HOMOCLINIC ORBITS FOR HAMILTONIAN SYSTEMS

JUNE GI KIM

0. Introduction

Let $p,q\in\mathbb{R}^n$ and $H:\mathbb{R}^{2n}\to\mathbb{R}^n$ be differentiable. An autonomous Hamiltonian system has the form

(0.1)
$$\dot{p} = -\frac{\partial H}{\partial q}(p,q), \quad \dot{q} = \frac{\partial H}{\partial p}(p,q).$$

When

$$H(p,q,t) = 1/2|p|^2 - 1/2\langle L(t)q,q \rangle + V(t,q)$$

with L(t) an $n \times n$ symmetric matrix, the equation (0.1) becomes to

(0.2)
$$\begin{cases} \dot{q} = p, \\ \dot{p} = L(t)q - V_q(t, q). \end{cases}$$

Thus

(HS)
$$\ddot{q} - L(t)q + V_q(t,q) = 0.$$

Let $E := W^{1,2}(\mathbb{R}, \mathbb{R}^n)$ under the usual norm

$$||q||^2 := \int_{-\infty}^{\infty} (|\dot{q}|^2 + |q|^2) dt, \quad q \in E.$$

Thus E is a Hilbert space and $E \subset C^0(\mathbb{R}, \mathbb{R}^n)$, the space of continuous function q on \mathbb{R} such that $q(t) \to 0$ as $|t| \to \infty$. Now let

$$I(q) = \frac{1}{2} \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \int_{-\infty}^{\infty} V(t, q) dt$$

Received February 26, 1993.

Supported by the GARC.

be the corresponding functional associated with (HS). We assume that L(t) is T-periodic in t, is symmetric and positive definite uniformly on [0,T]. Then

$$\|q\|^2 := \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt$$

can and will be taken as an equivalent norm on E. Note that

$$I(\tau_j q) = I(q),$$

where $\tau_j q(t) := q(t - jT)$. Hence I possesses a Z-action.

V.Coti Zelati and P. Rabinowitz[3] studied the existence of infinitely many homoclinic solutions of the Hamiltonian system of ordinary differential equations:

- (HS) $\ddot{q} L(t)q + V_q(t,q)$ assuming that L and V satisfy:
- (L) For each $t \in \mathbb{R}$, L(t) is a symmetric positive definite $n \times n$ matrix and is continuous and T-periodic in t,
- (V_1) $V \in \mathcal{C}^2(\mathbb{R} \times \mathbb{R}^n)$ and is T-periodic in t,
- $(V_2) V_{qq}(t,0) = 0,$
- (V_3) there is a $\mu > 2$ such that

$$0 < \mu V(t,q) \le \langle q, V_q(t,q) \rangle$$

for all $t \in \mathbb{R}$ and $q \in \mathbb{R}^n \setminus \{0\}$.

(*) there is an $\alpha > 0$ such that $I^{c+\alpha}/\mathbb{Z}$ contrains only finitely many critical points of I.

Moreover they have suggested that the condition (*) could be replaced with a weaker condition if we further require that V satisfy the following condition

For all
$$\xi \in S^{n-1}$$
, $s \to 1/s \langle \xi, V_q(t, s\xi) \rangle$
(V₄) is an increasing function of s .

In this work we give a condition on V and this will replace the crucial condition (*).

1. Preliminaries

Let's use the following notations;

$$I_a := \{q \in E \mid I(q) \geq a\}, \quad I^b := \{q \in E \mid I(q) \leq b\},$$

 $I_a^b := I_a \cap I^b, \quad \mathcal{K} := \text{the set of critical points of } I,$
 $\mathcal{K}_a^b := \mathcal{K} \cap I_a^b.$

Let X be a Banach space.

DEFINITION 1.1. $\phi \in C^1(X, \mathbb{R})$ satisfies the *Palais-Smale condition* (PS) if every sequence (u_j) in X such that $(\phi(u_j))$ is bounded and

$$\phi'(u_j) \to 0 \quad \text{for} \quad j \to \infty$$

contains a convergent subsequence.

The Palais-Smale condition is a compactness condition on ϕ which replaces the compactness of the manifold in the classical Lusternik-Schnirelman theory. We will seek solutions of (HS) as a critical points of the functional I associated with (HS). Note that the key roles (PS) plays in the proof of the standard deformation theorem is that it provides a $\delta > 0$ such that $||I'(x)|| \geq \delta$ for all $x \in \mathcal{I}_{b-\epsilon}^{b+\epsilon}$ for some $\epsilon > 0$ if $\mathcal{K}(b) := \mathcal{K}_b^b = \emptyset$ and appropriately modified statement if $\mathcal{K}(b) \neq \emptyset$. But our functional I does not satisfy the (PS) condition. However we can overcome this difficulty in the following way. From now on we assume that V safisfies (V_1) - (V_4) and that L satisfies the condition (L).

