Potential Role of $Ca^{++}$ on the Differentiation of Erythroid Progenitor Cells

  • Cho, In-Koo (College of Pharmacy, Chung Ang University) ;
  • Huh, In-Hoe (College of Pharmacy, Chung Ang University) ;
  • Lee, Sang-Jun (Central Research Laboratory, Chong Kun Dang Pharmaceutical Co.) ;
  • Kim, Dong-Seop (National Institute of Safety Research) ;
  • Ann, Hyung-Soo (College of Pharmacy, Dong Duck Womens University)
  • Published : 1995.04.01

Abstract

In ordedr to gain insight into the mechanisms byl which erythropoietin promotes erythropoiesis, effects of various inhibitors on the erythropoietin-propmoted differentiation of erythroid progenitor cells and on the erythroid progenitor cells and on the erythropoietin-promoted $Ca^{++}$ uptake in the progenitor cells were determined, and the relationship between the inhibitory activity of each inhibitor cells were determined, and he relationship between the inhibitory activity of each inhibitor toward the differentiation and channel blocker (varapamil), a $Ca^{++}$ chelator (EDTA) and a protein kinase C inhibitor (stauroporine). All of these agents inhibited both the erythropoietin-mediated differentiation of the erythroid progenitor cells, as determined by the incroporation of $^{59}Fe$ into heme, and $Ca^{++}$ uptake in a concentrtion dependent manner. In the cases of varapamil and EDTA, the half-miximal inhibitory concentration $(IC_{50})$ values for differentiation of the progenitor cells may be theconsequence of the inhibition of the $Ca^{++}$ uptake in a concentration dependent manner. In the cases of varapamil and EDTA, the half-miximal inhibitory concentration dependent manner. In the cases of verapamil and EDTA, the half-miximal inhibitory concentration $(IC_{50})$ values for differentiation of the progenitor cells may be the consequence of the inhibition of the $Ca^{++}$ uptake by the inhibitor. On the other hand, in the cases of genistein and stauroporine, the $IC_{50}$ values for inhibition of differentitation were significantly different from that for inhibition of $Ca^{++}$uptake. These results suggest that the mechanism of inhibition of differentiation by these two inhibitors in complex. However, taken all together, the above results support the proposition that $Ca^{++}$ uptake may play a role in the erythropoietin-mediated differentiation of erythoid progenitor cells.

Keywords