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STRUCTURE OF A HYPERSURFACE IMMERSED
IN A PRODUCT OF TWO SPHERES

SHIN,YONG Ho

O0.Introduction

Submanifolds immersed in a sphere or a product of spheres have
been objects of study in differential geometry. In particular, real hyper-
surfaces of a sphere could be found out their intrintic character under
some specific conditions. Recently, many authors {[7],(10],[11],[12],{16],
[23]) have researched the so-called generic submanifclds of 2 Riemann-
1an manifold which are general notions real hypersurfaces of a Rie-
mannian manifold Among them, the study on generic submanifolds
of an odd-dimensional sphere or an even-dimensional Euclidean space
was carried out succcessfully. But, the investigation about generic sub-
manifolds of an even-dimensional sphere or a product of two spheres
S™ x 8" has not been reported yet.

Of course, real hypersurfaces of S™ x S a product of two spheres
have not had nice results as those of a sphere even though several
geometers examined real hypersurfaces of S™ x S™ ([5},[13],{14]).

So, many geometers arc desiring earnestly to suggest the epoch-
making models of real hypersurfaces immersed in S™ x S™.

By the way, K.Yano and M.Okumura {20] defined the (f, g,u,v, A)-
structure induced on submanifolds of codimension 2 of an almost Her-
mitian manifold or real hypersurfaces of an almost contact metric man-
ifold, which is a very useful method in studying Riemannian manifolds
admiting that structure. Also, Yano[18] studied the differential ge-
ometry of S” x S™ and prove that the (f.g,u,v.A)-structure is nat-
urally induced on S" x §" as a submanifold of codimension 2 of a
(2n+2)-dimensional Euclidean space or a real hypersurface of (2n+1)-
dimensional unit sphere $27+1(1).
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G.D. Ludden and Okumura[l13]} stuided the so-called invariant hy-
persurface of $™ x §*, which is derived from the almost product struc-
ture defined by its projection operators on S§™ x S™.

On the other hand, it is well-known that the so-called ( f, g, . v, w, A,

g, v}-sructure is naturally induced on submanifolds of codimension
3 of an almost Hermitian manifold or real hypersurfaces of a manifold
with {f, g,u,v, A)-structure (cf.[8],{9],[22]). Therefore, real hypersur-
faces immersed in " x S admit the the (f,g,u,v, A)-structure de-
duced from the { f, g, u,v, A)-structure defined on 5" x S™. From this
point of view, S.-S.Eum, U-H.Ki and Y.H.Kim [5] researched partially
real hypersurfaces of S™ x ™ by using the concept of 4-invariance.

The purpose of the present paper is devoted to study some intrinsic
characters of hypersurfaces immersed in $™ x S",characterize global
properties of them by using some intergrable condition and prove that
the generic submanifold of S™ x S with the almost contact metric
structure 1s the real hypersurface.

In section 1, we recall the intrinsic properties of $™(1/v/2)x5"(1/V?2)
and have some algebraic relationships and structure equations of hy-
persurfaces of S*(1/v/2) x §7%(1/v/2).

In section 2, we determine mainly a minimal hypersurface of $7(1/v/2)

xS™(1//2) satisfying A2 4+ p? + v = 1.

In section 3, we find the necessary and sufficient condition for a
hypersurface of §™ x S™ being k-antiholomorphic and prove its global
properties.

1.Structure equations of hypersurfaces of 5%(1/v/2)x5™(1/V2)

Let E"*! be an (n+1)-dimensional Euclidean space and 0 the orgin
of the Cartesian coordinate system in E**!, and denote by X the
position vector of point p in E™*! relative to the orgin 0.

We consider a hypersurface $™(1/v/2) in E"*t! with center at the
orgin 0 and radius 1/v/2. Suppose that $™(1/v/2) is covered by a
system of coordinate neighborhoods {U;2*}, where here and in the
sequel the indices a, .7, 9, - run over the range {1,2,:-- ,n}. Then
X - X = 1/2 for the position vector X of the point $%(1/v/2), where
the dot means the usual inner product of E"11,
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Putting Xo = 0.,X, M), = —V2X, g4p = X4 - X3, where 8, =
0/0z*, and denoted by V,, the operator of the covariant differentiation
formed with the first fundamental form g,4, the equations of Gauss and
Weingarten are respectively given by

(1.1) VoXs = V20agMy, VoM, = —V2X,.

