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CONJUGATE ACTION IN A LEFT ARTINIAN RING
JUNCHEOL HAN

If Ris a left Artinian ring with identity, G is the group of units of
R and X 1s the set of nonzero, nonunits of K, then G acts naturally
on X by conjugation. It is shown that if the conjugate action on X by
G is trivial, that is, gr = xg for all ¢ € G and all ¥ € X, then R is a
commutative ring. It i1s also shown that if the conjugate action on X
by G is transitive, then R is a local ring and J* = (0) where J is the
Jacobson radical of R. In addition, if G is a simple group, then R is
isoniorphic to Z,[x]/(x? + 1) or Z4.

1. Introduction and basic definitions

Let R be a ring with identity, let G denote the group of units of
R and let X denote the set of nonzero, nonunits of . We call the
action, ¢ : G x X — X defined by é(¢,x) = gy~ for all ¢ € G and all
r € X, the conjugate action or simply conjugation. We define for each
x € X, the orbit 0{x) = {¢(g,2) : g € G}. We say that the action ¢ is
transitive on X if there is an v € X with 0(x) = X. Also we say that
the action ¢ is trivial if for each » € X, 0(«r) = {2},

An element a € I is said to be left quasi-regular if there exists
r € R such that » 4+ a + ra = 0. In this case the element r is called
a left guasi-inverse of «. A (right, left or two-sided) ideal I of R is
said to be left quasi-legular if every element of I is left quasi-regular.
Similarly, ¢« € R is said to be right quasi-reguiar if there exists r £ R
such that a 4+ r + ar = 0. Right quasi-inverse and right quasi-regular
ideals are defined analogously. It is clear that if R has an identity 1.
then o is left [resp. right] quasi-regular if and only if 1+ a 15 left [resp.
right] invertible. The Jacobson radical of R is defined by the left guasi-
regular left ideal which contains every left quasi-regular ideal of R and
is denoted by J(R) (or simply J).
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A ring R is local ring provided that X U {0} is an ideal of R. In
particular, if R is a local ring, then X U {0} is the unique maximal
(right, left or two-sided) ideal of R and J = X U {0} (See [1}, p 170,
Proposition 15.15) :

A ring R is said to be semisimple if its Jacobson radical J is zero.
We note that R/J is semisimple ring.

In [4], Wedderburn-Artin have shown that if R is a semisimple left
Artinian ring, then R is isomorphic to a direct sum of a finite number
of simple rings. Hence we obtain the following:

THEOREM 1.1. If R is a left Artinian ring with idertity, then R/J =
B M; (D;) where M;(D;) is the set of all the n; x n; matrices over
a division ring D; for each i = 1,2,--- ,n and for some positive integer
1.

Proof. See [4, Theorem 2.14, p.431 and Theorem 3 3, p.435].

In Section 2, we show that if R is a left Artinian ring with iden-
tity such that the conjugate action of G on X is trivial, then R/J is
isomorphic to a finite direct sum of fields and R is commutative.

In Section 3, we show that if R is a left Artinian ring with identity
such that the conjugate action of G on X is transitive, then R is a local
ring and J? = (0), in addition, if G is simple, then F is commutative
and R is isomorphic to Zy or Zo[z]/(z? + 1).

2. Trivial conjugate action on X

We begin with the following lemma:

LEMMA 2.1. Let R be a ring, and let G* be the group of units of
R/J. Theng e G ifandonly if g+ J € G*.

Proof. (=) Clear.

(<) Suppose that ¢* = g + J € G*. Then there exists h* = h+ J €
G* such that ¢*h* = h*¢* = 1* where 1* is the identity of G*. So
1—ghand 1— hg € J. By the definition of J,1+ J C G and so gh and
hg € G. It is clear that ¢ € G.
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LEMMA 2.2. Let R be a ring. Then a € R is left quasi-regular if
and only if a+ J € R/J is left quasi-regular.

Proof. 1t follows easily from Lemma 2.1.

