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ISOMETRIES WITH SMALL BOUND ON C!(X) SPACES

KiL-WouNG JUN AND YANG-HI LEE

1. Introduction

For a locally compact Hausdorff space X, we denote by Co(X) the
Banach space of all continuous complex valued functions defined on X
which vanish at infinity, equipped with the usual sup norm. In case X
1s compact, we write C(X) instead of Cy(X). A well-known Banach-
Stone theorem states that the existence of an isometry between the
function spaces Co(X) and Cy(Y) implies X and Y are homeomor-
phic. D. Amir [1] and M. Cambern [2] independently generalized this
theorem by proving that if Co(X) and Co(Y )are isomorphic under an
isomorphism T satisfying | T|||IT'|| < 2, ther X and ¥ must also be
homeomorphic.

We denote by C''(X) the space of continuously differentiable func-
tions on X with the T-norm given by || f|| = sup,e x |f(t)|+supsex |F/(1)].
And we denote by C'(X), the space of continucusly differentiable func-
tions on X' with the norm given by ||f|l, = sup,cy [f(2)] + PSP ey
If'(H)],p > 0.

K. Jarosz [4] conjectured that; Is there a positive e such that for any
compact subsets X, Y of the real line R and ||7']|||T7 '] < 1+ € implies
that X and Y are homeomorphic? When the norms of C*'(X) and
C!(Y) are given by the C-norms, Cambern and Pathak(3] proved the
existence of ¢ in the additional assumption ||T||a]|T 7! ||oo < 00. When
the norms of C*'(X) and C'(Y') are given by the M-norms, Pathak and
Vasavada[6] proved the existence of ¢ in the additional assumption
IT}oolIT " oo < co. In this note we investigate the Jarosz conjecture
when the norms of C'(X) and C''(Y') are given by the S-norms.
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2. The results

THEOREM 1. Let X and Y be compact subsets of R and X C [a, b]
and Y C [e,d]. If T is a linear map from C'(X) onto CY(Y) which
satisfies

(1) if f'(t) =0 then (Tf)'(t) = 0,

(i) Ifgll S NTfTgll < (1+ )| fgll,

(i) LAl < ITf]l < (1 + €)llf]l, and

(iv) € < min(5g, 2(]b— aH—l)’ 2(|d—c|+]))’

then X and Y are homeomorphic.

Before proving the theorem let us prove three leminas.

LEMMA 1. Let X and Y be as in Theorem 1. Let T be a map from
C'(X) onto C'(Y') which satisfies the condition (ii) in Theorem 1. If
sup;ex |f(t)] < k and || f|| = 1 thensup,cy |Tf(s)] < (1+€)vV—k? + 2k.

Proof.
(fg%ngf(S)I)2 SITFTA < 1+ )*NF7)
(1+e€) (Sllp|f |+%up|( ) ()
=(1+¢) (SUPIf (t)l+2sup|f(f (D
<(1+e) (—k2 + 2k),

and this completes the proof.

LEMMA 2. Let X,Y,T be as in Theorem 1. If f € C'(X) then
2 supyex |f(1)|< supeey [(TF)'(5)].

Proof. Let f € C'(X) and sup,cx |f'()| # 0. Then f' € C(X). We
can extend f’ to ¢’ on C([a b)) su(h that ¢'|x = f' and sup,¢(, 4 l9'(t')]

= "Upzex |f! t)| Let g(¢ f ¢'(z)dx. Then sup,cx |g|x(t)] < ]b—
V0] W<+ Dy oD Tabe
m € X such that |f'(m)| = sup,ex |f/(t)]. Fix k < 2and choose k' €

C(la, b]) such that &'(m) =2, h'(¢') =0, for t' € [m — :’}suptex 1),
m + Esupyey [F'(#)]] and 0 < A'(#) < 2. Let (') = ¢t (t)
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and i(t") = jall i'(z)dz. Then i|x € C'(X) and sup,cy |i|x(t)] <
ksupyey [(z]x)'(t)|. Hence

2sup [(glx)'(1)] = sup G )] < el x|l
te X '
= sup |z | x ()| + sup (2] x) ()]
teX te X

S(1+ k) sup |(i]x '(2)]
teXx
=2(1+ k)sup|(g|)(t)].
te X
By Lemma 1,

2supiex [(glx ) (ONT = (1 + )V —k? +2k) < sup,ey [(T(i]x)) (s)].
(1)

IT((g =) %)
> sup IT(glx)(s)] — Sug [ T(i]x )(s)] - sup (T(glx ) (s)]
+wp\ (1[x))'(s)]