Similary, an n-dimensional sphere S™(1/1/2) is also assumed to be
covered by a system of coordinate neighborhoods {V;y"}. Then the
position vector Y of a point of S"(1/+/2) satisfies Y-V = 1/2. Here and
in the sequel, the indices «, i, v, - - - run over the range {n+1,--- ,2n}.
Now. we put Y, = 4,.Y, M, = —/2Y, Gup = Yu - Y, (Oc = 3/0y") and
denoted V the operator of covariant differentiation formed with the
first fundamental form g, of $™(1/v/2). Then the equations of Gauss
and Weingarten are respectively given by

(1.2) VX, = V20, My, VM, = —V2Y,.

Thus we give the differential structure to $7(1/v/2)x .5%(1/v/2) nat-
urally as a product manifold which is covered by a system of coordinate
neighborhoods {U x V; (2%, y")}.

Therefore as a submanifold of codimension 2 in a (2n+2)-dimensional
Euclidean space E2"+2 §™(1/+/2) x $7(1/4/2) has a position vector Z
of a point in $7(1/v2) x S*(1/v/2) such that

X{z%)
- (32).
where, here and in the sequel, the indices k,7,7. k,--- run over the
range {1,2,--- ,n,n+ 1,--- ,2n}. Then we have
Z-Z=X-X4Y-Y =1

and hence we see that S™(1/v/2) x §7(1/v/2) is a hypersurface of a
(2n + 1)-dimensional unit sphere $2"*1(1) in E27+2,
Letting Z, = 6,Z and g,, = Z, - Z,, we get

X, [0
wo(3) 2e(2)
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g’*, ¢°% and ¢"* are contravariant components of ¢;:, gos and g
respectively.
Letting

*xw)) (—X(:c“))
1.4 C= % P D= b
(14) ( —Y(y") Y (y")
we can easily see that
Z,-C=0,2,-D=0,C-D=0,C-C=1,D-D =1

and hence C and D are mutually orthogonal nermal vectors to S™(1//2)
xS™(1/ V2) as a submanifold of codimension 2 in E***2,

Let hj, and kj, be the components of the second fundamental ten-
sors respectively relative to the unit normals C and D to $"(1/v/2) x
$7(1/\/2). Then the equations of Gauss for S7(1//2) x $"(1/\/2) can

be given of the form

V;2, = hy,C + ky.D

From (1.1) and (1.2}, %,, and k,, are of the form

_{ Y 0 = [ 98 0

and consequently we find

(16) (h;)=(‘5§ 50) (ki)=(6§ fe]s::)’

where h; = thg"‘ and k; = k,hg"'.
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It follows from thr first equation of (1.5) and the second equation of
(1.6) that

(1.7) hye= g k=0, kiki=6.

Hence, we see that &} determines an almost product syructure on
S™(1/V3) x S"(1/v/3).

On the other hand, as the first fundamental from g,, has the form

(1.3), the Chinstoffel symbols {J h ; } form with g,, are all zero but

o A
(" gramd{, )

Using this fact and differentiating the second fundamental tensor k]
covariantly, we have

v,k =0.

" Denoting by [, the third fundamental tensor relative to the normals
C and D, we can write

(1.8) V,C = —h'Z,+1,D, V,D=-kZ —1,C.
From (1 4),(1.6) and (1.8) it follows that (cf. [3],[19])

1, =0.

Consequently, the equations of Gauss and Weingarten fo S™(1//2)x
57(1/v/2) regared as a submanifold of codimension 2 in E?**? become
respectively

V,Z, =k, C+k,D, V,C=-2,D, V,D=-kZ,

Thus we can deduce the so-called equations of Gauss

(1.9) K{, =800y — 6 gis + kjky, — k¥ kg,
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K,{f]t being the components of the curvature tensor of $%(1/v/2) x

S™(1/V2).

