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HOMOCLINIC ORBITS FOR HAMILTONIAN SYSTEMS

June G1 Kim

0. Introduction
Let p,g € R® and H : R?® — R" be differentiable. An autonomous

Hamiltonian system has the form

) OH . OH
(0.1) p~~5&-(1} ' q)y §= p (p.q).

When
H(p,q,t) = 1/2|p|* = 1/2(L(t)g,q) + V(t. q)

with L(t) an n x n symmetric matrix, the equation (0.1) becomes to

. d:p.l
0.2 (
(. ) {p:L(f)q— Vq(ta Q)

Thus
(HS) = L{t)g + Vy(t,q) = 0.
Let E := W1*(R,R") under the usual norm

lglf? = / (142 + lal*)dt, g€ E.

Thus E is a Hilbert space and E C C*(R,R™), the space of continuous
function ¢ on R such that ¢(t) — 0 as |t| — co. Now let

I(q) = /<|q|+qL Jg))dt — / Vit q)dt
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be the corresponding functional associated with (HS). We assume that
L(t) is T-periodic in t, is symmetric and positive definite uniformly on

[0,T]. Then
lql? = /_ (4% + (g, L(t)q)) dt

can and will be taken as an equivalent norm on E. Note that

I(7iq) = I(q),
where 7;q(t) := g(t — jT). Hence I posseses a Z-action.
V.Coti Zelati and P. Rabinowitz[ 3 | studied the existence of infin-
itely many homoclinic solutions of the Hamiltonian system of ordinary
differential equations:

(HS) ¢ — L(t)g + Vi (t,q)
assuming that L and V satisfy:

(L) For each t € R, L(t) is a symmetric positive definite n x n matrix
and is continuous and T-periodic in ¢,

(V1) V € C*(R x R™) and is T-periodic in ¢,
(Vo) Vee(t,0) = 0,
(V3) there is a u > 2 such that

0 < uV(t,q) < (g, Vy(t,q))
forallt € R and ¢ € R" \ {0}.

(x) there is an « > 0 such that I°*®/Z contrains only finitely many
critical points of I.

Moreover they have suggested that the condition () could be re-
placed with a weaker condition if we further require that V satisfy the
following condition

Forall ¢eS" ! s— 1/s (€, Vq(t, s£))

(V) 1s an increasing function of «.

In this work we give a condition on V and this will replace the crucial
condition ().
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1. Preliminaries

Let’s use the following notations;
Io={g€E|l(g)2a}, I'={q€E|I(g)<b},
I,’: =1, NI% K :=the set of criticz] points of I,
Kb.=knIb

Let X be a Banach space.

DEFINITION 1.1. ¢ € C}(X,R) satisfies the Palais-Smale condition
(PS) if every sequence (u;) in X such that (¢(v;)) is bounded and

¢'(uj)— 0 for j— o
contains a convergent subsequence.

The Palais-Smale condition is a compactness condition on ¢ which
replaces the compactness of the manifold in the classical Lusternik-
Schnirelman theory. We will seek solutions of (HS) as a critical points of
the functional I associated with (HS). Note that the key roles (PS) plays
in the proof of the standard deforination theorem is that it provides
a & > 0 such that ||[I'(x)]] > & for all z € 2t for some € > 0 if
K(b) := K} = 0§ and appropriately modified statement if K(b) # §. But
our functional I does not satisfy the (PS) condition. However we can
overcome this difficulty in the following way. From now on we assume
that V safisfies (V;)-(Vy) and that L satisfies “he condition (L).

Given g € E '\ {O} define a function f : (0,00) - R by
fls)=1(sq
=%/ MP+@meﬁ—/ V(t, sq)dt.

—

/ (Jg]* + (g, L(t)q ))dt~/ (g, Vy(t, sq))dt

(f(mV (a, (1 »ﬂ—%[:wvuemw)

3
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Now (V4) implies that f : (0,00) — R has a unique maximum point.
Moreover (V1)-(V3) implies that
< Mlz|* uniformly in t for |z <1,

Vi)

> m|z|* uniformly int for |z > 1.
Here

m = min V({,2) >0 and
teR
|z|=1

M = max V(t,z) > 0.
52

Hence f(s) — —oo as s — +o0o. Observe also that I(gq) = %||¢||* +
o(||¢||*). Therefore 0 is an isolated singular point of I. Choose a point
e # 0 such that I(e) < 0. Let

= 9))
c= g‘é’lf o I(g(9)),

where
T, = {g € C(10,1], E) : g(0) = 0, g(1) = e}.

Since I(q) = 3||qli* + o(]lg]|*), ¢ > 0. Usually the value of ¢ depends
on the choice of e. But we have the following

LEMMA 1.1. If V satisfies (V1)-(V3), then ¢ is independent of the
choice of e.