>sup [T(g|x ) ()] = 2(1+ k)1 +e)/—k? + ‘Z_Ksup Hgix)'(1)]

se€Y
+2(1 = (14 €)v —k* 4+ 2k)sup |{g|x)' ()| — sup HT(g]x))(s)]
te X I€Y
And
(2)
IT((g = D)x) <1+ e)lglx — | x|l
< (1 + €)(sup |g]x ()] + sup [i]x (£)] + sup [(g]x ) (1))
te X te X tex
1 '
< llglxll 4 5 sup [glx ()] + (1 + e)2k sup |(g]x ) (1)]-
2 tex teX
If supgey [(T(glx))(s)] < 2(1 — 21 + e)v/- k2 + 2k)

supeex [(g]x)' (1], fhf’n by (1) | T(elx —ilx)]| 2 IT( 9’ M+

s flglx (O] From (2) gl + 3 supeen 161 (1)] +1 + 2k
sup,ex [(g]x)' (1)) > 1 T(g1x)|l + 2 sup,ex [(g]x V'(¢)]. Since k is arbi-
trary, this contradicts the fact ]|T_q[| > gl From f'(t) = (g]|x)'(t)
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we know that (Tf)(s) = (T(g|x))'(s). Hence sup,cy [(Tf)(s)] >
2 sup,ex |f'(1)]-

LEMMA 3. Let XY, T be as in Theorem 1. If f € C](X) then
%SuPteX |f1()] < supyey (T F)(s)] < 5(1 + €} supyex |f/(2)]-

Proof. By Lemma 2, £ sup,cx |f'(t)] < sup,ey |(Z'f)'(s)|. Hence if
(Tf)(s) =0 then f'(t) = 0. Replacing T by (1 + €)T'~! and applying
Lemma 1 and 2, we know that 2 sup,cy |f'(s)] <
(14 €)sup,ex I(T‘lf)'(t)[. From this we have 2 sup,cy [(Tf)'(s)] <
(14 €)sup,ex | f'(2)]-

Proof of Theorem 1. Let g(t') = fat: ¢'(z)dz for ¢' € C([a,b]). Let
S be a map from C([a, b]) into C'(X) defined by S¢’ = g|x. Choose a
map U from C(X) into C({a, b]) such that (U f)|x = f forall f € C(X).
If fe C'(X) then f' € C(X) and (SUf')' = f'. Let S’ be a map from
C1(Y) onto C(Y) defined by S'g(s) = ¢'(s). Since (SU(af + Bg))' —
o(SUFY - B(SUgY = 0, (T(SU(af + Bg) - a(SUF) — A(SUg))) = 0
te, S'TSU(af+3g))—a(S'TSUf)—3(S'TSUg)) = 0. Hence S'TSU
1s a linear map from C(X) into C(Y).

Let T' : C(X) — C(Y) be defined by T'f'(s) == (Tf)'(s) for all
feCYX). Since f' = (SUF), T'f = (Tf) =(TSUf'Y = S'TSUf'.
Therefore by Lemma 3, 7' is a onto linear rnap such that [|T"]| < Z(1+¢)
and [|[T' 7| < I. Therefore | T'|||7"'|| < 42(1+¢). By Amir theorem
(1] X and Y are homeomorphic.

COROLLARY 1. Let X and Y be compact subsets of R. Let T be a
linear map from C*(X) onto C*(Y) which satisfies

(1) if f'(t) =0 then (Tf)(t) =0

(i1) I fgll S NTfTgll < (1 + €)?| fyl-

If € is sufficiently small, then X and Y are homeomorphic.

Proof. From () and (ii) we have 1 < ||T1T1|| = (sup,ey |T1(s)])*
IT1)? < (14 €)% and so 1 < ||T1]| < (1 +¢). By (ii) ||T7'1- 1
IT1-1]] < (14 )*IT7'1 - 1. Hence [|T7'1]] < |IT1 < (1 +
and 3 S arozllTUl < IT7'1l. For any g ¢ C1(X), g

ITATg]| < ITUITgll < (1 + e)l|Tgll and | Tgl| < (1 - €271 - gl

INIANZ N
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(L+e)?IT~"1|llgll < (1+€)*|lgll. Hence g lloll < ITgll < (1+€)|lg]l.
If € is sufficiently small, then (1 + €)T satisfies the conditions of The-
orem 1.

