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STRUCTURE OF A HYPERSURFACE IMMERSED 
IN A PRODUCT OF TWO SPHERES

Shin,Yong Ho

O.Introduction

Submanifolds immersed in a sphere or a product of spheres have 
been objects of study in differential geometry. In particular, real hyper­
surfaces of a sphere could be found out their intrintic character under 
some specific conditions. Recently, many authors ([7],[10],[11],[12],[16], 
[2이) have researched the so-called gei^ric submanifolds^ia 
ian manifold which are general notions real hypersurfaces of a Rie- 
mannian manifold Among them, the study on generic submanifolds 
of an odd-dimensional sphere or an even-dimensional Euclidean space 
was carried out succcessfully. But, the investigation about generic sub­
manifolds of an. even-dimensional sphere or a product of two spheres 
Sn x Sn has not been reported yet.

Of course, real hypersurfaces of Sn x Sn a product of two spheres 
have not had nice results as those of a sphere even though several 
geometers examined real hypersurfaces of Sn x Sn ([5],[13],[14]).

So, many geometers are desiring earnestly to suggest the epoch- 
making models of real hypersurfaces immersed in Sn x Sn.

By the way, K.Yano and M.Okumura [20] defined the v, A)- 
structure induced on submanifolds of codimension 2 of an almost Her­
mitian manifold or real hypersurfaces of an almost contact metric man­
ifold, which is a very useful method in studying Riemannian manifolds 
admiting that structure. Also, Yano[18] studied the differential ge­
ometry of Sn x Sn and prove that the (/, g. u, v, A)-structure is nat­
urally induced on Sn x S" as a submanifold of codimension 2 of a 
(2z? + 2)-dimensional Euclidean space or a real hypersurface of (2n + l)- 
dimensional unit sphere S2”+i(l).
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G.D. Ludden and 0kumura[13] stuided the so-called invariant hy­
persurface of Sn x Sn, which is derived from the almost product struc­
ture defined by its projection operators on Sn x S”.

On the other hand, it is well-known that the so-called (/, g、u. v, A, 
z/)-sructure is naturally induced on submanifolds of codimension.

3 of an almost Hermitian manifold or real hypersurfaces of a manifold 
with (/, u, v, A)-structure (cf.[8],[9],[22]). Therefore, 호eal hypersur­
faces immersed in Sn x Sn admit the the (/, u, v, A)-structure de­
duced from the (/, u, v, A)-structure defined on Sn x Sn. From this 
point of view, S.-S.Eum, U-H.Ki and Y.H.Kim [5] researched partially 
real hypersurfaces of Sn x Sn by using the concept of fc-invariance.

The purpose of the present paper is devoted to study some intrinsic 
characters of hypersurfaces immersed in Sn x Sn,characterize global 
properties of them by using some intergrable condition and prove that 
the generic submanifold of Sn x Sn with the almost contact metric 
structure is the real hypersurface.

In section 1, we recall the intrinsic properties of Sn( 1 /\/2) X (1 /\/2) 
and have some algebraic relationships and structure equations of hy­
persurfaces of Sn(l/y/2) x S"(l/v分).

In section 2, we determine mai외y a minimal hypersurface of Sn(l/ 
xSn(l/\/2) satisfying A2 + ju2 4- i/2 = 1.
In section 3, we find the necessary and sufficient condition for a 

hypersurface of Sn x Sn being fc-antiholomorpliic and prove its global 
properties.

1.Structure equations of hypersurfaces of Sn(l/\/2)x Sn(l/^2)

Let be an (n +1 )-dimensional Euclidean space and 0 the orgin
of the Cartesian coordinate system in En+1z and denote by X the 
position vector of point p in E"*' relative to the orgin 0.

We consider a hypersurface Sn(l/\/2) in E7나' with center at the 
orgin 0 and radius l/y/2. Suppose that Sn(l/\/2) is covered by a 
system of coordinate neighborhoods {U;whe호e here and in the 
sequel the indices a,[3、，*知•…run over the range {1,2, * • • ,n}. Then 
X • X = 1/2 for the position vectoi X of the point Sn(l/y/2)lf where 
the dot means the usual inner product of En~^1.
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Putting Xa = dQX, Mi = —\/2X, = XQ • Xp, where da =
切&*、and denoted by Va the operator of the covariant differentiation 
formed with the fi호st fundamental form g°心 the equations of Gauss and 
Weingarten are respectively given by

(1-1) ▽aXg = \f2ga^Mx, VaAfj = —\/2Xa.