LEMMA 2.3. Let R be a left Artinian ring with identitv 1. If the
conjugate action of G on X Is trivial, that 1s, gz = zg for all ¢ € G and
allr € X, then R/ J =2 &L | F; where F; Is a fieid for eacht = 1,2,--- |n
and for some positive integer n

Proof. By Theorem 1.1, R/J = &, M;(D;) where M;(D;) is the set
of all the n; x n; matrices over a division ring I[t; foreachz = 1,2,--- ,|n
and for some positive integer n. Since gz = tg for all ¢ € G and all
r € X, g*z* = a*¢g* for all ¢* € G* and all 2* € X* (= the set of
nonzero, nonunits of B/J) — (#). It is clear that if n; > 2 for some
¢, then M D,) does not snt]sf\ (#). Hence 1:; must to be 1 for cach
i. Next, we will show that D, is field for each 7. If Dy is not feld
for some 7., then there exist @ and b ¢ D, such that ab # ba. Let
a* = (ay, - ,ay, - an) and b = (by, - Ly by ) with o = g #
0, aj = 0 for ; 5 ¢ and by = b # 0 and b, = 1. Then «* € X~
and b* € G* and a*b* = (0, - ,ab, -+ ,0) £ (D, Jbao-- L 0) = bra”
which contradicts to (#). Hence we have the result.

LEMMA 2.4, Let R be a ring with identity If the conjugate action
on X by G is trivial and a and b arc quasi-regular elements of R, then
ab = ba. In particular, J is a commutative ideal of R.

Proof. Since 1+ J CGandaandbe JC XN, (14 a)b=01+a)by
assumption. Hence ab = ba. Since cach element of J 1s gquasi-regular,
J is a commutative ideal of R.

Let R be a left Artinian ring with identity such that the conjugate
action of G on X is trivial. By Lemma 2.2, R/J = &L Fi where
F, 1s field for each 7 = 1,2,- - ,n and for some positive integer 7
For simplicity of notation, we can assume that R/J = @i F. L(t
¢ : R — R/J denote the canonical ephimorphism and for each .. let
R, = ¢~ Hu ving Hiy where Hj = {0;} where 0 is the additive identity
of F; for j # 1 and H; = F;. lur ©i = ¢in,. Then Ker ¢, = {a € R,
0;{¢i{a)) = 0;} where H, is the projection of ' | F, to F,. Note that
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Ker ¢; = J for each 1 = 1,2,--- ,n and each R; is an ideal of R. Let 1}
denote the identity of ¢; = ®!_, H;, that is, 17 = &L a; where a; = 0;
for j # i and a; = 1; (= the identity of F}). Observe that ¢; '({1f}) is
contained in the center of R; if and only if ¢;'({—17") is contained in
the center of R;.

LEMMA 2.5. Let ¢ : R — R’ be a ring epimorphism. If A and B are
subsets of R', then ¢~ (A + B) = ¢~ (A) + ¢~ (B).

Proof. If z € ¢7'(A + B), then ¢(z) = a+b € A+ B. Since ¢ is
onto, there exist a* € A and b* € B such that ¢(a*) = a and ¢(b*) = b.
So ¢(z) = a+ b= ¢(a*) + (b*) = ¢(a* +b*) € $(¢7(4) + 67 (B)).
Hence = € ¢7'(A4) + ¢~ 1(B).

Ifz € ¢ 1 (A)+ ¢71(B), then 2 = a* + b* where «* € ¢~ (4) and
b* € ¢ (B). So ¢(z) = (a* +b*) = (a*) + &(b*) = A+ B. Hence
r € ¢ YA+ B).

LEMMA 2.6. If R is a left Artinian ring with identity, then R =
Ri+ Ry + -+ R, where R; = ¢~ (@7 H,) with A; = {05} (0, is
additive identity of Fj) for j # i and H; = F;.

