STUDY OF THE BEST DEFORMATION FOR EXTENDING HARDY SPACES AND ITS APPLICATIONS

YOUNG-MAN NAM

Let D be an open unit disc, T be the unit circle in the complex plane. The Hardy space H^p ($0 < p < \infty$) consists of all functions holomorphic in D for which

$$\|f\|_p = \begin{cases} \lim_{r \to 1} \left[\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \right]^{\frac{1}{p}}, & 0 < p < \infty \\ \sup_{z \in D} |f(z)|, & p = \infty \end{cases}$$

is finite. If we define

$$M_p(f, r) = \left[\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \right]^{\frac{1}{p}}, \quad 0 < p < \infty$$

$$M_\infty(f, r) = \sup\{|f(re^{i\theta})| : 0 \leq \theta \leq 2\pi\},$$

we can rewrite

$$\|f\|_p = \lim_{r \to 1} M_p(f, r), \quad 0 < p \leq \infty.$$

A function bounded and holomorphic in D is said to be an inner function if its boundary values have modulus 1 almost everywhere. A Blaschke sequence is a (finite or infinite) sequence $\{a_n\}$ of complex numbers satisfying the conditions; $0 < |a_n| < 1$ and $\sum(1 - |a_n|)$ is finite. An important class of inner function is the Blaschke product. A Blaschke product $B(z)$ with zeros $\{a_n\}$ is a function defined by a formula;

$$B(z) = \prod \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a}_n z}$$

Received September 27, 1995.
This research was supported by the Ministry of Education Grant, 1994.
for a Blaschke sequence \(\{a_n\} \). The set of Blaschke products is uniformly dense in the set of inner function by the Frostman's theorem [9,10].

Let \(B^p \) \((0 < p < 1)\) denote the space of functions \(f(z) \) holomorphic in \(D \) for which

\[
\frac{1}{2\pi} \int_0^1 \int_0^{2\pi} |f(re^{i\theta})(1-r)^{\frac{1}{2}-2}d\theta dr
\]

is finite. If we use the quantity \(M_p(f,r) \), we can rewrite as following;

\[
||f||_{B^p} = \int_0^1 (1-r)^{\frac{1}{2}-2}M_1(f,r)dr.
\]

It turns out \(H^p \) is a subspace of \(B^p \), especially \(B^p = H^p \) for \(p = \frac{1}{2} \). It was found [3,12], \(H^p \) is dense in \(B^p \) and two spaces have the same continuous linear functionals. This makes it possible to identify \(B^p \) with the closure of \(H^p \) in its second dual of \(H^p \) [1,5]. Thus this deformation space \(B^p \) is in some respects nicer than \(H^p \) space.

Now we introduce the weighted Bergman space \(A^{p,q} \) [7,11] and develop some of properties on \(A^{p,q} \) space. If \(f(z) \) is holomorphic in \(D \) and \(0 < p < 1 \) and \(q > 0 \) we define the weighted \(L^q \) norm by

\[
\int_0^1 \int_0^{2\pi} |f(re^{i\theta})|^q(1-r)^{\frac{1}{2}-2}d\theta dr.
\]

If it is finite we say \(f(z) \) belongs to \(A^{p,q} \). This space is more extended than \(B^p \), especially \(A^{p,q} \) is equal to \(B^p \) when \(q = 1 \), at that time there are many interesting results on it.

G. Caughram and L. Shields raised the question whether there exits a singular inner function whose derivative is in \(H^p \) \((p = \frac{1}{2})\). L. Duren, W. Romberg and L. Shields [6] proved that the derivative of every Blaschke product lies in \(B^p \) for all \(p \) \((0 < p < \frac{1}{2})\). In [16], W. Rudin showed that if the zeros \(\{a_n\} \) of a Blaschke product satisfying the condition

\[
\sum (1-|a_n|) \log \frac{1}{1-|a_n|} < \infty,
\]

then the derivative of \(B(z) \) lies in \(B^{\frac{1}{2}} \). Also, P. Ahern and D. Clark [2] proved that if \(\sum (1-|a_n|)^{\frac{1}{2}} < \infty \), and \(\sum (1-|a_n|)^{\frac{1}{2}} \log \frac{1}{1-|a_n|} = \)
Study of the Best deformation for extending Hardy spaces

∞, then there is a Blaschke product \(B(z) \) with zeros \(\{a_n\} \) satisfying \(B'(z) \in B^{\frac{2}{3}} \) and \(B'(z) \in H^{\frac{1}{3}} \). D. Protas [15] generalized this property as followings that if the zeros \(\{a_n\} \) satisfy \(\sum (1 - |a_n|)^\alpha < \infty \) then \(B'(z) \in B^{\frac{1-\alpha}{2}} \) for some \(\alpha \) \((0 < \alpha < 1)\), and \(B'(z) \in H^{1-\alpha} \) for \(\alpha \) \((0 < \alpha < \frac{1}{2})\). We could not translate all the \(B^p \) results into \(A^{p,q} \) space.