Proof. Define a function f :(0,00) — R by
f(s) =I(sq)

_ %/_Z(I‘jlz + <q,L(t)q))dt_/_°; V(t. sq)dt

£y =s [ i+t wana - [ " (@, Vit sq))dt

—0

o [ iR+ o pwapa =2 [ viesga

Then

4
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post [, ‘m/ ’
=2 [ e bomyi - [ Vo)
2 o [ ¢]
<25 [T aar o - [ visqan

Hence we obtain f'(s) — p/sf(s) < 0. This implies that f(s)/s" is a
decreasing funciton of s. Therefore any two points ¢; # 0 and ez # 0
such that e; € I° and e; € I° can be joined by a path lying in I®. This
proves that ¢ is independent of the choice e. [

To define an another intrinsic constant ¢,we need the following
LEMMA 1.2. Ifg € K, then I{qg) > ( Hq”‘Z
Proof.
1 o
I{q) :—/ (14 + (g, L(t)q)) df—</ Vi(t,q)dt

—O

2
= [ Ui+ Lo - [ @
= 0.
Hence
1 . \ X 1 ) i ‘
I(q) = I{q) - 5(1 (9),q) = ‘[_(X“(;g(qs"’q(tqﬂ -V (tq))dt
1 1 %) ’ 1 1 o0 N
> (5 ;) [_m<qﬂ’q(f,q)>df = (5 - ;) /;XJ(MZ + (g, L(t)q) )dt
1
(3=l O
Let
= 1f I{q).
‘ qé}é\{o} 9

Since 0 is an isolated singular point, Lemma 1.2 implies that ¢ > 0. We
now have two inherently defined constants ¢ and €. To compare the two
numbers ¢ and ¢,we need the following two Lemmas.

-
5
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LEMMA 1.3. ([ 4 ]) Let K be a compact metric space, Ky C K
a closed set, X a Banach space, x € C(Ky,X) and let us define a
complete metric space

M={geC(K,X);g(s)=x(s)ifs € Ko}
with the usual distance d. Let ¢ € C'(X, R) and let us define

= inf X $)).
¢= inf maxo(g(s))

Then for each sequence (fi) in M such that
max ¢(fx) — ¢,
there exists a sequence (vy) in X such that
o(vk) — ¢,

dist(vk, fx(K)) — 0,
le'(vi)| = 0 as k — +oo.

LEMMA 1.4. ([3]) Let (uy) C E be such that I(u,,) — b> 0 and
I'"(um) — 0. Then thereis an{ € N with ¢ bounded above by a constant
depending only on b, normalized functions vy, v, ,ve € K\ {0}, a
subsequence of (u,,), and corresponding (ki ) C Z,1 <. i < ¢, such that

14 £

lfttm = > 7as, vil| — 0, > I(vi) = b,

1 1

and, for i # j, ' _
ki, — k3, ] = +oo

as m — oo along the subsequence.
In the above we say that a function v is normalized if
0o == t
lollze = max o(t)]

occurs for ¢ € [0, T] and [v(t)] < |Jv||p~ for t < 0. We are now ready to
show that ¢ = ¢.
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THEOREM 1.1. If V satisfies the conditions V)-(Vy), then ¢ = T.

Proof. Suppose ¢ < €. By Lemma 1.3 there exists a sequence (U, ) C
E such that I(up) — ¢ and I'(u,) — 0. Since ¢ > 0, we can apply
Lemma 1.4 to obtain a normalized critical peoints vy, v, -« ,v¢ such

that
¢

Z I{vi) =c.

1=
But this contradicts the fact that ¢ = infex\ (o) I(¢). Therefore ¢ > .
On the other hand, given any q € K\ {0}, consider

fls) = I(sq)
32 &0 ) ‘ J’H‘C )
= = / (1g)* + (g, L(t)g))dt — / Vi(t, sq)dt.

S 20 o<

Observe that

Fi(s) = s (/_ (41" + {g, L{t)g))et % /

[o ] o =G

Q

(g, V(t, Sq))df)

Since ¢ € K\ {0}, f'(1) = 0. Now (V) imolies that f attains its
maximum value at s = 1. Therefore ¢ < f(1) = I{q) for any ¢ € K\ {0}.
Hence ¢ <& [

N

Remember that I does not satisfy the (PS) condition. However we
can show that ¢ is a critical value of I.

THEOREM 1.2. If V satisfies the conditions (Vy)-(Va), then ¢ is a
critical value of I.