Similary, an n-dimensional sphere Sn(l/\/2) is also assumed to be 
covered by a system of coordinate neighborhoods {V;yK}. Then the 
position vector Y of a point of Sn(l/V富)satisfies Y-Y — 1 /2. Here and 
in the sequel, the indices k, p, • * ■ run over the range (n + 1, • • - , 2n). 
Now. we put Yk — dKY. M2 — 汶、g% = K •匕(九=d/dyK} and 
denoted VK the operator of covariant differentiation formed with the 
first fundamental form g拭卩，of Sn(l/>/2). Then the equations of Gauss 
and Weingarten are respectively given by

(1.2) = V2gKflM2, VKAf2 = -v^K-

Thus we give the differential structure to Sn(l/、［秘 x Sn(l/\/2) nat­
urally as a product manifold which is covered by a system of coordinate 
neighborhoods {U x V; (xa, yK)).

Therefore as a submanifold of codimension 2 in a (2^+2)-dimensional 
Euclidean space E2n+2,Sn(l/\/2) x Sn(l/\/2) has a position vector Z 
of a point in Sn(l/V2) x such that

W),
where, here and in the sequel, the indices 打」釦…run over the
range (1,2,…+ 1, ••- , 2n}. Then we have

Z • Z = X • X + Y ・ F = 1

and hence we see that 5，n(l/\/^) x Sn(l/\/2) is a hypersurface of a 
(2?? + l)-dimensional unit sphere S2n+1(l) in E2n+2.

Letting Zt — dtZ and gJt = Zj * ZT, we get



90 Shin,Yong Ho

(1-3) g3t =
矿邳

0 A)
g七 g展 and g아' are contravariant components of g押 and gKp, 
respectively.

Letting

(1-4)
/JX(k)、｝ 

k *(必)丿'I -")丿' D =

we can easily see that

ZlC = 0,ZtD=0,CD = Q.CC = l,DD = l

xS"(l/\庖)as a submanifold of codimension 2 in E2n+2.
Let hjt and kjt be the components of the second fundamental ten­

sors respectively relative to the unit normals C and D to S"(l/\/2) x 
S”(l/w②.Then the equations of Gauss for Sn(l/\/2) x S"(1/a庖)can 
be given of the form

= hJtC + kJtD

From (1.1) and (1.2), h3t and k小 are of the form 

(1.5) （妇）=（啰 0

and consequently we find

B）吋=（? %），（終）=（节圣）,

where h" = h3hght and k；=如人时七



Structure of a Hpersurface immersed in a Product of two Spheres 91

It follows from thr first equation of (1.5) and the second equation of
(1.6) that

(1.7) h}l = g}l, - 0, k*kf = 8^.

Hence, we see that fcj determines an almost product syructure on 
Sn(l/V2) X ②.

On the other hand, as the first fundamental from has the form 
(1.3), the Chinstoffel symbols { . " . } form with gJt are all zero but

3 七
{ * q} and { " }.

7 p n v
Using this fact and differentiating the second fundamental tensor 蚌 

covariantly, we have

▽M? =0.

Denoting by l3 the third fundamental tensor relative to the normals 
C and D、we can write

(1.8) V7C = -」岫 + l3D. = -k}Zt - l3C.

From (1 4),(1.6) and (1.8) it follows that (cf. [3],[19])

l3 = 0.

Consequently, the equations of Gauss and Weingarten fb Sn(l/y/2)x 
S"(l/w② regared as a submanifold of co dimension 2 in E2n~^2 become 
respectively

▽jZz = h}lC + kj」)、▽jC = —Z}Dy WjD = —fcj Zt,

Thus we can deduce the so-called equations of Gauss

(1.9) K 歸—知 + —
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Kg, being the components of the curvature tensor of S”(l/v② X 
5n(l/x/2).