Given $q \in E \setminus \{0\}$, define a function $f:(0,\infty) \to \mathbf{R}$ by

$$f(s) = I(sq)$$

$$= \frac{s^2}{2} \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \int_{-\infty}^{\infty} V(t, sq) dt.$$

Then

$$f'(s) = s \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \int_{-\infty}^{\infty} \langle q, V_q(t, sq) \rangle dt$$
$$= s \left(\int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \frac{1}{s} \int_{-\infty}^{\infty} \langle q, V_q(t, sq) \rangle dt \right).$$

Now (V_4) implies that $f:(0,\infty)\to \mathbf{R}$ has a unique maximum point. Moreover (V_1) - (V_3) implies that

$$V(t,x) \left\{ egin{array}{ll} \leq M|x|^{\mu} & ext{uniformly in t for} & |x| \leq 1, \ \geq m|x|^{\mu} & ext{uniformly in t for} & |x| \geq 1. \end{array}
ight.$$

Here

$$\begin{split} m &= \min_{\substack{t \in \mathbf{R} \\ |x| = 1}} V(t,x) > 0 \quad \text{and} \\ M &= \max_{\substack{t \in \mathbf{R} \\ |x| = 1}} V(t,x) > 0. \end{split}$$

Hence $f(s) \to -\infty$ as $s \to +\infty$. Observe also that $I(q) = \frac{1}{2}||q||^2 + o(||q||^2)$. Therefore 0 is an isolated singular point of I. Choose a point $e \neq 0$ such that $I(e) \leq 0$. Let

$$c = \inf_{g \in \Gamma_e} \max_{\theta \in [0,1]} I(g(\theta)),$$

where

$$\Gamma_e = \{g \in C([0,1], E) : g(0) = 0, \ g(1) = e\}.$$

Since $I(q) = \frac{1}{2}||q||^2 + o(||q||^2)$, c > 0. Usually the value of c depends on the choice of e. But we have the following

LEMMA 1.1. If V satisfies (V_1) - (V_3) , then c is independent of the choice of e.

Proof. Define a function $f:(0,\infty)\to \mathbf{R}$ by

$$f(s) = I(sq)$$

$$= \frac{s^2}{2} \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \int_{-\infty}^{\infty} V(t, sq) dt.$$

Then

$$f'(s) = s \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \int_{-\infty}^{\infty} \langle q, V_q(t, sq) \rangle dt$$

$$\leq s \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \frac{\mu}{s} \int_{-\infty}^{\infty} V(t, sq) dt$$

Homoclinic orbits

$$\begin{split} &=\frac{\mu}{s}(\frac{s^2}{\mu}\int_{-\infty}^{\infty}(|\dot{q}|^2+\langle q,L(t)q\rangle)dt-\int_{-\infty}^{\infty}V(t,sq)dt)\\ &\leq\frac{\mu}{s}(\frac{s^2}{2}\int_{-\infty}^{\infty}(|\dot{q}|^2+\langle q,L(t)q\rangle)dt-\int_{-\infty}^{\infty}V(t,sq)dt)\\ &=\frac{\mu}{s}f(s). \end{split}$$

Hence we obtain $f'(s) - \mu/sf(s) \leq 0$. This implies that $f(s)/s^{\mu}$ is a decreasing function of s. Therefore any two points $e_1 \neq 0$ and $e_2 \neq 0$ such that $e_1 \in I^0$ and $e_2 \in I^0$ can be joined by a path lying in I^0 . This proves that c is independent of the choice e. \square

To define an another intrinsic constant \bar{c} , we need the following

LEMMA 1.2. If
$$q \in K$$
, then $I(q) \ge (\frac{1}{2} - \frac{1}{\mu}) ||q||^2$.