In this paper, we find some results in deformations of \(H^p \) spaces and consider the relation between the distribution of \(B(z) \) and \(\hat{B}(z) \). There are several known conditions on the distribution of Blaschke sequences that imply the derivative of Blaschke products lies in the extended \(H^p \) space. The basic problem we consider is that of determining \(A^{p,q} \) spaces to which the derivative of \(B(z) \) belongs.

For typographical reasons we frequently omit the superscript \(p \) in writing \(\||f||_{B^p} \). We first prove followings.

Proposition 1. For each \(f \) in \(B^p \), the following inequality holds for constant \(K_p \) (\(: \) depend on \(p \)).

\[|f(z)| \leq K_p ||f||_B (1 - r)^{-\frac{1}{p}}. \]

Proof. Let \(R < r < 1 \), then

\[
\|f\|_B \geq \int_R^1 (1 - r)^{\frac{1}{p} - 2} M_1(f, r) dr \\
\geq M_1(f, R)(\frac{1}{p} - 1)^{-1}(1 - R)^{\frac{1}{p} - 1}.
\]

Hence

\[M_1(f, R) \leq (\frac{1}{p} - 1) ||f||_B (1 - R)^{1 - \frac{1}{p}}. \]

From this, the estimate follows by writing

\[f(z) = \frac{1}{2\pi i} \int_{|\zeta| = R} \frac{f(\zeta)}{\zeta - z} d\zeta, \]

where \(R = \frac{1}{2} (1 + |z|) \).
LEMMA 2. For each $f \in B^p$, $f_\rho \to f$ in B^p-norm as $\rho \to 1$, where $f_\rho(z) = f(\rho z)$.

Proof. Given $f \in B^p$ and $\varepsilon > 0$, choose $r < 1$ such that

$$\int_0^1 (1 - r)^{1-2} M_1(f, r) dr \leq \varepsilon \quad \cdots (2.1).$$

Since $M_1(f, r)$ is an increasing function of r, (2.1) remains valid when f is replaced by f_ρ. Now choose ρ so close to 1 that $|f_\rho(z) - f(z)| < \varepsilon$ on $|z| \leq R$. Then

$$\int_0^R (1 - r)^{1-2} M_1(f_\rho - f, r) dr < \varepsilon \|1\|_B.$$

Combining this with (2.1), we have

$$\|f_\rho - f\|_B \leq \varepsilon \|1\|_B + 2\varepsilon,$$

so $f_\rho \to f$ in norm as $\rho \to 1$.

LEMMA 3. For each $f \in H^p$, $\|f\|_B \leq K_p \|f\|_p$.

Proof. The above statement means that $H^p \subset B^p$, and gives the norm inequality. Also, H^p contains all functions holomorphic in a bigger disc, and such functions are dense in B^p by Lemma 2.

If we use above statements, the following fact is satisfied.

THEOREM 4. Let φ be in the dual $(B^p)^*$ of B^p for $0 < p < 1$, then there is unique function g such that

$$\varphi(f) = \lim_{r \to 1} \int_0^{2\pi} f(re^{i\theta})g(e^{-i\theta})d\theta, \quad f \in B^p,$$

where $g(z)$ is holomorphic in D and continuous on \overline{D}.
We consider some relations between the distribution of the zeros of the \(k \)-th derivative \(B^{(k)}(z) \) of Blaschke product and the behavior of its Taylor coefficients

\[
\hat{B}(z) = \frac{B^{(k)}(0)}{k!} \quad (k \geq 0).
\]

Let \(f(x) \) be defined in a closed interval \(I \) and let

\[
\omega(\delta) = \omega(\delta, f) = \sup |f(x_2) - f(x_1)|
\]

for \(x_1, x_2 \in I, \quad |x_2 - x_1| \leq \delta \). The function \(\omega(\delta) \) is called the modulus of continuity of \(f \). If \(I \) is finite, then \(f \) is continuous in \(I \) if and only if \(\omega(\delta) \to 0 \) as \(\delta \to 0 \). For some \(\alpha > 0 \), we have \(\omega(\delta) \leq c\delta^\alpha \), where \(c \) is independent of \(\delta \).