But, a (2n + 2)-dimensional Euclidean space E?2n+2 admits a natural
Kaehler structure

where Ij denotes the identity matrix of degree ?? + 1. It follows that 
F2 = -Z, FU FV = U V for arbitaiv vectors U and V in E&+2 j 
being the identity transformation in Linear transforms Hon of
Zj. C and D by f give respectively

(1.10) FZj = fjZt + UjC + VjD、FC =—护 Zf + AD,
FD = f 2 - AC,

where f? are components of a tensor field of type (1.1), ut and vt those 
of 1-forms and A a function on Sn(l/\/2) x Sn(l/\/2), and uh and vh 
are the associated vector fields with u, and respectively given by 
ub = uzglh and vh — u*g나'.

Applying F to (1.10) respectively, we get the so-called A)-
structure given by ([1], [2], [6], [17], [18], [20],)

fjft = 一 8： + UjU1 + Vj vl,
(] ]]) u，f； = X勺, 也,t = _)사, Vtf* = -Atij, 

f^vi — Xuh u* = — 1 — A2, utvf = 0,

fjfidts = g却 ~ UjUi — vt.

It is easily verified that = fj9a is skew-symmetric in j and ?.
By letting J — oc and j = k in (1.10), we find respectively

d-12) 理=0, ua + vQ = 0, XQ=f^YK-2uaY

and
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(1.13) - 0, uK = vK, Yk — - 2ukX.

Consequently, J/1, and vh are respectively of the form

(E) (*)=(£ f)

(1.15)
Z X h ( UQ\ / \ h / 一护、ut = (urwq〉u =(护 丿， s = (ua, uK), 护 丿,

where ua = "g어'W = t七矿卩七
Then, (i.6) and (i.14^ imply that

(1.16) 縁f；+”W=0, '

that is, Kj and f： anticommute each other.
We also find from (1.6) and (1.15)

(1.17) 顿=k 抑=~uh.

If we differentiate (1.10) covariantly and make use of VF = 0, then 
we have ([2]、[21])

— kjiVh +

(L18) \7必 = fji 一 시如,Vg = -如决 + 為*
Vj A = — 2vj.

Let M be a hypersurface immersed isometrically in Sn(l/\/5) x 
Sn(l/\/2) and suppose that M is covered by the system of coordi­
nate neighborhoods {V;xa}, where here and in the sequel, the indices 
a, … run over the range (1,2, - - - ,2n — 1}.
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We put B亨=dcxh(d/dxc). Then B, axe 2n —1 linearly independent 
vectors of Sn(l/\/2) x Sn(l/\/2) tangent to M and consequently B# 
span the tangent space at each point in M. Denote by Nh the unit 
normal vector field to M and hence {B^Nil} generates the tangent 
space at each point in Sn(l/y/2) x Sn(l/\/5).

Since the immersion i :M —>Sn(l/v^) xSn(l/v^2) is isometric, the 
induced metric on M is given by

9cb = 9”即3j.

Next transforming B* and N3 by we can express them respec­
tively as follows

(L19) *玖=+ weN\ f：N)= -waB^

where denote the components of tensor field of type (1.1). wc 1- 
fbnn and tua vector field associated with wa given by wa = wcgca gca 
being the contravariant components of the induced metric tensor gca. 
We also express the vector field uh and vh respectively as follows

(L20) uh = uaB^ + 以V 气 vh = + vNh,

where ua and va are vector fields,卩 and v functions on M.
Applying the operator 代 to (1.19) and (1.20) respectively, and mak­

ing use of (1.10), we obtain the so-called (/, u, v, A,i/)-structure 
given by

(1.21) 琮建=一峭+凱犷+ 岫 + w6w\ 
f-u^ = -Xva+iiw\

(1.22) />e = Xua + 瑚， 

f^w€ =—印/ — vva

or, equivalently
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(1.23)
Uefa =人d 一 俱為，。出=~AlZa 一 VWa. Wcf^ = fiUa + UVa.
UeUe = 1 ~ A2 — “2, UeVe = _“匕 uew€ = —Az/,
veve — 1 — A2 — I/2, v€wc = 사卜

wewe = 1 — /z2 — i/2

where iza, va and wa are 1-forms associated with ua, va and u)a respec­
tively given by ua = ubgba, va = vbgba and wa = wbgba. By putting 
f^a = 比gg 加 is skew-symmetric because is skew-symmetric.