But, a (2n 4+ 2)-dimensional Euclidean space E***? admits a natural

Kaehler structure
0 I
F= ( ),
\Ii G )

where I, denotes the identity matrix of degree n + 1. It follows that
F? = -], FU - FV = U -V for arbitary vectors U and V in E?"*2 [

being the identity transformation in £2"*%. Linecar transformation of

Z,.C and D by f give respectively

(1.10)  FZ, = f/Zi+u,C+v,D, FC=-u'Z+ D,
FD=—v'Z,-)C,

where f* are components of a tensor field of type (1.1), u, and v, those
of 1-forms and A a function on S"(l/\/i} x §"(1/V?2), and u* and v*

are the associated vector fields with %, and v, respectively given by

u? = u,¢"* and v* = v,¢**.

Applying F to (1.10) respectively, we get the so-called ( f, g,u, v, A)-
structure given by ([1}, [2], {6], [17], [18], [20],)

f;f; = —=6) +uyu’ + vy,
t h
ulf_; = AZQ}? fthut = —-Av", vlf]t = _')\u]a

k 2
fol = At wet =o' =127, e’ =0,

(1.11)
f;tfasgts = Gy T UZU, — VU

It is easily verified that f,, = f]‘ gyt 1s skew-symmetric in 7 and 2.
By letting 7 = « and ; = « in (1.10), we find respectively

(1.12) fE=0, ug+tva=0, X,=f Y —2uY

and
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(113) f!’: = 0’ Ug = Uk, Yx - _f:4¥a - 2uxX.

Consequently, f:‘, u,,u®, v, and v® are respectively of the form

(114) Uﬁ:(ﬁ )

(1.15)
o DY -
ut = (ucnuﬁ,)a uh = (zx) k] ‘U, = (ua‘uﬁ)'r vh = ( utfc ) k]

where u® = ugg®® u® = u,g**.
Then, {1.6) and {1.14) imply that

(1.16) ke fy + £k =0,

that is, K;‘ and f;’ anticommute each other.
We also find from (1.6) and (1.15)

s h _ h R _ h
(1.17) kjul = —v*, kjvl = —u".

If we differentiate {1.10) covariantly and make use of VF =0, then
we have {[2], [21])

V,fF = —gut 4 8hu, — kot kR,
(1.18) Vou, = fo~ My, Vyui = ~kpefE 4 Mgy,
VA =—2v,.

Let M be a hypersurface immersed isometrically in $*(1/v/2) x
S$™(1/v/2) and suppose that M is covered by the system of coordi-
nate neighborhoods {V; %}, where here and in the sequel, the indices
a,b.c.d,--- run over the range {1,2,--- ,2n — 1}.
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We put B* = 5.z%(8/8%¢). Then B" are 2n—1 linearly independent
vectors of S™(1/v/2) x $"(1/v/2) tangent to M and consequently B”
span the tangent space at each point in M. Denote by N* the unit
normal vector field to M and hence {B? N"} generates the tangent
space at each point in $7(1/v/2) x S™*(1/V2).

Since the immersion ¢ : M —S™(1/v/2) x $7(1/v/2) is isometric, the
induced metric g5 on M is given by

Geb = g)ngBl:-

Next transforming B and N7 by )h, we can express them respec-
tively as follows

(1.19) fiBl= f!B! + w.N*, fIN? = —w®BE

where f¢ denote the components of tensor field of type (1.1). w. 1-
form and w® vector field associated with w® given by w® = w.g°*, ¢°
being the contravariant components of the induced metric tensor ¢**.
We also express the vector field u® and v respectively as follows

(1.20) u* =uBh 4 N, P =v®Bh 4 uN",

where u® and v® are vector fields, ¢ and v functions on M.

Applying the operator f§ to{1.19) and (1.20) respectively, and mak-
ing use of (1.10), we obtain the so-called (f, g,u, v, w. A, g, v)-structure
given by

(1.21) fof& = =68 + upu® + vpv® + wpw?,
flu® = —do® + pw?,
e ¢
(1.22) fov® = du® + v,
fow® = —pu® ~ vt

or, equivalently
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(1.23)
€ _
uef; = )\“Ua — HWgq, Uef: = v)‘ua — VWq, wefa = fUg + Vg,
ueue =1- /\2 - ﬂz, ’ue’ue = —lv, uewe = —Ay’

vev® = 1— A% — p2,  wpow® = Ay,

wetw® =1 —pu? —?

where u,, v, and w, are 1-forms associated with u%, »® and w*® respec-

tively given by u, = u’gpqe, va = vbgse and w, = wbgy,. By putting

Fra = f{gca, fob 1s skew-symmetric because f,, is skew-symmetric.
Transvecting the last equation of {1.1) with B? B} and substituting

{1.20), we get

d
f:fb Ged ™ Geb — Ucthp — VcUp — Well'y.