Proof. Let F} = @], H, for each . Then @ Fi = FFf+F}+ -+
F. Hence R = ¢~ ¢(R) = ¢~ (R/J) = 6~ (30, Fi) = 67 (F} +
Y4+ 4 F2) = é_l(Fl*f)+¢-1(F;)+' . '+¢—1(F:{) =2 +R+- -+ R,

by Lemma 2.6.

LEMMA 2.7. Let R be a ring with identity such thLat the conjugate
action on by G, X is trivial and R/J = &]_ F; where cach F; is a field.
If 7' ({1*}) € Z(R:) (= center of R;), then R; is commutative ideal
of R for each i.

Proof. Since R; is an ideal of R, if a € R;, then « is quasi-regular in
R; if and only if a is quasi-regular in R. Hence by Lemuina 2.2, if a € R;,
then a is quasi-regular in R; if and only if ¢(a) is quasi-regular in R/J,
that 1s, ¢;(a) 1s quasi-regular in F}' = &L H; where H; = {0;} for
J #1and H; = F;. Hence for a € R;, a is quasi-regular if / = 1 and
only if II;(¢i(a)) + 1; # 0;.

Now let a,b € R;. If @ and b are quasi-regular, then ab = ba by
Lemma 2.4. If ¢ is not quasi-regular, then Il,(¢;(a)) + 1, = 0;, that

38



Conjugate action in a left Artinian ring

is, a € ¢7'({—17}). Thus a is in the center of R; and so ab = ba.
Simailarly, if b is not quasi-regular, then ab = ba.

LEMMA 2.8. Let R be a ring with identity such that the conjugate
action on X by G is trivial and R/J = @ F; where each F; 1s a field.
If 671 ({17}) C Z(R,) (= center of R,) for each i = 1,2,--- ,n, then R
1s a commutative ring.

Proof. Let @ € R; and b € R, for 2 # j (1 <4, j < n). By Lemma
2.6, it suffices to show that ab = ba. By Lemina 2.4, we may assume
that both a and b are not quasi-regular. Without loss of generality, we
may assume that « is not quasi-regular. Then [1;(é:(a)) = —1,. Since
ab = ba if and only if (—a)b = b( ~a). we may assume that IT;(¢;(a)) =
;. Now ab,ba € R; N R; since R; and R; are ideals of R. But for
t#j), RiNnR; = J. So ab,ba € J. Since J C ZI(R;) for each 7. ab and
ba arc in Z{ ;) for each i. Hence a(ab) = (ab)a := a(ba) = (ba)a, that is,
a’b = ba®. Since Hi(¢i(a*—a)) = 0,,a’~a € J. So (a? —a)h = bla®—a).
Hence —ab = —ba, that is, ab = ba.

THEOREM 2.9. Let R be a left Artinian ring with identity. If the
conjugation on X by G is trivial, then R is a comunutative ring.

Proof. By Lemma 2.3, we can assumne that 13/ = 0L, F; where F)
1s fleld for ¢ = 1,2,--- .. By Lemuma 2.8, it s enough to show that
67 {1FY) € Z(R;) for each i = 1,2,--- n. Note that ¢ '({11}) C
Z(R;) if aud only if ¢ ' ({=11}) € Z(R:). Let a € 67 ({—17)) and
be R, fac ¢ ({~1F)), then ¢,(a) = —17 and i(¢i(a) = ~1,. As
in the proof of Lemma 2.7, if « € R;.a 1s quasi-regular if and only if
IIi(¢:{a)) + 1; # 0,. So a is not quasi-regular and so 1 + a ¢ X U {0},
If bis quasi-regular, then 14+ 0¢ G. So (1 4+a) 1+b)=(1+b)(1+ a)
by assumption, and consequently ab = ba. If b 1s not quasi-regular,
then Il,(¢;(a)) = —1;. Let ¢, € R; be such that II(¢;) = ~17. Then
i{¢i{a —¢i)) = 0;, and so a — ¢; € Ker ¢; = J.