Proof. Choose a sequence (g, ) C K\ {0} such that I(g,,) — €= ¢
Since I(q) > (—12- - i)”q”l for all ¢ € K, (gm) 15 bounded in E. Hence
there exists a subsequence (¢m; ) of (¢gm) and ¢ € E such that ¢,,, — ¢
in E. We may also assume that (g,,) is a normalized sequence. By
Sobolev imbedding theorem we have ¢, — ¢ in L'?(R,R"). Hence
g # 0. Now

0= (I'"(gm, ), p) = / ({Gm, 2} + (v, L(t Vg, ) )elt

—X

[ e ittan et

a0
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By taking limits we obtain

0= [~ (91 + b, tra))at - [ e

= (I'(q), ).

Hence ¢ is a critical point of I. Let w,, = g¢m; — ¢. Then as in Propo-
sition 1.2 in [3] we can show that

Hwy,) > c— I(g),
I'(wn) — 0.

Now

I(wm):%/_ (lwml""+(wm,L(t)wm))dt—/_ V(t,wn )dt

and
() 0m) = [ (inf? + o, L)
— /;OO (w,,,,Vq(t,wm))dt
Hence N
I(wn) = {0 (wm), wn) > (% ) [ Vitwmat
> 0.
Thus

0 < I(wm) = ('), ) < ) + M| ()]
for some constant M independent of m. Therefore
0 <c—I(g)

Since c=¢ = infgex\ (0} Z(g), this completes the proof. O

The following fact is crucial to the existence of infinitely many ho-
moclinic solutions of (HS).
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q on the ray passing through 0 and ¢ such that I{g) < 0. Define a
function ¢ : [0,1] — E by ¢(6) = 6§. Then
(1) geT,
(2) Maxggo,111(9(#)) = ¢, and
(3) for each r > 0, there exists ¢ > 0 such that I(g(6)) > ¢ — =
implies g(8) € B,(q).

LEMMA 1.5. Let g € E be a critical point of [ with I(q) = ¢. Choose

Proof. (1) and (ii) are evident from the construction of ¢ and (V).
Suppose ¢ = 6, 0 < 8 < 1. Then for any ¢ > 0, by {(V,). there are
constants 6_. and 6y, with 6_, < 8 < f,. such that 4. — 8 as
€ — 0and I{(87) > ¢ — ¢ if and only if 8 € (4_,68,). In particular for
each r > 0 there is an ¢ = &(r) such that 6 ¢ (#_. 6.} implies that
g(8)=467¢€ B.(¢q). O

At this point assume further that V7 satisfies one further condition

(#%x)  There is an « > 0 such that K" @consists of isolated points.
Observe that the above proposition correspends to Proposition 2.22
[3]. Therefore we can apply the argument in [3] to prove the existence
of infinitely many homoclinic solutions of (HS'. Therefore the following
theorem was essentially proved in [3].

THEOREM 1.3. If V satisfies (Vy)-(Vy) and (++) .then the problem
(HS) has infinitely many homoclinic solutions

2. Main result

The condition (*) ,which asserts the fintteness of normalized eritical
points of V in It /Z was required to use the special property of the
space E = WI2(R,R"). So it could be replaced with the condition
(*+), which asserts the discreteness of normalized critical points of V' in
Kt if V satisfies the condition (Vy4). Therefore it is natural to seek a
condition on V' which guarantees the the discreteness of critical points
of V. We do this in the following Theorem.
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THEOREM 2.1. IfV satisfies the conditions (V1 )-(Vy), and

n 1
(Vs) <V99(t’ Q)p7p> Z K’lp|2’ P.q € R 5 K> —'2_

then the critical points of I are all isolated. Therefore the problem (HS)
has infinitely many homoclinic solutions.

Proof. Let ¢ be a critical point of I. Thus for any p € E we have
o0

m#ﬂnm=/(@@+@mmmw

-0

- /oo (p, Vy(t, q))dt.

Now
Ha+p) =3 [~ Ui+5P +a+p L@@+ i = [ Vitg+

=5 [l + Lo+ [ G+ o L)

w5 [ Gl o= [ Vit
=1+ [ Vitad+ [T oV
#3002 = [ Vitg+pa

00

=1@)+IblP + [ (Vi a) + (5, Vil ) = Vitig + R,
Now

V(t’Q) + <P, Vq(taQ» - V(t’q +P)

1
= /0 5(p, Vaq(t,q + sp)p)dt
:AS@M%WWHM-MWMMm+mHN&M-

10
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Note that {|p||r~ < \/§||p|| Hence

/ (Vitoq) + . Vylt,q)) = Vit.q + p))dt

froas ()( }1)“2) + / <2‘)7 "qq({. ) ']))(If

e

Observe that

R ] . o !) 3 ) p )
(p, Vaq(t, q)p)dt = HPH“/ (7 Vaglt )50 dt
[ " I T

X - XD

We see here that h is homogencous of degree ) and that # > x » =
by (Vs). Hence we now have the following estimate;

a—y

Hg+p)=Ig)+ (5 + hpDlpll” + ollpl*).

This completes the proof. [
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