M as follows

$$
0.1-\lambda / \nu,-(1+\lambda) / \nu
$$

We now let

$$
\begin{equation*}
X_{1}=1-\lambda / \nu, \quad X_{2}=-(1+\lambda) / \nu . \tag{2.28}
\end{equation*}
$$

We may assume the matrix $\left(l_{c}^{a}\right)$ is digonal without loss of generality

$$
\left(l_{c}^{a}\right)=\left(\begin{array}{lllllllll}
0 & & & & & & & & \\
& \ddots & & & & & 0 & & \\
& & 0 & & & & & & \\
& & & x_{1} & & & & & \\
& & & & \ddots & & & & \\
& & 0 & & & x_{1} & & & \\
& & & & & & & x_{2} & \\
\\
& & & & & & & & \\
& & & \\
&
\end{array}\right)
$$

Let the multiplicities of x_{1} and x_{2} be m and s respectively. Then we have from (2.9) and above expressions;

$$
m x_{1}+s x_{2}=-2 \lambda(n-1) / \nu,
$$

or, using (2.28)

$$
\begin{equation*}
(1-\lambda) m-(1+\lambda) s=-2(n-1) \lambda \tag{2.29}
\end{equation*}
$$

Also, making use of (2.26), we have

$$
\begin{equation*}
(1-\lambda / \nu)^{2} m+(1+\lambda / \nu)^{2} s=2(n-1)+4 \lambda^{2}(n-1) / \nu^{2} \tag{2.30}
\end{equation*}
$$

Thus, from (2.29) and (2.30), it follows that

$$
\begin{equation*}
m=s=n-1 \tag{2.31}
\end{equation*}
$$

If $x_{1}=0$, that is, $\lambda=1$, then the first equation of (1.23) implies

$$
u_{e}=0
$$

because of $\lambda^{2}+\mu^{2}+\nu^{2}=1$. But it is impossible by the Remark 1 . Thus, we have $x_{1} \neq 0$. Similarly, we can see that $x_{2} \neq 0$. And x_{1} and x_{2} are distinct by their own properties.

Hence we have ;
Theorem 2.5. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ ($n>1$) with $(f, g, u, v, w, \lambda, \mu, \nu)$-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. Then we have 3 distinct constant principal curvature with multiplicities $1, n-1, n-1$ respectively.
3. Antiholomorphic hypersurfaces satisfying $k \circ f+f \circ k=0$

Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ such that $k_{c}^{e} f_{e}^{a}+$ $f_{c}^{e} k_{e}^{a}=0$ holds every point of M or, equivalently

$$
\begin{equation*}
k_{c e} f_{b}^{e}=k_{b e} f_{c}^{e} \tag{3.1}
\end{equation*}
$$

Then (1.29) reduces to

$$
\begin{equation*}
k_{c} w_{b}-k_{b} w_{c}=0 \tag{3.2}
\end{equation*}
$$

Transvecting (3.1) with $f^{c b}$ and taking account of (1.21), (1.22), (1.23) and (1.30) -(1.32), we find

$$
\begin{equation*}
\alpha\left(\mu^{2}+\nu^{2}\right)+2 \mu \nu=0 \tag{3.3}
\end{equation*}
$$

because the tensor $k_{c e} f_{b}^{e}$ is symmetric
If we transvect (3.1) with k_{d}^{c} and use (1.26), we have

$$
f_{b d}-k_{d}\left(f_{b e} k^{e}\right)=k_{b e} k_{d}^{c} f_{c}^{e},
$$

as taking the symmetric part with respect to indices b and d,

$$
k_{d}\left(f_{b e} k^{e}\right)+k_{b}\left(f_{d e} k^{e}\right)=0
$$

because of skew-symmetric tensor $f_{\mathrm{c} b}$.
Transvecting this with w^{d} and making use of (1.22) and (1.32), we obtain

$$
\theta f_{b e} k^{e}+\left\{\alpha\left(\mu^{2}+\nu^{2}\right)+2 \mu \nu\right\}=0
$$