Proof.

$$\begin{split} I(q) &= \frac{1}{2} \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \int_{-\infty}^{\infty} V(t,q) dt \\ \langle I'(q), q \rangle &= \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \int_{-\infty}^{\infty} \langle q, V_q(t,q) \rangle dt \\ &= 0 \end{split}$$

Hence

$$\begin{split} I(q) &= I(q) - \frac{1}{2} \langle I'(q), q \rangle = \int_{-\infty}^{\infty} \left(\frac{1}{2} \langle q, V_q(t, q) \rangle - V(t, q) \right) dt \\ &\geq \left(\frac{1}{2} - \frac{1}{\mu} \right) \int_{-\infty}^{\infty} \langle q, V_q(t, q) \rangle dt = \left(\frac{1}{2} - \frac{1}{\mu} \right) \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt \\ &= \left(\frac{1}{2} - \frac{1}{\mu} \right) \|q\|^2. \end{split}$$

Let

$$\overline{c} = \inf_{q \in \mathcal{K} \setminus \{0\}} I(q).$$

Since 0 is an isolated singular point, Lemma 1.2 implies that $\overline{c} > 0$. We now have two inherently defined constants c and \overline{c} . To compare the two numbers c and \overline{c} , we need the following two Lemmas.

LEMMA 1.3. ([4]) Let K be a compact metric space, $K_0 \subset K$ a closed set, X a Banach space, $\chi \in C(K_0, X)$ and let us define a complete metric space

$$M = \{g \in C(K, X); g(s) = \chi(s) \text{ if } s \in K_0\}$$

with the usual distance d. Let $\varphi \in C^1(X, \mathbf{R})$ and let us define

$$c = \inf_{g \in M} \max_{s \in K} \varphi(g(s)).$$

Then for each sequence (f_k) in M such that

$$\max_{k} \varphi(f_k) \to c,$$

there exists a sequence (v_k) in X such that

$$\varphi(v_k) \to c,$$

 $dist(v_k, f_k(K)) \to 0,$
 $|\varphi'(v_k)| \to 0 \quad \text{as} \quad k \to +\infty.$

LEMMA 1.4. ([3]) Let $(u_m) \subset E$ be such that $I(u_m) \to b > 0$ and $I'(u_m) \to 0$. Then there is an $\ell \in \mathbb{N}$ with ℓ bounded above by a constant depending only on b, normalized functions $v_1, v_2, \dots, v_\ell \in \mathcal{K} \setminus \{0\}$, a subsequence of (u_m) , and corresponding $(k_m^i) \subset \mathbb{Z}$, $1 \le i \le \ell$, such that

$$||u_m - \sum_{1}^{\ell} \tau_{k_m^i} v_i|| \to 0, \qquad \sum_{1}^{\ell} I(v_i) =: b,$$

and, for $i \neq j$,

$$|k_m^i - k_m^j| \to +\infty$$

as $m \to \infty$ along the subsequence.

In the above we say that a function v is normalized if

$$\|v\|_{L^{\infty}} = \max_{t \in \mathbf{R}} |v(t)|$$

occurs for $t \in [0, T]$ and $|v(t)| < ||v||_{L^{\infty}}$ for t < 0. We are now ready to show that $c = \overline{c}$.

Homoclinic orbits

THEOREM 1.1. If V satisfies the conditions (V_1) - (V_4) , then $c = \overline{c}$.

Proof. Suppose $c < \overline{c}$. By Lemma 1.3 there exists a sequence $(u_m) \subset E$ such that $I(u_m) \to c$ and $I'(u_m) \to 0$. Since c > 0, we can apply Lemma 1.4 to obtain a normalized critical points v_1, v_2, \dots, v_ℓ such that

$$\sum_{i=1}^{\ell} I(v_i) = c.$$

But this contradicts the fact that $\overline{c} = \inf_{q \in \mathcal{K} \setminus \{0\}} I(q)$. Therefore $c \geq \overline{c}$. On the other hand, given any $q \in \mathcal{K} \setminus \{0\}$, consider

$$f(s) = I(sq)$$

$$= \frac{s^2}{2} \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \int_{-\infty}^{\infty} V(t, sq) dt.$$

Observe that

$$f'(s) = s \left(\int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q, L(t)q \rangle) dt - \frac{1}{s} \int_{-\infty}^{\infty} \langle q, V_q(t, sq) \rangle dt \right).$$

Since $q \in \mathcal{K} \setminus \{0\}$, f'(1) = 0. Now (V_4) implies that f attains its maximum value at s = 1. Therefore $c \leq f(1) = I(q)$ for any $q \in \mathcal{K} \setminus \{0\}$. Hence $c \leq \overline{c}$. \square

Remember that I does not satisfy the (PS) condition. However we can show that c is a critical value of I.

THEOREM 1.2. If V satisfies the conditions (V_1) - (V_4) , then c is a critical value of I.