Similarly, b—¢, € J. Thena = ¢;4+x, b = ¢; 4y for some r and y £ J.
Note that 1 + 2,1 +y € G and 1 + ¢; € X U {0} since ¢; 1s not quasi-
rgular. So (1+2)(14¢;) = ((1+¢;}{14r) and cenquently ve; = ¢;a. By
the similar argument we have that ye; = ¢;4. So ab = (e; +2) ¢, +y) =
2t rei+eiy+ary = e+ e+ yer Fyr = {e; 4 y)le;+0) = ba. Hence
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R is commutative.

EXAMPLE 2.10. Let @ be the field of rational numbers. Let
R = {(ai;) € M2(Q) : a11 = a2z, a2 = 0}.

Note that G = {(ai;) € R: a1 = az2 # 0}, X = {(ai;) € R:ay =
az2 = 0,a;12 # 0} and the conjugation of G on X is trivial, that is,
gr = zg for all ¢ € G and all z € X, and so R is commutative.

3. Transitive conjugate action in a left Artinian ring

Recall that the action ¢ is said to be transitive on X if there is an

ze€ X with 0(z) = {¢(g9,7): g€ G} = X.

LEMMA 3.1. Let R be a ring with identity. If the conjugate action
on X by G is transitive, that is, there is anx € X with 0(z) = {gxg™' :
g € G} = X, then r is not zero-divisor if and only if y is not zero-divisor
forany y € X.

Proof. If x is not zero-divisor and ay = ya = 0 for some a € R, then
a{gxg™") = (gxg~")a = 0 for some g € G, and so (ag)z = z(g™'a) = 0.
As z is not zero-divisor ag = ¢~ 'a = 0, and so @ = 0. The similar
argument shows that the converse also holds.

LEMMA 3.2. Let R be the ring of n x n matrices cver a division ring
D for any positive integer n. Then every nonzero, nonunit element of
R is zero-divisor.

Proof. Let A be a nonzero, nonunit element of R. If 4 has r-th row
(resp. s-th column) as zero-row, then we can choose X = (z,;) € R
(resp. Y = (y;;) € R) satisfying z, # 0 and z;; = O for i or j # r so
that XA = 0 (resp. AY = 0). Hence A is zero-divisor.

Suppose that A has no zero rows (resp. no zero colummns). By us-
ing the elementary theory in linear algebra, we can obtain an upper-
triangular (resp. a low-triangular) martix B (resp. C" from A by means
of finite number of elementary row (resp. column) operations and then
S1A = B (resp. T)A = C) for some nonsingular matrices S, and
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Ty € R. Let bj; (resp. ¢;;) be the diagonal eutries of (resp. ). If b,
(resp. cii) # Ofor all 7, then by the above argument we can also obtain a
diagonal martix D (resp. D’) from B (resp. C) by means of finite num-
ber of elementary row (resp. column) operations and then SoB = D
(resp. T,C' = D') for some nonsingular matices Sy and T, € R. Thus
52514 = D (resp. ToT1A = D') and then 4 is non-singular, a contra-
diction. Hence b;; = 0 (resp. ¢;; = 0) for some i. Let r (resp. s) be
the largest integer so that b;; = 0 (resp. ¢;; == 0). Then B (resp. (')
has r-th row (resp. s-th column) as zero. So XB = XS4 = 0 (resp.
BY = ATYY = 0) for some nonzero singular matrices X, ¥ € R. If
XS, =TY =0, then X =Y =0, a contradiction. Consequently, A is
zero-divisor.

COROLLARY 3.3. Let R be a semisimple !oft Artinian ring. Then
every nonzero, nonunit of K is zero-divisor.

Proof. Tt follows from Theorem 1.1 and Lemnma 3.2,

THEOREM 3.4. Let R be a lefi Artinian ring with identity. If the
conjugate action on X by G is transitive, thon every ¢ € X Is zero-
divisor.