Transvecting the last equation of (1.1) with and substituting 
(1.20), we get

fcfbded = Qcb - UcUb - VcUb - WcWb.

We now put

哼=曾+、’

k^N3 = kaB^+aNh,

where kf are components of a tensor field of type (1,1),屁 1-fbrm, ka 
a vector field associated with and a some function on M,

If we put 

then kba is symmetric because % is symmetric, also, we see easily 
verify that k% is a second fundamental tensor of M with respect to 
the unit normal P if M is regarded as a submanifold of codimension 3 
in. E*+2

When the action of the tangent space is invariant under the tensor 
field *肖 at every point of Af, that is, vanishes identically along M. 
we call M to be k-invarzant. We will see (1.28) which is equivalent to 
eV = 1.

When the action of the nomal space is ant iholomoq)hic under k； at 
every point of Af, that is , a vanishes identically along M、we call M 
to be k-antzholomorphic.
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From the first equation of (1.24) we can see that

(1.25) 峠=—a.

Applying k： to (1.24) 흐espLctively and making use of (1.7) and these 
equations, we obtain

(1.26) 聲以=＜結一；c履，

(1.27) kc = —akc.

(1.28) keke = 1 - a2.

Transvecting (1.24) with and taking account of (1.16), (1.19) and
(1.24) itself, we find

(1.29) 矿尺+以处=私妒一迪ML
(1 30) A*^we + ke = — awc.

From (1.17), (1,20) and (1.24), it follows that

(1 31) ^cuc = —& —卩2、 k^ve = —uc 一 vkc.
(1.32) keu€ = —p — a fi. keve = 一 r — av.

Denoti口응 by Vc the operatoi of the van der Waerden-Bortolotti co­
variant differentiarion, we can write the equations of Gauss and Wein­
garten lespectively

(1.33) = lcbN\ VcNh = *二

where denote the components of the second fundamental tensor with 
respect to the unit normal vector Nh and 1% = lcb9ba • Then, from (1•이
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and the above equations the equations of Gauss and Codazzi are given 
by respectively

(1.34)
I^dcb = ^d9cb — ^c9db + 1이沁 — k辭 kdb + ^cb —加

(1.35) = 加止아》—

By differentiating (1.19), (1.20) and (1.24) covariantly along M and 
taking account of (1.18), (1.33) and the fact that = 0, we obtain 
the structure equations on M as follows

(1.36)
▽c片 = —gcbM히 + ~ 代시甘 + —，새代£产 十 如

(1.37)
▽ = 卩‘1시〉— 시】사, + fcb^

(1.38)
▽c 处 = eb — kcW(f + 아,시)+

(1.39)
Vcw6 = 一m卩gm 一 아沁 + k*b - Icef，

(1.40)
▽ c人 = 一▽ 아£ = 也c — 人*;° i , ▽ eV = kccw ― ,

(1.41)
▽ c 碇=icbka +

(1-42) a
▽사姑 = —k})a lc + al 사，,

(1.43)
Vcct — —2lceke.

From these structure equations, we can easily see that the 1-form kc 
is the third fundamental tensor when M is considered as a submanifold 
of codimension 2 immersed in S호"+】(1).

Finally, we introduce the following theorems for later use.
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THEOREM A [5]. Let M be a hypersurface of Sn( 1 /\/2) x Sn( 1 / v^) 
(n > 1) with (/, u, v, w, A, /i, i/)-structure satisfying A2 + /z2 + = 1.
If vre take vh as the unit normal vector, M as a submanifold of codi~ 
mension 3 of a Euclidean space F2n+2 is an intersection of a complex 
cone with generator C and a (2n + 1)-dimensional sphere 52n+1(l).

THEOREM B [5], [13]. Let M be a compact orientable totally ge­
odesic invariant hypersurface of Sn(l/\/2) x 5，n(l/v/2). Then M is 

x Sn.

THEOREM C [5]. Let M be a compact orientable hypersurface of 
S“(l/、/3)匕史(l/\/2) (n > 1). Ifk^ + = 0, 忙 + f謨=0
and 弘(1 — 人허 一 #2 — ^2)does not vanish almost everywhere, then M is

x Sn.

2. Hypersurface with X2 + ft2 + i/2

In this section we assume that the (/, g, u, v,泌，A, /z, p)-structure in­
duced on M satisfies \2 + fi2 + u2 — 1 and n > 1.