Proof. Choose a sequence $(q_m) \subset \mathcal{K} \setminus \{0\}$ such that $I(q_m) \to \overline{c} = c$. Since $I(q) \geq (\frac{1}{2} - \frac{1}{\mu}) \|q\|^2$ for all $q \in \mathcal{K}$, (q_m) is bounded in E. Hence there exists a subsequence (q_{m_j}) of (q_m) and $q \in E$ such that $q_{m_j} \to q$ in E. We may also assume that (q_m) is a normalized sequence. By Sobolev imbedding theorem we have $q_{m_j} \to q$ in $L^{loc}_{\infty}(\mathbf{R}, \mathbf{R}^n)$. Hence $q \neq 0$. Now

$$\begin{split} 0 &= \langle I'(q_{m_j}), \varphi \rangle = \int_{-\infty}^{\infty} (\langle \dot{q}_{m_j}, \dot{\varphi} \rangle + \langle \varphi, L(t) q_{m_j} \rangle) dt \\ &- \int_{-\infty}^{\infty} \langle \varphi, V_q(t, q_{m_j}) \rangle dt. \end{split}$$

By taking limits we obtain

$$0 = \int_{-\infty}^{\infty} (\langle \dot{q}, \dot{\varphi} \rangle + \langle \varphi, L(t)q \rangle) dt - \int_{-\infty}^{\infty} \langle \varphi, V_q(t, q) \rangle dt$$
$$= \langle I'(q), \varphi \rangle.$$

Hence q is a critical point of I. Let $w_m = q_{m_j} - q$. Then as in Proposition 1.2 in [3] we can show that

$$I(w_m) \to c - I(q),$$

 $I'(w_m) \to 0.$

Now

$$I(w_m) = \frac{1}{2} \int_{-\infty}^{\infty} (|\dot{w}_m|^2 + \langle w_m, L(t)w_m \rangle) dt - \int_{-\infty}^{\infty} V(t, w_m) dt$$

and

$$\langle I'(w_m), w_m \rangle = \int_{-\infty}^{\infty} (|\dot{w}_m|^2 + \langle w_m, L(t)w_m \rangle) dt$$
$$- \int_{-\infty}^{\infty} \langle w_m, V_q(t, w_m) \rangle dt.$$

 $_{
m Hence}$

$$I(w_m) - \frac{1}{2} \langle I'(w_m), w_m \rangle \ge \left(\frac{\mu}{2} - 1\right) \int_{-\infty}^{\infty} V(t, w_m) dt$$

 $\ge 0.$

Thus

$$0 \leq I(w_m) - \frac{1}{2} \langle I'(w_m), w_m \rangle \leq I(w_m) + M \|I'(w_m)\|$$

for some constant M independent of m. Therefore

$$0 \le c - I(q)$$
.

Since $c = \overline{c} = \inf_{q \in \mathcal{K} \setminus \{0\}} I(q)$, this completes the proof. \square

The following fact is crucial to the existence of infinitely many homoclinic solutions of (HS).

Homoclinic orbits

LEMMA 1.5. Let $q \in E$ be a critical point of I with I(q) = c. Choose \overline{q} on the ray passing through 0 and q such that $I(\overline{q}) < 0$. Define a function $g: [0,1] \to E$ by $g(\theta) = \theta \overline{q}$. Then

- (1) $g \in \Gamma$,
- (2) $Max_{\theta \in [0,1]}I(g(\theta)) = c$, and
- (3) for each r > 0, there exists $\varepsilon > 0$ such that $I(g(\theta)) > c \varepsilon$ implies $g(\theta) \in B_r(q)$.

Proof. (i) and (ii) are evident from the construction of g and (V_4) . Suppose $q = \overline{\theta}\overline{q}$, $0 < \overline{\theta} < 1$. Then for any $\varepsilon > 0$, by (V_4) , there are constants $\theta_{-\varepsilon}$ and $\theta_{+\varepsilon}$ with $\theta_{-\varepsilon} < \overline{\theta} < \theta_{+\varepsilon}$ such that $\theta_{\pm\varepsilon} \to \overline{\theta}$ as $\varepsilon \to 0$ and $I(\theta\overline{q}) > c - \varepsilon$ if and only if $\theta \in (\theta_-, \theta_+)$. In particular for each r > 0 there is an $\varepsilon = \varepsilon(r)$ such that $\theta \in (\theta_-, \theta_+)$ implies that $g(\theta) = \theta\overline{q} \in B_r(q)$. \square

At this point assume further that V satisfies one further condition

(**) There is an $\alpha > 0$ such that $\mathcal{K}^{c+\alpha}$ consists of isolated points.

Observe that the above proposition corresponds to Proposition 2.22 [3]. Therefore we can apply the argument in [3] to prove the existence of infinitely many homoclinic solutions of (HS). Therefore the following theorem was essentially proved in [3].