THEOREM 2. Let X and Y be compact subsets of R and X C
UiLilai, bi] (a0 < bi < aiy1) and maxi{[b; —a; } < k. Y C UL, [c;, d}]
(¢j < dj < ;1) and max;{|d; —¢;|} < k. If T is a linear map from
CY(X) onto Cl(_'Y) which Satisﬁes
(1) (Tf)( =0 iff f'(t)

() A< ITf < (1+e |lfh~ and
(i11) k < “‘F@ and € < 6k* — 8k + 1,

then X and Y are homeomorphic.

Proof. Let supe vy [f(1)] < & and ||f]] = 1. If sup,cy |Tf(s)]
3k, choose G'(s') € C’( " e ],(z’ ] such that sup,, reurle; ;) |G'(s")]

supaey (TF)(5)] and G'(s) = (TF)(s) for al s € V. Let G(s') =
f G'(y)dy for all &' € [(*J-.(l]-]. 111('11 we have

vV

’

3
sup |G(s")] < max  sup / G'(y)|dy
8" €Ul [ej ] I wele; d] Je;

<max sup { sup |G'{t)lle; — d;|}
(3) I ‘“16[() ,d]'] 2E[c) rd:

< hkmax  sup  |G'(s')]

I os'€le; d;)
= ksup |G'(s)].
sEY

Hence we have sup,cy |Tf(s)| — sup ey |G(s)| > 2k — ke and
sup,ey |Tf(s)] > sup,ey |G(s)]. Therefore |Gly|| < (1 +€) — 2k + ke,
and hence,

(4) ITHG)|| < (1+€) =2k + ke

By assumption supcx |f'(#) — (T7HG)) ()] = 0.

Therefore [T7YG|y)|| 2 supiex (T7HGY)) (1) = supex [F(#)] 2
1 — k. This contradicts (4). Hence (1 — 3k)sup ey |f/(1)] <

sup,ey (TF) ()] < 75 supey [F1(1)].
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Let f € CY(X) and sup;cx |f'(t)] # 0.
Choose ¢'(t') € C(UL,[ai, b)) such that supyeyn (a;60 19'(2)]
~ supiex |f/(8)] and ¢'(t) = f'(t) for all ¢ € X. Let g(t')) = [\ ¢'(x)dz
for all ' € [ai,b;]. By the similar method in (3), sup,ex lg|x(¢)] <
Wpreur (oo 190N < ksupeex l(glx)(8). Henee (1 — 8k) supiex
(1) ] < supyey (Tlglx))' ()] < l—"1supfex l(91x)'(t)], and so
(1 —3k)supyex [f ()] < sup,sey (TF)Y(s)] < 1 k SuPsex 1)l

As in the proof of Theorem 1, if 7' : C(X) — C(Y) is defined by
T'f'(t) = (TF)(t) for all f € CH(X), then |T'IIT' "l < gosktti=sy-

By Amir theorem [1] X and Y are homeomorphic.

COROLLARY 2. Let X be a Cantor set and k,¢,Y, T be as in The-
orem 2. Then X and Y are homeomorphic.

Proof. For any k > 0 there exsits Ul_,[a;,b;] such that X' C
" lai,bi) (@i < b < aiyr) and max;{|b; — a;|} < k. By Theorem 2,
X and Y are homeomorphic.

THEOREM 3. Let X and Y be compact subsets of R and X C
U [ai, bi) (a: < b; < aipr) and maxi{|b; — a;]} < k. Y CUTL[c), d;j]
(¢; < dj < cj41) and max;{|d; — ¢;|} < k. If T is a linear map from
C'I(X)p onto C'(Y), which satisﬁes

(i) f1(t) = 0 iF (TF)'(¢)

G Il < ITHllp < (1 + ‘)Hf||pa and

(iii) pk < (4 — \/_/6 and e < 6(pk)? — 8pk + 1,

then X and Y are homeomorphic.

Proof. Let S be a map from C*(X), onto C*(pX) defined by Sf(pz)
= f(z) and S’ be a map from C'(Y), onto C'(pY’) defined by S'g(py)
= (]( ) Since ”Sf ‘ - Su'pp.r€p‘\ !Sf(pT l+5uppr€p’i ",'f p:l‘)l — Sup:e\
|F(2)] + psup,ex [f'(2)] = || fllp, S is a linear isometric map. Simiraly
so is S'. Let T; be a map from C'(pX) onto Cl(pY) defined by
T\ f(py) = S'TS™! f(py). Then T} is a linear map and || f]| < Ty fll <
(1 + €)||If]l. Note that pX C U, [pai,pbi], maxi{|pb; — pail} < pk,
pY C U lpcj, pd;] and maxi{|pe; — pd;|} < pk and apply Theorem
2. Hence pX and pY are homeomorphic. This completes the proof.
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