Recall that \(f(z) \) satisfies a Lipschitz condition of order \(n \) in \(D \) (denote \(f \in \Lambda_n \)) if and only if

\[
|f(z_1) - f(z_2)| \leq c|z_1 - z_2|^n
\]

for \(0 < n \leq 1 \) where \(c \) is independent of \(z_1, z_2 \) and \(z_1, z_2 \in D \). Similarly, \(f \in \Lambda_n^* \) means that

\[
|f(z_1) - f(z_2)| = o(|z_1 - z_2|^n).
\]

It is obvious that functions in classes \(\Lambda_n, \Lambda_n^* \) are bounded and continuous. Only the case \(0 < n < 1 \) is interesting: if \(n > 1 \), then \(\omega(\delta)/\delta \) tends to zero with \(\delta \), \(f'(x) \) exists and is zero everywhere, and \(f \) is a constant. The function \(f \) belongs to \(\Lambda_1 \) if and only if \(f \) is integral of a bounded function.

Here, we apply these properties to the Hardy space. We recall that the function \(f \in L^p(T) \) is in the class \(\Lambda_\alpha^p \), \((0 < \alpha < 1, 1 \leq p < \infty) \) if its \(L^p \)-modulus of continuity

\[
\omega_p(\delta) = \sup_{|\theta| \leq \delta} \left| \int_T |f(\zeta e^{i\theta}) - f(\zeta)|^p d\zeta \right|^{1/p}
\]

satisfies the condition \(\omega_p(\delta) \leq c\delta^\alpha \). According to the Hardy and Littlewood theorem, the boundary values of a function \(\psi \) from the Hardy space \(H^p \) belong to the class \(\Lambda_\alpha^p \) if and only if

\[
\left[\int_T |\psi'(r\zeta)|^p d\zeta \right]^{1/p} \leq c(1 - r)^{\alpha - 1}.
\]
Young-Man Nam

Newman and Shapiro [14] have proved that the Taylor coefficient of an inner function may have order $o(\frac{1}{k})$ only in the trivial case of finite Blaschke products. For all $B(z)$, whose zeros satisfy the Newman condition

$$\sup_{k \geq 0} \frac{(1 - |a_{k+1}|)}{(1 - |a_k|)} < 1,$$

J. Newman and S. Shapiro obtained the estimate

$$\hat{B}(k) = O\left(\frac{1}{k}\right),$$

where $\hat{B}(k)$ is the Taylor coefficients of $B(k)$.

Theorem 5. Let $B(z)$ be a Blaschke product and let $\{z_k\}$ be its zero, then the following statements are equivalent:

1. The sequence $\{z_k\}$ satisfies the Newman condition,
2. $\hat{B}(k) = O\left(\frac{1}{k}\right)$,
3. $\sum_{k \geq n} |\hat{B}(k)|^2 = O\left(\frac{1}{n}\right)$,
4. $B(z) \in \Lambda^p_1$ for some $1 < p < \infty$, and
5. $\int_T |B''(r\zeta)||d\zeta| \leq c(1 - r)^{-1}$ for some constant c.

We show that condition (4) for $p = 2$ is equivalent to (3) (see [19]). In addition, from (5) it follows that $B(z) \in \Lambda^p_1$ for all $p \in (0, \infty)$ [13].

Proof. The implications (2) \Rightarrow (3) \Rightarrow (4) is obvious, (5) \Rightarrow (2) follows from the estimate

$$r^{k-2}k(k-1)|\hat{B}(k)| \leq \frac{1}{2\pi} \int_T |B''(r\zeta)||d\zeta|$$

for $r = 1 - \frac{1}{k}$. We show that (1) \Rightarrow (5) and (4) \Rightarrow (1).

(1) \Rightarrow (5). We make use of the easily proved estimate [4]

$$|B''(z)| \leq 2 \sum \frac{1 - |z_j|^2}{|1 - \bar{z}_j z|^3} + (\sum \frac{1 - |z_j|^2}{|1 - \bar{z}_j z|^2})^2.$$

Let $z = r\zeta$ and integrate with respect to $\zeta \in T$, then we obtain

$$\int_T |B''(r\zeta)||d\zeta| \leq 2 \sum (1 - |z_j|^2) \int_T |1 - \bar{z}_j r\zeta|^{-3} |d\zeta|$$

$$+ \{\sum (1 - |z_j|^2)(\int_T |1 - \bar{z}_j r\zeta|^{-4}|d\zeta|)^{\frac{1}{2}}\}^2.$$
Study of the Best deformation for extending Hardy spaces