We now put

k*B) = ki Bl + kyN",

{1.24)
KIN? = k°BE + aN",
where & are components of a tensor field of type (1,1), &4 1-form, k¢
a vector field associated with &, and a some function on M.
If we put

kba = kggca )

then ky, is symmetric because k;, is symmetric, also, we see easily
verify that kp, is a second fundamental tensor of Af with respect to
the unit normal D if M is regarded as a submanifold of codimension 3
in E2"+2.

When the action of the tangent space is invariant under the tensor
field k) at every point of M, that is, ks vanishes identically along M,
we call M to be k-inveriant. We will see {1.28) which 1s equivalent to
a?=1.

When the action of the nomal space is antiholomorphic under &} at
every point of A{, that is , & vanishes identically along Af, we call M
to be k-antiholomorphic.
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From the first equation of (1.24) we can see that

(1.25) kS = —a.

Applying k;’ to (1.24) respectively and making use of {1.7) and these
equations, we obtan

(1.26) Rike = 6% — kA",
(1.27) keke = —ake,
(1.28) keh® =1—a?.

Transvecting (1.24) with ff and taking account of {1.16). (1.19) and
(1.24) itself, we find

(1.29) KEfD + fokg = kew® —wck®.
(130) Fw, + fike = —aw..
From (1.17), (1.20) and (1.24), 1t follows that
{131} Rue = —ve — phe. kive = —u, — vk,
(1.32) ke = —v—opu. kv =~—p—av.
Denoting by V. the operator of the van der Waerden-Bortolotti co-

variant differentiarion, we can write the equations of Gauss and Wein-
garten i1espectively

(1.33) V.B} = l4N* V. N"=_1°B",

where 18 denote the components of the second fundamental tensor with
respect to the unit normal vector N'* and [ = I.4¢%?. Then, from (1.8)
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and the above equations the equations of Gauss and Codazzi are given
by respectively

(1.34)
Ky =639 —6cgap + kgkey — klkay + [gles — Llas,

(1.35) Valey = Velay = kakey — kekay.

By differentiating (1.19), (1.20) and (1.24) covariantly along M and
taking account of (1.18), (1.33) and the fact that V,k? = 0, we obtain
the structure equations on M as follows

(1.36)
Vefsy = —geou® + 6Jup — kepv® + kgvp — lepw® + 2wy,
(1.37)
Veup = pley — Akes + fob,
(1.38)
Vevs = kL fer — kews + vies + Ages,
(1.39)
Vewy = —mpgey — vkep + kevs — lee fy
(1.40)
Ved = =200, Vo = we — Mep — leett®, Vv = kew® — e 0%,
(1.41)
Veky = Lpk® + ks,
(1.42)
Veky = —kpall + aly,
(1.43)

Vea = =21 k",

From these structure equations, we can casily see that the 1-form &,
1s the third fundamental tensor when Af is considered as a submanifold
of codimension 2 immersed in $27*1(1).

Fmally, we introduce the following theorems for later use.
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THEOREM A [5]. Let M be a hypersurface of S*(1/v/2) x $™(1//2)
(n > 1) with (f, g,u,v,w, A, g, v)-structure satisfying A + p? +v% = L.
If we take v* as the unit normal vector, M as a submanifold of codi-
mension 3 of a Euclidean space E*"*? js an intersection of a complex
cone with generator C and a (2n + 1)-dimensional sphere S*"+1(1).

THEOREM B [5], [13]. Let M be a compact orientable totally ge-
odesic invariant hypersurface of S*(1/v/2) x S™(1/v/2). Then M is
Sr=1x S».