Using(1.23) and the fact of A2 + /z2 + u2 = 1, we can easily verify 
that

(2.1) 四疋 + UVb = 0, Aua + VW0, = 0, ~Ava + 卩壮)a = 0

and hence wef^uef^ and vanish identically on M.
The function u is a nonzero constant along M. In fact, if v vanishes 

on some open set on Af, we have = 0 because of the first equation 
of (1.23) and 1 — A2 — /z2 = 0. Differentiating this corvariantly and 
using (1.37) we find

卩"cb — 시，cb + fcb = 0*

which implies that 僞 = 0 because and kcb are symmetric and fcb 
is skew-symmetric with respect to b and c. Contracting (1.21) with 
respect to a and 6, we obtain n — 1 with the aid of (1.23).

It conti adicts ?? > 1. Therefore, the function u takes nonzero value 
at some point of ML
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If we differentiate the first equation of (2.1) covariantly and take the 
skew-symmetric part, then we obtain

(▽아，)电 一 (Vfe^)uc + /j,(fcb 一 心 + (U小b - (V6p)uc
+ U(febkc — — fec*b + *b빈사 = 0-

This equation together with (1.29) becomes

('▽아L)Ub 一 (▽")" + 2｝丄feb + (▽"/)% — (Vfez/)vc = 0,

from which, transvection fcb gives

Mcb 扩=0

with the aid of 甘 = =h(J, "Thus, we see that the function

(2.2) 卩=0

on M. From (1.23), (2.2) and the assumption A2 + 4- v1 = 1, we
have

(2.3) 处=0,

which also show that the function A is a constant because of the first 
equation of (1.40).

Hence

v — ±\/l — A2 — fi2 — ±\/l — A2 = constant.

Since v takes nonzero value at some point of M. we conclude

(2.4)) v = constant^ 0)
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LEMMA 2.1. Let M be a hypersurface ofSn(l/\/2) x Sn(l/\/2)(n > 
1) with (/, g、tz, v, w, A, v)-structui*e satisfying A2+a«2+i/2 = 1. Then 
M is minimal if and only if A = 0 on M.

Proof, From (1.32), (2.2), (2.3) and (2.4), it follows that

(2.5) a = 0,

that is, M is fc-antiholomorphioc, which together with (1.28) implies

(2.6) k€ke = 1.

So ka is a unit vector. Moreover, using (1.31). we find

(2.7) uc = 一 ukc

because of (2.3).
On 나1。other hand, the second equation of (2.1) together with (2.4) 

and (2.7) yields

(2.8) wc = Xkc.

Transvecting gcb to (1.38) and taking account of (2.3), (2.6) and
(2.8) , we find

(2.9) Z = —2 시”—l)/u

because of (2.4), where we have put

I =矿*1也

Therefore, we have the lemma.
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REMARK 1. If A2 + /I2 + V2 = 1 on the hypertsurface M, we see 
that

= 0, v = constant^ 0), vc = 0 and a = 0.

And if the function A vanishes on some open set, the교 we have 程 = 0 
and 〃=0. Moreover, if the 1-fbrm is zero on an open set in M. 
then (1.37) implies = 0, which contradicts n > 1 as is shown above.

THEOREM 2.2. Let M be a hypersurface of S"(l/\庖)x Sn(l/x/2) 
with (/, g、ti, v, w, A,卩、v)-structure satisfying A2 + ^z2 + i/2 = 1. If M 
is a minimal hypersurface of (J, g, % v, w, A, /i, i/)-structure, then M is 
Sasakian C-Eienstein manifold.

Proof. Since M is minimal, by lemma 2.1, we find

j = 1

with the aid of (2.3), or equivalently

(2.10) 〃 = ±1.

From (2.7) and (2.8), it follows that

(2.11) Ufe = 土如， Wft = 0.

Substituting (2.3) and (2.11) into (1,21), we find

们岩=一株+M此

or, equivalently

fc fb 9de = 9cb —"”札

so that these together with (2.6) and the fact of f^ue = 0 imply that 
the aggregate 知)defines an almost contact metric structure.

But, from (2.3) and (2.10), the second equation of (1.20) means the 
vector fields vh is a unit normal vector to M in the direction of Nh or 
the opposite direction of Nh.