Since

\[\int_T |1 - \bar{z}_j r \zeta|^{-n} |d\zeta| \leq c(1 - r|z_j|)^{1-n}, \quad (n > 1), \]

we have

\[\int_T |B''(r \zeta)||d\zeta| \leq c \sum \frac{1 - |z_j|^2}{(1 - r|z_j|)^2} + c \left(\frac{1 - |z_j|^2}{(1 - r|z_j|)^\frac{3}{2}} \right)^2. \]

From the condition \(\hat{B}(k) = O\left(\frac{1}{k}\right) \) it follows [18] that for \(\alpha > 1 \) one has

\[\sum (1 - |z_j|^2)(1 - r|z_j|)^{-\alpha} \leq c(1 - r)^{1-\alpha}. \]

Applying this inequality for \(\alpha = 2 \) and \(\alpha = \frac{3}{2} \), we obtain

\[\int_T |B''(r \zeta)||d\zeta| \leq c(1 - r)^{-1} \]

for some constant \(c \).

(4) \(\Rightarrow \) (1). Let \(B(z) \in \Lambda^p_\alpha \), \(\alpha = \frac{1}{p}, \ p \in (1, \infty) \). From the known results regarding the approximation by Abel means there follows [8] that

\[\left(\int_T |B(\zeta) - B(r \zeta)|^p|d\zeta| \right)^{\frac{1}{p}} \leq c(1 - r)^\alpha, \]

whence

\[\int_T (1 - |B(r \zeta)|)^p|d\zeta| \leq c(1 - r)^{\alpha p}. \]

By using the Carleson measure, the proof is complete.

Now we apply the derivative of \(B(z) \) to the deformation of \(B^p \) and find the condition that derivative of Blaschke product belongs to \(A^{p,q} \) spaces. Of course we restrict the value of \(p \) within \(0 < p < 1 \).

Theorem 6. Let \(B(z) \) be a Blaschke product with zeros \(\{a_n\} \) such that \(\sum (1 - |a_n|)^q \) is finite for some \(q \) \((0 < q < 1) \). Then the condition of \(p \) \((0 < p < \frac{1}{2q}) \) implies \(B'(z) \in A^{p,q} \).

In order to prove this theorem we use the following lemma.
Lemma 7[17]. Let \{a_n\} be a sequence in \(D\). Then there exists constants \(K, K_p(: dependence on \(p\)) such that

\[
\int_0^{2\pi} \frac{1}{|1 - a_n re^{i\theta}|^{2p}} d\theta \leq \begin{cases}
\frac{K_p}{(1 - |a_n|^r)^{2p-1}} & \text{if } p > \frac{1}{2} \\
K & \text{if } p < \frac{1}{2}.
\end{cases}
\]

Proof of Theorem 6. The derivative of \(B(z)\) is following formula;

\[
B'(z) = \sum \frac{B_n(z)(1 - |a_n|^2)}{(1 - \bar{a}_n z)^2},
\]

where \(B_n(z) = \frac{B(z)(1 - a_n z)}{1 - \bar{a}_n z}\), and this implies that

\[
|B'(z)| \leq \sum \frac{(1 - |a_n|^2)}{|1 - \bar{a}_n z|^2} \leq 2 \sum \frac{(1 - |a_n|)}{|1 - \bar{a}_n z|^2}.
\]

By the hypothesis, for fixed \(q \ (0 < q < 1)\),

\[
|B'(z)|^q \leq 2^q \sum \frac{(1 - |a_n|)^q}{|1 - \bar{a}_n z|^{2q}}.
\]

Integrate each side and use Lemma 7 for each \(q \ (\frac{1}{2} < q < 1)\), then we obtain that

\[
\int_0^1 \int_0^{2\pi} |B'(re^{i\theta})|^q (1 - r)^{\frac{1}{p} - 2} d\theta dr \leq 2^q K_p \sum (1 - |a_n|)^q \int_0^1 (1 - r)^{\frac{1}{p} - 1 - 2q} dr
\]

is finite for \(0 < p < \frac{1}{2q}\). If \(0 < q < \frac{1}{2}\), we get that

\[
\int_0^{2\pi} |B'(re^{i\theta})|^q d\theta \leq 2^q K \sum (1 - |a_n|)^q.
\]

Thus the proof is complete.