THEOREM C [5]. Let M be a compact orientable hypersurface of
SU(L/VE) X SM(L/VE) (n > 1), IERSSE + foke = 0, If2 + feI2 = O
and p(1 — A* — u% — %) does not vanish almost everywhere, then M is
Sn—l X Sn’

2. Hypersurface with A2 4+ p?2 4+ 22 =1

In this section we assume that the (f, g, u,v,w, A, g, v)-structure in-
duced on M satisfies A2 + g®> +v? =1land n > 1.

Using(1.23) and the fact of A% + u? 4+ v? = 1, we can easily verify
that

(2.1) puy + vy = 0, +vw® =0, + pw® =0

and hence w, f;, v, fy and v, f; vanish identically on M.

The function v is a nonzero constant along M. In fact, if v vanishes
on some open set on M, we have uy; = 0 because of the first equation
of (1.23) and 1 — A? — u? = 0. Differentiating this corvariantly and
using (1.37) we find

.ulcb - Akcb + fcb = 01

which implies that f.; = 0 because and k. are symmetric and fg
is skew-symmetric with respect to b and ¢. Contracting (1.21} with
respect to ¢ and b, we obtain n = 1 with the aid of (1.23).

It contradicts n > 1. Therefore, the function » takes nonzero value
at some point of M.
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If we differentiate the first equation of (2.1) covariantly and take the
skew-symmetric part. then we obtain

(Vepjup — (vbﬂ)uc + p(feb — foe) +(Ver)up — (Vv )ue
+ v( fesks — kewy — fecky + kpwe) = 0.

This equation together with (1.29) becomes

(Vcﬂ)ub - (Vb,u)uc + 2ﬂfcb + (ch)vb - (Vbu)vc =0,

from which, transvection f¢ gives

wfenf? =0

with the ard of ffu® = ffv® = 0. Thus, we see that the functron

(2.2) p=0

on M. From (1.23), (2.2} and the assumption A% + p? + v = 1, we
have

(2.3) vy = 0,

which also show that the function A is a constant because of the first
equation of (1.40).
Hence
v==12y1-2A~pu? =41 A2 = constant.

Since v takes nonzero value at some point of Af, we conclude

(2.4)) v = constant(# 0)
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LEMMA 2.1. Let M be a hypersurface of S*(1/v2)x S"(1/V2}{(n >

1) with (f,g,u, v, w, A\, g, v)-structure satisfying A2 + g +v* = 1. Then
M is minimal if and only if A =0 on M.

Proof. From (1.32), (2.2), (2.3) and (2.4), it follows that

(2.5) a =0,

that is. M is k-antiholomorphioc, which together with (1.28) implies

(2.6) koke = 1.

So k¢ is a unit vector. Moreover, using (1.31). we find

(2.7) w, = —vke
because of (2.3).

On the other hand. the second equation of (2.1) together with (2.4)
and (2.7) yields
(2.8) we = Ake.

Transvecting ¢°® to (1.38) and taking account of {2.3), (2.6) and
{2.8). we find
(2.9} I=-2X\n-1)/v
because of (2.4), where we have put

I=g%,.

Therefore, we have the lemma.
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REMARK 1. If A? + ¢? + v* = 1 on the hypertsurface M, we see
that

p =0, v =constant(#0), v.=0 and «a=0.

And if the function A vanishes on some open set, then we have v =0
and ¢ = 0. Moreover, if the 1-form wu; is zero on an open set in M,
then (1.37) implies f.; = 0, which contradicts n > 1 as is shown above.

THEOREM 2.2. Let M be a hypersurface of S™(1/v/2) x S™(1//2)
with (f, g, u,v,w, A, g, v)-structure satisfying A2 + p? +v* = 1. M
is a minimal hypersurface of ( f,g,u,v,w, A, g, v)-structure, then M is
Sasakian C-Eienstein manifold.

Proof. Since M is minimal, by lemma 2.1, we find
v =1

with the aid of (2.3), or equivalently

(2.10) v = 1.