102 Shin,Yong Ho

We will show that M is a Sasakian C-Eienstein manifold in case of 
v = —1. Then (2.11) is

(2.12) u(, = Wb = 0.

Differentiating (2.12) covariantly and taking account of (1.37), (1.39), 
(2.2) and (2.3), we get

(2.13) fcb = —leek，

(2.14) kcb = 5

Also, we have

(2.15) Vckb = fcb

Substituting (2.3) and (2.12) into (1.36), we 시)tain

(2.16) ▽£ = —gc" +災知

Thus, the aggregate (/匕 g成 如)defines a Sasakian structure.
On the other hand, if we transvect (2.13) with k頫 then we get

(2.17) leb = ~/ce ^6-

Transvecting this with and making use of (2.14), we have

(2.18) IdJl = W年=9db — kdM

with the aid of (1.26).
Contracting (1.34) with respect to the indices d and a, using (1.25), 

(1.26),(2.5), (2.18) and the minimality of M. we have the Rice tensor 
of the form
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I\cb ~~ 2(n — 2)g시) + 2辰止方,

that is , M is C-Einstein.
In case of v = 1, putting fka = — fca, we can easily verify that 

(/c ^cb/ kQ defines a Sasakian C-Einstein structure on M by the same 
described above. Therefore Theorem 2.2 is completely proved.

Now. let's consider the following imbeddings :

M 4 Sn(l/V2) x Sn(l/v^)二 E&+2

that is, M is regarded as a submanifold of codimension 3 in £?2n+2 
by the imbedding i o i. Putting Za = and N = N3Z3. we see 
that Za is vector &dd on M and N a unit vector field normal to M 
with respect to the ambient space , Denoting by 編—
we see that I사)、h사) and kc^ are the second fundamental tensors with 
respect to the normals N、C, and D respectively. But, as h}i is of the 
form h3i = gm we have

(2.19) h，cb = g 사).

Suppose that M is minimal, we can see that M is a pseudo-umbilical 
manifold by considering (1.25), (2.5) and (2.19) ([3], [4]). Hence, by­
making use of Theorem A in section 1, we have :

THEOREM 2.3. Let M be a hypersurface of Sn(l/\/2) x Sn(l/\/2) 
(n > 1) with (£ g. u, s、入，但〃卜sWucture satisfying A2 + /z2 + z/2 = 1. 
If M is minima], then M as a submanifold of codimension 3 of a (2n+2)- 
dimensional Euclidean space 砂너点 £s an intersection of a complex cone 
with generator C and a (2n + l)-dimensioi曲 unit sphere S2n+1(l).

(1.38) together with (2.3) implies

(2 20) vlcb = kcebf + 시私赤b - gcb)

with the aid of (2.8). From (1.43) with (2.5), it follows that
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(2.22)
(2.23)

(2.21) lceke =0.

Also, making use of (1.30), the first equation of (1.21), (2.2), (2.3) 
and (2.4), we find

kce지) ~~~。

L、 ” e —，、 ,vCe" 、八

Transvecting (2.20) with f* and making use of (2.22) and (2.23), 
we have

(2.24) ylcefb ~ 一kcb + \fcb・

Therefore, from (2.20), ti follows that

(2.25) I 사‘t = —2—Zc6 + (gcb — kekb)

with the aid of (1.26),(2.4), (2.21) and (2.24), which implies 

or, using (2.9)

人2
(2.26) lcblcb = 2(/2 一 1) + 4—(?? 一 1).

Assuming |卩새＞|F — 2(n — 1) 0 at every point of we the교 have
人=0. By Lemma 2.1, M is minimal.

Thus we have :



Structure of a Hypersurf are immersed in a Product of two Spheres 105

THEOREM 2.4. Let M be a hypersurface ofSn(l/ xSn( 1 />/2)(n > 
1) with (/, u, v, w, A, ^ystructure satisfying A2 + + p2 = 1. If
the square of length of the second fundamental form is not greater 
than 2(n — 1) at every point of M, then M is the same type as that of 
Theorem 2.3.

From (2.25), we have, in the consequence of (2.21),

(2.27) Le 就=么-(2人/") Zc 贰.