THEOREM 1.3. If V satisfies (V_1) - (V_4) and (**), then the problem (HS) has infinitely many homoclinic solutions

2. Main result

The condition (*), which asserts the finiteness of normalized critical points of V in $I^{c+\alpha}/\mathbf{Z}$, was required to use the special property of the space $E = W^{1,2}(\mathbf{R}, \mathbf{R}^n)$. So it could be replaced with the condition (**), which asserts the discreteness of normalized critical points of V in $\mathcal{K}^{c+\alpha}$, if V satisfies the condition (V₄). Therefore it is natural to seek a condition on V which guarantees the discreteness of critical points of V. We do this in the following Theorem.

THEOREM 2.1. If V satisfies the conditions (V_1) - (V_4) , and

$$\langle V_{qq}(t,q)p,p\rangle \geq \kappa |p|^2, \quad p,q \in \mathbf{R}^n, \quad \kappa > -\frac{1}{2}$$

then the critical points of I are all isolated. Therefore the problem (HS) has infinitely many homoclinic solutions.

Proof. Let q be a critical point of I. Thus for any $p \in E$ we have

$$0 = \langle I'(q), p \rangle = \int_{-\infty}^{\infty} (\langle \dot{q}, \dot{p} \rangle + \langle p, L(t)q \rangle) dt$$
$$- \int_{-\infty}^{\infty} \langle p, V_q(t, q) \rangle dt.$$

Now

$$\begin{split} I(q+p) &= \frac{1}{2} \int_{-\infty}^{\infty} (|\dot{q}+\dot{p}|^2 + \langle q+p,L(t)(q+p)\rangle) dt - \int_{-\infty}^{\infty} V(t,q+p) dt \\ &= \frac{1}{2} \int_{-\infty}^{\infty} (|\dot{q}|^2 + \langle q,L(t)q\rangle) dt + \int_{-\infty}^{\infty} (\langle \dot{q},\dot{p}\rangle + \langle p,L(t)q\rangle) dt \\ &+ \frac{1}{2} \int_{-\infty}^{\infty} (|\dot{p}|^2 + \langle p,L(t)p\rangle) dt - \int_{-\infty}^{\infty} V(t,q+p) dt \\ &= I(q) + \int_{-\infty}^{\infty} V(t,q) dt + \int_{-\infty}^{\infty} \langle p,V_q(t,q)\rangle dt \\ &+ \frac{1}{2} ||p||^2 - \int_{-\infty}^{\infty} V(t,q+p) dt \\ &= I(q) + \frac{1}{2} ||p||^2 + \int_{-\infty}^{\infty} (V(t,q) + \langle p,V_q(t,q)\rangle - V(t,q+p)) dt. \end{split}$$

Now

$$\begin{split} &V(t,q) + \langle p, V_q(t,q) \rangle - V(t,q+p) \\ &= \int_0^1 s \langle p, V_{qq}(t,q+sp)p \rangle dt \\ &= \int_0^1 s \langle p, (V_{qq}(t,q+sp) - V_{qq}(t,q))p \rangle dt + \langle p, V_{qq}(t,q)p \rangle. \end{split}$$

Note that $||p||_{L^{\infty}} \leq \sqrt{2}||p||$. Hence

$$\int_{-\infty}^{\infty} (V(t,q) + \langle p, V_q(t,q) \rangle - V(t,q+p)) dt$$
$$= o(\|p\|^2) + \int_{-\infty}^{\infty} \langle p, V_{qq}(t,q)p \rangle dt.$$

Observe that

$$\int_{-\infty}^{\infty} \langle p, V_{qq}(t, q) p \rangle dt = ||p||^2 \int_{-\infty}^{\infty} \langle \frac{p}{||p||}, V_{qq}(t, q) \frac{p}{||p||} \rangle dt$$
$$= h(p) ||p||^2.$$

We see here that h is homogeneous of degree 0 and that $h \ge \kappa > -\frac{1}{2}$ by (V_5) . Hence we now have the following estimate;

$$I(q+p) = I(q) + (\frac{1}{2} + h(p)) ||p||^2 + o(||p||^2).$$

This completes the proof. \Box

References

- A. Ambrosetti and V. Coti Zelati, Non-collision orbits for a class of Keplerian-like potentials, Ann. Inst. Henri Poincaré, Anal. Nonlinéaire 5 (1988), 287-295.
- A. Bahri and Paul H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. of Functional Analysis 82 (1989), 412-428.
- 3. V. Coti Zelati and Paul H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), 693-727.
- J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems. Springer-Verlag, Berlin-New York, 1989.

DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY, KANGWON 200-701, KOREA