We are now prepared to discuss another conditions to find values of \(p\) and \(q\) or relations of its in \(A^{p,q}\) space using the basic estimate of the inequality \(|1 - a_n re^{i\theta}| \geq (1 - r)\).
THEOREM 8. Let \(\{a_n\} \) be a Blaschke sequence with \(\sum (1 - |a_n|) < \infty \) and \(q < \frac{1}{2p} \), then \(B'(z) \in A^{p,q} \) for each \(q > 1 \).

Proof. We consider the estimate derived from the finite Blaschke product as it is difficult to ensure the convergence of \(\sum \frac{1 - |a_n|}{|1 - a_n r e^{i\theta}|^2} \) for given \(q \). Let

\[
B_m(z) = \prod_{n=1}^{m} \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \bar{a}_n z}
\]

be a finite Blaschke product, then the derivative of \(B_m(z) \) is following;

\[
B'_m(z) = \sum_{n=1}^{m} B_n(z) \frac{1 - |a_n|^2}{(1 - \bar{a}_n z)^2},
\]

where \(B_n(z) = B_m(z) \frac{1 - \bar{a}_n z}{1 - a_n z} \). This implies that

\[
|B'_m(re^{i\theta})|^q \leq 2^q \left(\sum_{n=1}^{m} \frac{d_n}{1 - a_n r e^{i\theta}} \right)^q
\]

for \(1 - |a_n| = d_n \) \((n = 1, 2, 3, \ldots) \). By the Hölder inequality, we have

\[
|B'_m(re^{i\theta})|^q \leq 2^q \left(\sum_{n=1}^{m} \left(\frac{1}{d_n} \right)^{\frac{1}{q'}} \right)^{\frac{1}{q'}} \left(\sum_{n=1}^{m} \frac{d_n}{1 - a_n r e^{i\theta}} \right)^q
\]

\[
= 2^q \left(\sum_{n=1}^{m} \frac{d_n}{d_n} \right)^{\frac{1}{q'}} \sum_{n=1}^{m} \frac{d_n}{1 - a_n r e^{i\theta}}^{2q}
\]

where \(\frac{1}{q} + \frac{1}{q'} = 1 \). By Lemma 7,

\[
\int_{0}^{2\pi} |B'_m(re^{i\theta})|^q d\theta \leq 2^q \left(\sum_{n=1}^{m} \frac{d_n}{d_n} \right)^{\frac{1}{q'}} \sum_{n=1}^{m} d_n \int_{0}^{2\pi} \frac{d\theta}{|1 - a_n r e^{i\theta}|^{2q}}
\]

\[
\leq 2^q K_q \left(\sum_{n=1}^{m} d_n \right)^{\frac{4}{q} + 1} (1 - r)^{-2q + 1}.
\]

Since \(\sum d_n \) is finite, the value of the right side of the preceding inequality is finite independently of the choice \(m \). Therefore, we have
the following by the Lebesgue’s theorem,
\[
\int_0^{2\pi} |B'(re^{i\theta})|^q d\theta = \lim_{m \to -\infty} \int_0^{2\pi} |B_m'(re^{i\theta})|^q d\theta \\
\leq 2^q K_q \left(\sum d_n \right)^{\frac{q}{r}+1} (1-r)^{-2q+1}.
\]
Thus
\[
\int_0^1 \int_0^{2\pi} |B'(re^{i\theta})|^q (1-r)^{\frac{1}{r}-2} d\theta dr \\
= \lim_{m \to -\infty} \int_0^1 \int_0^{2\pi} |B_m'(re^{i\theta})|^q (1-r)^{\frac{1}{r}-2} d\theta dr \\
\leq 2^q K_q \left(\sum d_n \right)^{\frac{q}{r}+1} \int_0^1 (1-r)^{\frac{1}{r}-2q+1} dr.
\]
By the hypothesis, this integration is finite for \(q < \frac{1}{2p} \). Therefore the proof is complete.

We notice the convergent relation of \(\sum (1-|a_n|)^q \) and \(\sum (1-|a_n|) \) is depend on \(q \) in the proof of the above theorem.

Remark. If \(\sum (1-|a_n|)^q \) is finite then \(\sum (1-|a_n|) \) is also finite but the converse does not hold for each \(q < 1 \). On the other hand, this property is opposite to the mentioned argument for each \(q > 1 \).

References

Study of the Best deformation for extending Hardy spaces

13. Y M Nam, Derivatives of Blaschke products on extended H^p spaces, Osaka Univ./RRM 94-8, 1994

Department of Mathematics
Education Kyungnam University
Masan 631-701