G} = X. By Lemma 3.1, it is enough to show that r is zero-divisor.
Assume that z is not zero-divisor. If v € J. then "
positive integer n as .J is nilpotent ideal of R. Hence if z is not a
zero-divisor, then @ = 0, a contradiction. Suppose that = € R > J.
Let o = o+ J € R/J. By Lemmna 2.1, «* is not unit of R/J Hence

by Corollary 3.3, r* is zero-divisor and so z* ;% = z*+* = 0* = J for

Proof. By assumption, there is an ¢ € X with 0(x) = {gxg~! : ¢ €

= ) for some

some nonzero y*, =" # .J and then zy,zx € J Thus (xy)* = 0 (vesp.
(zx)' = 0} for some positive integers s.t. By the above argument.
Ty = zx = 0. If » is not zero-divisor, then y. z = 0. a contradiction.
Hence x is a zero-divisor.

THEOREM 3.5. Let R be a left Artinian rng with identity. If the
conjugate action on X by G Is transitive, then R is a local ring and

J? =(0).

Proof. By assumption, there is an € X with 0{r) = {exg™!
g € G} = X. First. we will show that X2 C X U {0}. Assume
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that there exist y,z € X such that yz ¢ X U {0} and then yz € G.
Since y is zero-divisor by Theorem 3.4, ay = 0 for some a € X, and
so (ay)z = a(yz) = 0. Since yz € G,a = 0, a contradiction. Clearly,
GX,XG C X U {0}, and hence RX,XR C X U {0}. Next, we will
show that X U {0} is closed under addition. Since z is zero-divisor, by
the above argument there exists s € X such that zs = 0. Since the
conjugate action of g on X is transitive, there exists ¢ € G such that
s = gxg~'. Then 0 = zs = z(gxg™!) and hence (gr)(gz) = 0. Let
gz = zo. Then 2 = 0. Now if t is any element of X, then there exists
h € G such that t = hroh™'. So t* = hzZh~' = 0. Conquently for
any t1,ty € X,(t1 + t2)% = ] + tity + taty + 12 = t1ty + tat1, and so
(t1 +12)* = (t1ta + t2t1)? = 0. Hence X U {0} is closed under addition.
Thus R is a local ring and J = X U {0}.

Finallly, we will show that J?> = (0). Let a and b be arbitrary
elements of J. Then there exist g and h of G such that a = grog™!
and b= hzoh™'. If ab # 0, then ab = (97097 ") (hzoh™!) # 0, and then
299~ hao # 0. SO (g7 hao) (g™ hao) = (97 hao)? # 0 a contradiction.
Thus J% = (0).

EXAMPLE 3.6. Let F = Z;[2]/ < 2% + 2 4+ 1 > be a field of order 4
and let R = {(a;;) € My(F): a1 = a,az; = a®,ayy =0},

Note that R is a ring under the addition mod 2 and multiplication
mod 2 of matrices, R is not commutative, G = {(a;;) € R : a1y, an #
0}, X = {(aij) € R: a1 = aza = 0, a1z # 0} and the conjugation on
X by G is transitive. Moreover, R is a local ring and J? = (0).

COROLLARY 3.7. Let R be a left Artinian ring with identity such
that the conjugate action of G on X is transitive. If G is simple group.,
then R is commutative ring and R is isomorphic to Zy[x]/(z* + 1) or
Zy.

Proof. 1f the conjugate action of G on X is transitive, then by The-
orem 3.5, J2 = (0). Let g € 14+ J and x € J be arbitrary. If J? = (0),
then gz = zg. Note that 1 + J is a proper normal subgroup of G.
Hence if G is simple, then 1+ J = G, and so the conjugate action of G
on X is trivial. Thus by Lemma 2.9, R is a commutative ring. If R is
commutative, then J = {0,z}.
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We note that if .J? = (0), then a function ¢ . R/J x J — J defined
by ¢la+J, j)=aj foralla+J € R/J, j € Jis well-defined and J is
1-dimensional left vector space over a division ring R/J by Lemma 2.1.
Hence [R/J| = |J| = 2 and so |R| = |R/J|-|J = 4. By [2] (Theorem
2.5 and its Corollary), R is isomorphic to Z; [r]/(2? + 1) or Zj.
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