Therefore, by using the Caley-Hamilton^ Theorem, we obtain 3 con­
stant principal curvature of M as follows

0,1 — A/r/, —(1 4- A)/p.

We now let

(2.28) X] = 1 — A/z/, X2 = —(1 + A)/1/.

We may assume the matrix (以)is digonal without loss of generality

/°

0
Ci

(c )=

0

\

0

X2

頌

Let the multiplicities of and T2 be m and s respectively. Then 
we have from (2.9) and above expressions;

mxi + SX2 = —2A(n — l)/i/,
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or, using (2.28)

(2.29) (1 一 A)m-(1 + 시 s = -2(n 一 1)A.

Also, making use of (2.26), we have

(2.30)
(1 — X/u)2m + (1 + A/z/)25 = 2(n — 1) + 4A2(n — l)/z/2.

Thus, from (2.29) and (2.30), it follows that

(2.31) m = s = n — 1.

If Xi = 0, that is,人 = 1, then the first equation of (1.23) implies

uc — 0

because of 入지 + “? + 折2 = i But it is impossible by the Remark 1. 
Thus, we have Xi 丰 0. Similarly, we can see that X2 + 0. And and 
X2 are distinct by their own properties.

Hence we have ;

THEOREM 2.5. Let M be a hypersurface of S”(l/\庖)x Sn(l/\/2) 
(n > 1) with v, w, A,冬 i/)-structure satisfying A2 +1/2 = 1. 
Then we have 3 distinct constant principal curvature with multiplicities 
1, n — l,n — 1 respectively.

3・ Antiholomorphic hypersurfaces satisfying ko f + f ok = 0

Let M be a hypersurface of Sn(l/x/2) x Sn(l/\/2) such that 峠 f* + 
fc^e =0 holds every point of M or, equivalently

(3.1) 5 = W
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Then (1.29) reduces to

(3.2) kcWb — = 0.

Transvecting (3.1) with fcb and taking account of (1.21), (1.22), 
(1.23) and (1.30) -(1.32), we find

(3.3) ^。疽 + 折2) + 2/zp = 0

because the tensor kcef^ is symmetric
If we transvect (3.1) with and use (1.26), we have

as taking the symmetric part with respect to indices b and d,

kd(fbek€) + h(fdeke) = Q

because of skew-symmetric tensor "b・
Transvecting this with wd and making use of (1.22) and (1.32), we 

obtain

^tbeke + ｛。(“2 + "2 ) + 2“사 = 0,

which together with (3.3) gives

(3.4) 0fbeke = 0

where, here and in the sequel we have put

(35) 6 = kewc.

On the other hand, we easily verify from (3.2) that

(3 이 (1 — “호 一 y2)kc = — a흐)㈱c = 0kc, 
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where we have used (1.23) and (1.28).
If the function || ^€/€ ||2 does not vanish at some point p of then 

we see from (3.4) that 0(p) = 0 and hence (1 — a2)wc = 0 at the point. 
So we have = 0 at p C M. Thus (1.30) leads to /ce^e = 0, which is 
contradictory. Consequently we have

= 0
on M. hence (1.30) becomes

(3.7) kcewe — —awc.

Applying the expression fbeke = 0 with J* and using (1.21) and
(1.32) . we find

ka = 0wa 一(# + av)va -(〃 十 a”)"％

which together with (3.6) gives

(3.8) (fj2 + v2)kc + (" 4- av)vc + (〃 + a/7)«c = 0.

If we transvect (3.8) with uc and vc sucessively and consider (1.23),
(1.32) and (3.3), we get

(3.9)
(i/ + a^)(l — X2 — 产2 一 “2)= o,(产 + a〃)(l — 入흐 一疽一 折2) = o

Therefore, (3.8) implies

(3.10) 3 + ”2)(i 一 心“一入2 — “2 一 /)= 0

because of (1.28).
Since we have from (3.3)

(3.11) (v + (사丄 + (ji + a”)? =『 + "J、+



Structure of a Hypersurface immersed in a Product of two Spheres 109

(3.9) is turned out to be

(3.12) (/z2 + / + 2a//p)(l —入2 —卩2 — )= 0

Differentiating (3.12) covariantly and considering the orginal expres­
sion, we find

(1 — A2 — mu2 — i/2)Vc(^2 + v2 + 2a^p) — 0.