which together with (3.3) gives

$$
\begin{equation*}
\theta f_{b e} k^{t}=0 \tag{3.4}
\end{equation*}
$$

where, here and in the sequel we have put

$$
\begin{equation*}
\theta=k_{\epsilon} w^{e} . \tag{35}
\end{equation*}
$$

On the other hand, we easily verify from (3.2) that

$$
\begin{equation*}
\left(1-\mu^{2}-\nu^{2}\right) k_{c}=\theta w_{c},\left(1-a^{2}\right) w_{c}=\theta k_{c}, \tag{36}
\end{equation*}
$$

where we have used (1.23) and (1.28).
If the function $\left\|k_{b e} f^{e}\right\|^{2}$ does not vanish at some point p of M, then we see from (3.4) that $\theta(p)=0$ and hence $\left(1-\alpha^{2}\right) w_{c}=0$ at the point. So we have $w_{c}=0$ at $p \in M$. Thus (1.30) leads to $f_{c e} k^{c}=0$, which is contradictory. Consequently we have

$$
f_{b e} k^{e}=0
$$

on M. hence (1.30) becomes

$$
\begin{equation*}
k_{c e} w^{e}=-\alpha w_{c} \tag{7}
\end{equation*}
$$

Applying the expression $f_{b e} k^{e}=0$ with f_{a}^{b} and using (1.21) and (1.32). we find

$$
k_{a}=\theta w_{a}-(\mu+\alpha \nu) v_{a}-(\nu+\alpha \mu) u^{a}
$$

which together with (3.6) gives

$$
\begin{equation*}
\left(\mu^{2}+\nu^{2}\right) k_{c}+(\mu+\alpha \nu) v_{c}+(\nu+\alpha \mu) u_{c}=0 \tag{3.8}
\end{equation*}
$$

If we transvect (3.8) with u^{c} and v^{c} sucessively and consider (1.23), (1.32) and (3.3), we get

$$
\begin{equation*}
(\nu+a \mu)\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)=0,(\mu+\alpha \nu)\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)=0 \tag{3.9}
\end{equation*}
$$

Therefore, (3.8) implies

$$
\begin{equation*}
\left(\mu^{2}+\nu^{2}\right)\left(1-\alpha^{2}\right)\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)=0 \tag{3.10}
\end{equation*}
$$

because of (1.28).
Since we have from (3.3)

$$
\begin{equation*}
(\nu+a \mu)^{2}+(\mu+\alpha \nu)^{2}=\mu^{2}+\nu^{2}+2 \alpha \mu \nu \tag{3.11}
\end{equation*}
$$

(3.9) is turned out to be

$$
\begin{equation*}
\left(\mu^{2}+\nu^{2}+2 \alpha \mu \nu\right)\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)=0 \tag{3.12}
\end{equation*}
$$

Differentiating (3.12) covariantly and considering the orginal expression, we find

$$
\left(1-\lambda^{2}-m u^{2}-\nu^{2}\right) \nabla_{c}\left(\mu^{2}+\nu^{2}+2 a \mu \nu\right)=0
$$

If we suppose that the function $\mu^{2}+\nu^{2}+2 \alpha \mu \nu$ is not constant at some point of M, then it means

$$
\lambda^{2}+\mu^{2}+\nu^{2}=1
$$

at this point. Hence, due to Remark 1 in section 1, we see that $\mu=0$ and $\nu=$ constant at the point. It contradicts the fact that the function $\mu^{2}+\nu^{2}+2 \alpha \mu \nu$ is not constant at the point.

Developed above, we have
Lemma 3.1. Let M be a hypersurface satisfying (3.1) of $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$. Then we have

$$
\lambda^{2}+\mu^{2}+\nu^{2}=1 \quad \text { or } \quad \mu^{2}+\nu^{2}+\alpha \mu \nu=0
$$

on M.

We now prove
Lemma 3.2. Under the same assumptions as those stated in Lemma 3.1, M is k-antiholomorphic if and only if $\lambda^{2}+\nu^{2}=1$ holds at every point of M.