From (2.7) and (2.8), it follows that

(2.11) up = Fkyp, wp = 0.
Substituting (2.3) and (2.11) into (1,21), we find
fyfe = =6 + kek®,
or, equivalently

fcdflfgde = Geb — kckba

so that these together with (2.6) and the fact of ffu® = 0 imply that
the aggregate ( f¢, gep, ka) defines an almost contact metric structure.

But, from (2.3) and (2.10), the second equation of (1.20) means the
vector fields v* is a unit normal vector to M in the direction of N* or
the opposite direction of N*,
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We will show that M is a Sasakian C-Eienstein manifold in case of
v = —1. Then (2.11) is
(2.12) Up = kb, Wy = 0.

Differentiating (2.12) covariantly and taking account of (1.37), (1.39),

(2.2) and (2.3), we get

(2.13) S = —leekg,
(2.14) kes = lee fE.

Also, we have

(2.15) Veky = fob

Substituting (2.3) and (2.12) into (1.36), we obtain

(2.16) Vefy = —gapk® + b5k

Thus, the aggregate (f%, g, kq ) defines a Sasakian structure.
On the other hand, if we transvect (2.13) with 43, then we get

(2.17) lep = —feeky-
Transvecting this with 1§ and making use of (2.14), we have
(2.18) Lacly = kaeky = gav — kaky
with the aid of (1.26).
Contracting (1.34) with respect to the indices d and a, using (1.25),

{(1.26),(2.5), (2.18) and the minimality of M, we have the Ricc tensor
of the form
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Koy =2(n — 2)gep + 2k ks,

that is . M is C'-Einstein.

In case of v = 1, putting 'k, = —%k,, we can easily verify that
(f&, g, ko) defines a Sasakian C-Einstein structure on M by the same
described above. Therefore Theorem 2.2 is completely proved.

Now, let’s consider the following iinbeddings :

M 5 $7(1/V3) x S"(1/V3) > B

that is. M is regarded as a submanifold of codimension 3 in E?"+?2
by the imbedding 7 0 1. Putting Z, = BlZ, and N = N7Z,. we see
that Z, is vector ficld on M and N a unit vector field normal to M
with respect to the ambient space E<"*?. Denoting by & = h,,B! B},
we see that I, he and kg are the second fundamental tensors with
respect to the normals N, C, and D respectively. But, as &, is of the
form %;, = g,., we have

(2.19) heb = Ges.

Suppose that M is minimal, we can see that M is a pseudo-umbilical
manifold by considering (1.25), (2.3) and (2.19) ({3}, [4]). Hence, by
making use of Theorem A in section 1, we have :

THEOREM 2.3. Let M be a hypersurface of S™(1/v/2) x 5*(1/v/2)
(n>1) with(f,g.u,v,w, A, g, v)-structure satisfving A\* +p® +v% = 1.
If M is minmimal. then M as a submanifold of codunension 3 of a (2n+2}-
dimensional Euchidean space E*"%? is an intersection of a complex cone
with generator C and a (2n + 1)-dimenstonal unit sphere $*"*1(1).

(1.38) together with (2.3} implies

(2 20} viep = keeby + ARk — ges)

with the aid of (2.8). From (1.43) with (2.5). it follows that
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(2.21) Loeke = 0.

Also. making use of (1.30), the first equation of (1.21}, (2.2), (2.3)
and (2.4), we find

[B%]

) keew® = o,

——
o 1o
RN

o2

} Eou® — o

—

Transvecting (2.20) with f? and making use of (2.22) and {2.23),
we have
(2.24) Vlcef; = —kep + Afes.

Therefore, from (2.20), ti follows that

. A
(2.25) leodf = —2;1.:5 + (gt — kcky)

with the aid of (1.26),(2.4), (2.21) and (2.24), which implies

A
Il =2(n—1)—2%1,
124

or, using (2.9)

2
(2.26) Il = 2(n — 1)+41—2(u - 1).

Assuming [|{]]> — 2(n —~ 1) £ 0 at every point of A1, we then have
A =10. By Lemma 2.1, M is minimal.
Thus we have :
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THEOREM 2.4. Let M be a hypersurface of S*™(1//2)xS™(1//2)(n >

1) with (f,g,u,v,w, A, g, v)-structure satisfying A + p? +v2 = 1. If

the square of length of the second fundamental form is not greater

than 2(n — 1) at every point of M, then M is the same type as that of
Theorem 2.3.