If we suppose that the function fi2 + u2 + 2(싸w is not constant at 
some point of M. then it means

/+#2+〃2 = i

at this point. Hence, due to Remark 1 in sectioiL_l, we see that # = Q 
and v = constant at the point. It contradicts the fact that the function 
〃흐 + 折2 + 2ap,u is not constant at the point.

Developed above, we have

LEMMA 3.1. Let M be a hypersurface satisfying (3.1) of Sn(l/x/2)x 
Sn(l/y/2). Then we have

入2 + “2 + / = 1 声2 + 折2 + °，尹〃 =0

on M,

We now prove

LEMMA 3.2. Under the same assumptions as those stated in Lemma 
3丄 M is k-antiholomorphic if and only if A2 + p2 = 1 holds at every 
point of M.

Proof. If M is A'-antiholoniorphic, that is , a vanishes identically, 
then (3.12) yields

(3.13) (//2 + p2)(1-A2-^2-i/2) = 0.

Also we have
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(3.14) keke = 1, ZceA*e = 0

because of (1.28) and (1.43).
We now suppose that the function 卩 and v vanish at some point p 

of Af, then (3.6) leads to

(3.15) kc = 0wcy wc = 8kc.

Thus, it follows that 02 = 1 because ka is a unit vector. Since 
卩(p) = 0, the second equation of (1.40) means

2甘-(1 - 0X)wc

witli the aid of (3.15).
Transvecting this with wc and taking account of (3.14) and (3.15) 

and the fact that wa is a unit vector, we find。人 =1 and consequently 
6 = X = constant on the set of such points. Hence, the first equation 
of (1.40) means = 0 at the point of M. Therefore, the fact

ve ve = 1 — A2 — //2 — i/2

implies that 1 — A2 = 0 at the point. So, using 卩(p) = 0, we see that 
uc = 0 at p E M. Due to Remark 1, it is contrdictoiy. Thereby (3.13) 
reduces to A2 + + v2 = 1 on M. So using Remark 1 again, it means
A2 + p2 — 1 on M.

Conversely, if 入? + 匸/흐 = i holds on A/, then we have vc = 0. Thus 
the first expression of (1.32) gives

(3.16) 以 + = 0.

If fi2 +1/2 + 싸"，= 0 holds on 사(3.16) yields 卩3 = l?. So we 
have A2 + i/2 — 1. Hence, the first relationship of (1.23) means uc = 0, 
which is contradictory.

Therefore, owing to Lemma 3.1, we see that

人2 + “2 + “2 = 1
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holds on Al. From Remark 1 in section 2, it follows that

貝 =0, v = constant^ 0).

Thus (3.16) implies that the function a vanishes identically. This 
completes the proof of the Lemma.

According to Theorem 3.3, Theorem 3.4 of [5] and Lemma 3.2, we 
have

THEOREM 3.3. Let M be a k-antiholomorphic hypersurface of 
SVl/v② x > 1) satisfying

5"疋=0.

If we take vh as the unit nonnal vector, then M is a minimal 
Sasakiam C-Einstein manifold.

THEOREM 3.4. Under the same assumptions as those statded in 
Theorem 3.3, M as a submanifold of codimension 3 of a Euclidean 
(2?i + 2)-space? is an intersection of a complex cone with generator C 
and a (2n + 1)-sphere S2n+1(l).

Combining Theorem 2.2, Theorem 2.3, Theorem 2.4 and Lemma 
3 2, we conclude

THEOREM 3.5. Let M be a k-antiholomorphic hypersurface of 
Sn(l/\/2) x Sn(l/\/2) (n > 1) satisfying 峠比 + = Q If M is
minimal (or the square of length of the second fundamental tensor of 
M is not greater than 2(?? — 1) at every point of M), then M is the 
same type of Theorem 3.3 and Theorem 3.4.

Combining Theorem 2.5 and Lemma 3.2, we have

THEOREM 3.6. Let M be a k-antiholomorphic hypersurface of 
Sn(l/V2) x Sn(l/\/2)(n > 1) satisfying k我 + f汜=0. Then the 
second fundamental tensor of M has three distinct constant principal 
curvatures 0,(1 —入)/匕一(1 + 人)〃 with multiplicities l,n — 1, n — 1 
respectively.
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