Proof. If M is k-antiholomorphic, that is , α vanishes identically, then (3.12) yields

$$
\begin{equation*}
\left(\mu^{2}+\nu^{2}\right)\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)=0 . \tag{3.13}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
k_{e} k^{e}=1, \quad l_{c e} k^{e}=0 \tag{3.14}
\end{equation*}
$$

because of (1.28) and (1.43).
We now suppose that the function μ and ν vanish at some point p of M, then (3.6) leads to

$$
\begin{equation*}
k_{c}=\theta w_{c}, \quad w_{c}=\theta k_{c} \tag{3.15}
\end{equation*}
$$

Thus, it follows that $\theta^{2}=1$ because k^{a} is a unit vector. Since $\mu(p)=0$, the second equation of (1.40) means

$$
l_{c e} u^{e}=(1-\theta \lambda) w_{c}
$$

with the aid of (3.15).
Transvecting this with w^{c} and taking account of (3.14) and (3.15) and the fact that w^{a} is a unit vector, we find $\theta \lambda=1$ and consequently $\theta=\lambda=$ constant on the set of such points. Hence, the first equation of (1.40) means $v_{c}=0$ at the point of M. Therefore, the fact

$$
v_{\mathbf{e}} v^{\epsilon}=1-\lambda^{2}-\mu^{2}-\nu^{2}
$$

implies that $1-\lambda^{2}=0$ at the point. So, using $\mu(p)=0$, we see that $u_{c}=0$ at $p \in M$. Due to Remark 1, it is contrdictory. Thereby (3.13) reduces to $\lambda^{2}+\mu^{2}+\nu^{2}=1$ on M. So using Remark 1 again, it means $\lambda^{2}+\nu^{2}=1$ on M.

Conversely, if $\lambda^{2}+\nu^{2}=1$ holds on M, then we have $v_{c}=0$. Thus the first expression of (1.32) gives

$$
\begin{equation*}
\mu+\alpha \nu=0 \tag{3.16}
\end{equation*}
$$

If $\mu^{2}+\nu^{2}+2 \alpha \mu \nu=0$ holds on M, then (3.16) yields $\mu^{2}=\nu^{2}$. So we have $\lambda^{2}+\nu^{2}=1$. Hence, the first relationship of (1.23) means $u_{c}=0$, which is contradictory.

Therefore, owing to Lemma 3.1, we see that

$$
\lambda^{2}+\mu^{2}+\nu^{2}=1
$$

holds on M. From Remark 1 in section 2, it follows that

$$
\mu=0, \quad \nu=\operatorname{constant}(\neq 0) .
$$

Thus (3.16) implies that the function α vanishes identically. This completes the proof of the Lemma.

According to Theorem 3.3, Theorem 3.4 of [5] and Lemma 3.2, we have

Theorem 3.3. Let M be a k-antiholomorphic hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>1)$ satisfying

$$
k_{c}^{e} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=0
$$

If we take v^{h} as the unit normal vector, then M is a minimal Sasakian C-Einstein manifold.

Theorem 3.4. Under the same assumptions as those statded in Theorem 3.3, M as a submanifold of codimension 3 of a Euclidean $(2 n+2)$-space, is an intersection of a complex cone with generator C and a $(2 n+1)$-sphere $S^{2 n+1}(1)$.

Combining Theorem 2.2, Theorem 2.3. Theorem 2.4 and Lemma 32 , we conclude

Theorem 3.5. Let M be a k-antiholomorphic hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>1)$ satisfying $k_{c}^{e} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=0$ If M is minimal (or the square of length of the second fundamental tensor of M is not greater than $2(n-1)$ at every point of M), then M is the same type of Theorem 3.3 and Theorcm 3.4.