From (2.25), we have, in the consequence of (2.21),

(2.27) Ldfl® =1 — (2 V)l 18

Therefore, by using the Caley-Hamilton’s Theorem, we obtain 3 con-
stant principal curvature of M as follows

0.1 - Xwv.—(1+ X)/w
We now lect

(2.28) X;=1-Mv, Xy=—(1+2A)/r

We may assume the matrix ({2) is digonal without loss of generality

s \

(2=

I

\ .y

Let the multiplicities of z; and x, be m and s respectively. Then
we have from (2.9) and above expressions;

mz; + 522 = =2A(n —1)/v,
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or, using (2.28)

(2.29) (1= Xym— (14 A)s = ~2(n —1)A.

Also, making use of (2.26), we have

(2.30)
(1= A/v)¥m 4+ (1 +2/v)is = 2(n — 1) +4X%(n — 1)/v2.

Thus, from (2.29) and (2.30), it follows that

(2.31) m=s=n— 1.
If x; = 0, that is, A = 1, then the first equation of (1.23) implies

e =0

because of A? + u? + v = 1. But it is impossible by the Remark 1.
Thus, we have z, # 0. Similarly, we can see that z» # 0. And z, and
zo are distinct by their own properties.

Hence we have ;

THEOREM 2.5. Let M be a hypersurface of S"(1/v/2) x S*(1/V?2)
(n > 1) with (£, g,u,v,w, A, , v)-structure satisfying A\* + p* +v? = 1.
Then we have 3 distinct constant principal curvature with multiplicities
1, n — 1,n — 1 respectively.

3. Antiholomorphic hypersurfaces satisfying kof+ fok =0

Let M be a hypersurface of $7(1/v/2) x $7(1/+/2) such that k¢ f* +

ck% = 0 holds every point of M or, equivalently

{3.1) kee fs = hse f5.
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Then (1.29) reduces to

(3.‘2) kcwb - k;.wc = 0.

Transvecting (3.1} with f°® and taking account of (1.21), (1.22),
(1.23) and (1.30) —(1.32), we find
(3.3) oy + )+ 2ur =0

hecause the tensor k.. f; 1s symmetric
If we transvect (3.1) with k§ and use (1.26), we have

fbd - kd(fbeke) = kbek:}f:»

as taking the symmetric part with respect to indices b and d,

ka( foek®) 4 ko( faek®) =0
because of skew-symmetric tensor fg.
Transvecting this with w¢ and making use of (1.22) and (1.32), we
obtain
8fook® + {a(u? + vy +2ur} =0,

which together with {3.3) gives

{3.4) Bfpck =0

where. here and in the sequel we have put

{35} 8 =k w".

On the other hand, we easily verify from {3.2) that

(3 G) {(1-— p2 — r/2)kc = fw,., (1 — a)w, = Ok,
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where we have used (1.23) and (1.28).

If the function ||kp. £¢||* does not vanish at some point p of A, then
we see from (3.4) that 8(p) = 0 and hence (1 ~ a?)w, = 0 at the point.
So we have w, = 0 at p € M. Thus (1.30) leads to f..k® = 0, which is
contradictory. Consequently we have

fr k=0

on M. hence (1.30} becomes

(3.7} keew® = —aw,.

Applying the expression fyk® = 0 with f? and using (1.21) and
(1.32). we find

ke = 0w, — (p+ av)v, — (v + apju’,

which together with (3.6) gives

(3.8) (1 + )k + (p+ av)ve + (v + apu, = 0.

If we transvect (3.8) with u¢ and v sucessively and consider (1.23),
{1.32) and (3.3). we get

(3.9}
(v4+au)1 =22 —p?2 -2y =0, (g+ar)(1 - X2 —p? —2?) =0,

Therefore, (3.8) implies
(3.10) 4+ (1= (1 - A -2 -3 =0
because of {1.28).

Since we have from (3.3)

(3.11) (v+ap) +{u+ar) =1+ +2aup,
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(3.9) is turned out to be

(3.12) 42 F2o0p)(1 =22 = g - %) =0.