Combining Theorem 2.5 and Lemma 3.2, we have
Theorem 3.6. Let M be a k-antiholomorphic hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>1)$ satisfying $k_{c}^{\epsilon} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=0$. Then the second fundamental tensor of M has three distinct constant principal curvatures $0 .(1-\lambda) / \nu,-(1+\lambda) \nu$ with multiphcities $1, n-1, n-1$ respectively:

References

1. Blair,D E , G D.Ludden and K Yano, Introduced structure on subamntfolds, Kodar Math Sem Rep 22 (1970), 188-198
2 Blan, D E,G D.Ludden and K.Yano, Hypersurface of odd-dzmensıonal spheres, J Diff Geo 5 (1971), 479-486.
3 Chen, B Y., Pseudo-umbilical submanifolds of a Rzemannian manzfold of constant curvature H, J Math.Soc Japan 25 (1913), 106-114.
4 Chen, B Y. and K.Yano, Pseudo-umbulical submantfolds in a Riemannzan mantfold of constant curvature, Differential Geometry, in honor of K Yano,Kınokuniya, Tokyo, 1972, pp 61~71
2. Eum, S-S,U-H.Ki and Y.H Kim, On hypuriourfacs of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$, J Korean Math Soc. 18 (1982), 109-122.
6 Ki,U-H, A certain submanifold of codimension 2 of a Kahlerian manifold, J Korean Math Soc 8 (1971), 31-37.
i Kı,U-H , On generic submanıfolds with antznormal structure of an odd-dimenstonal sphere, Kyungpook Math.J 20 (1980), 217-229.
 Rep 26 (1975), 160-175
$9 \mathrm{Ki}, \mathrm{U}-\mathrm{H}$ and H.B Suh, On hypersurfaces with normal ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure $1 n$ an even-dimenszonal sphere, Kodai Math.Sem Rep 26 (1975), 424-437
3. Ki,U-H.and J S Pak, Generac submanrfolds of an even-dimensional Euchdean space, 1 Diff. Geo 16 (1981), 293-303
11 Ki,U-H J S Pak and Y H Kim, Generic stibmanafolds of complex projective spaces with parallel mean curvature vector, Kodai Math.J 1 (1981), 137-151
12 Kı.U-H. and Y.H.Kım, Generic submanıfolds with parallel mean curvature vector of an odd-demenstonal sphere, Kodaı Math.J. 4 (1981), 353-370.
13 Ludden, G D. and M Ohumura, Some integral formulas and their apphcations to hypersurfaces of $S^{n} \times S^{n}$, J.Diff.Geo 9 (1974), 617-631.
14 Matsuyama, Y, Invarzant hypersurfaces of $S^{n} \times S^{n}$ with constant mean curvature, Hokkaido Math. 5 (1976), 210-217
4. Obata, M, Certatn conditions for a Remanzan manifold to be zsometric wuth a sphere, J Math.Soc Japan (3)14 (1962), 333-340.
16 Pak, E.U-H Ki,J S Pak and Y.H Kim, Generic submanifolds with normal structure of an odd-dimensional sphere (I),(II), J of Korean Math Soc. (1983)
17 Yano K., Ou (f.g, u,v, λ)-structure induced on a hypersurfaces of an odd-dzmenszonal sphere, Töhoku Math.J 23 (1971), 671-679
18 Yaво,K, Differentzal geometry of $S^{n} \times S^{n}$, J.Diff Geo 8 (1973), 181-206.
19 Yano,K and S Ishihara, Pseudo-umblzcal submanyfolds of codimension 2, Kodal Math Sem Rep 21 (1969), 365-382.
20 Yano.K and M Okumura, On (f, g, u, v, λ)-structure, Kodai Math Sem Rep 22 (1970), 401-423
21 Yano.K and M Okumura, On normal $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ on submantfolds of codimension 2 in an even-dzmensıonal Eucladean space, Kodai Math Sem.

Rep. 23 (1971), 172-197.
22. Yano,K. and \mathbf{U}-H. Kı, $O n(f, g, u, v, w, \lambda, \mu, \nu)$-structure satesfyıng $\lambda^{2}+\mu^{2}+\nu^{2}=1$, Kodaı Math Sem. Rep 29 (1978), 285-307
23 Yano,K and M Kon, Generzc submanıfolds of Sasakıan manzfolds, Kodai Math J. 3 (1980), 163-196

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