Differentiating (3.12) covariantly and considering the orginal expres-
sion, we find
(1 =A% —mu® — YV (g2 + 0% + 2apv) = 0.
If we suppose that the function p? 4+ % + 2apuv is not constant at
some point of M, then it means
A% 4 “2 +vt =1

at this point. Hence, due to Remark 1 in section 1, we see that p =
and v = constant at the point. It contradicts the fact that the function
¢? 4 v? + 2apv is not constant at the point.

Developed above, we have

LEMMA 3.1. Let M be a hypersurface satisfying (3.1) of S*(1//2)x
S"(l/\/i). Then we have
A2+112+v2 =1 or ;zz + 2 +apr =0
on M.

We now prove

LEMMA 3.2. Under the same assumptions as those stated in Lemma
3.1, A 1s k-antiholomorphic if and only if A* + v* = 1 holds at every
point of Af.

Proof. If M is k-antiholomorphic, that is , a vanishes identically,
then (3.12) yields

(3.13) P+ ) - — - =0

Also we have
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(3.14) kk® =1, 1 k°=0

because of (1.28) and (1.43).
We now suppose that the function g and » vanish at some point p
of Af, then (3.6) leads to

(3.15) ke = bwe, we = Ok,

Thus, it follows that 82 = 1 because k¢ is a unit vector. Since
p#{p) = 0, the second equation of (1.40) means

leu® = (1 — 8N)w,

with the aid of {3.15).

Transvecting this with w® and taking account of (3.14) and (3.15)
and the fact that w® is a unit vector, we find A = 1 and consequently
6 = A = constant on the set of such points. Hence, the first equation
of (1.40) means v, = 0 at the point of M. Therefore, the fact

ver® =1— X —p% — 12
implies that 1 — A? = 0 at the point. So, using u(p) = 0, we see that
ue. = 0 at p € M. Due to Remark 1, it is contrdictory. Thereby (3.13)
reduces to A% 4 y® + 1% =1 on M. So using Remark 1 again, it means
A 4?2 =1o0n M.

Conversely, if A2 + v2 = 1 holds on A, then we have v, = 0. Thus
the first expression of (1.32) gives

(3.16) p+av=0.

I 12+ 1%+ 2aur = 0 holds on M, then (3.16) yields p? = 2. So we
have A? + 12 = 1. Hence, the first relationship of (1.23) means u, =0,
which is contradictory.

Therefore, owing to Lemma 3.1. we see that

/\2+[12+I/2=1
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holds on Af. From Remark 1 in section 2, it follows that
p =0, v = constant(# 0).

Thus (3.16) implies that the function o vanishes identically. This
completes the proof of the Lemma.

According to Theorem 3.3, Theorem 3.4 of [5] and Lemma 3.2, we
have

THEOREM 3.3. Let M be a k-antiholomorphic hypersurface of
S™(1/V2) x S*(1/V2)(n > 1) satisfying

Kefe -+ feke =o0.

If we take v" as the unit normal vector, then M is a minimal
Sasakian C-Emstein manifold.

THEOREM 3.4. Under the same assumptions as those statded in
Theorem 3.3, M as a submanifold of codimension 3 of a Euclidean
(2n + 2)-space, is an intersection of a complex cone with generator C'
and a (2n + 1)-sphere §*"*1(1}.

Combining Theorem 2.2, Theorem 2.3. Theorem 2.4 and Lemma
3 2, we conclude

THEOREM 3.5. Let M be a k-anttholomorphic hypersurface of
S57(1/V2) x SM1/V2) (n > 1) satisfying kSfe + féke = 0 If M is
minimal {or the square of length of the second fundamental tensor of
Af is not greater than 2(n — 1) at every point of A{), then M is the
same tvpe of Theorem 3.3 and Theorcm 3.4.

Combining Theorem 2.5 and Lemma 3.2, we have

TUEOREM 3.6. Let M be a k-antiholomorphic hvpersurface of
S™M1/V2) x $7(1/V2)(n > 1) satisfving k% f¢ + fek® = 0. Then the
second fundamental tensor of M has three distinct constant principal
curvatures 0.{1 — A)/v.—(1 + A with multiphcities I,n — 1, n — 1
respectively.
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