HYPERBOLIC HOMEOMORPHISMS

JONG SUH PARK, KEON HEE LEE AND KI SHIK KOO

1. Introduction

In [6], we introduce a hyperbolic homeomorphism on a compact metrizable space and show that a hyperbolic homeomorphism is topologically stable. The purpose of this paper is to study a necessary and sufficient condition for a homeomorphism to be hyperbolic. We get the following theorem.

THEOREM. Let X be a compact metrizable space. A homeomorphism $f: X \to X$ is hyperbolic if and only if f is expansive and has the pseudo orbits tracing property.

2. Preliminaries

Let X be a compact metric space with a metric d and $f: X \to X$ a homeomorphism. Recall that f is expansive if there exists a constant e > 0 such that

$$d(f^n(x), f^n(y)) \le \epsilon$$
 for all $n \in \mathbb{Z}$ implies $x = y$.

The constant e is called expansive constant for f. This property is independent of the metric chosen for X. Recall that a sequence $(x_i)_{i=m}^n$, $-\infty \le m \le 0 \le n \le \infty$, in X is a δ -pseudo orbit if

$$d(f(x_i), x_{i+1}) \le \delta$$
 for all $m-1 < i < n$.

We say that f has the pseudo orbits tracing property if and only if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that any δ -pseudo orbit

Received November 2, 1993.

The present studies were supported by Basic Science Research Institute Program, Ministry of Education, Korea, 1992, Project No. BSRI-92-110.

 $(x_i)_{i=m}^n, -\infty \leq m \leq 0 \leq n \leq \infty,$ is $\varepsilon\text{-traced}$ by some point x of X , that is,

$$d(f^{i}(x), x_{i}) \le \varepsilon$$
 for all $m-1 < i < n+1$.

This property is independent of the metric chosen for X. Let $x \in X$ and $\varepsilon > 0$. We define the stable and unstable set of size ε at x:

$$\begin{aligned} W_d^s(x,\varepsilon) = & \{ y \in X | d(f^n(x), f^n(y)) \le \varepsilon & \text{for all} & n \ge 0 \}, \\ W_d^u(x,\varepsilon) = & \{ y \in X | d(f^n(x), f^n(y)) \le \varepsilon & \text{for all} & n < 0 \}. \end{aligned}$$

We define a closed neighborhood $B_d(\varepsilon)$ of the diagonal Δ of X^2 by

$$B_d(\varepsilon) = \{(x,y) \in X^2 | d(x,y) \le \varepsilon\}.$$

DEFINITION 2.1. Let X be a compact metrizable space. A homeomorphism $f: X \to X$ is hyperbolic if there exist a metric d compatible with the topology of X, constants $\varepsilon_0 > 0$, $\delta_0 > 0$, c > 0, $0 < \lambda < 1$, and a continuous map $[\ ,\]: B_d(\delta_0) \to X$ such that the following three conditions hold.

- (1) if $y \in W_d^s(x, \varepsilon_0)$, then $d(f^n(x), f^n(y)) \le c\lambda^n d(x, y)$ for all $n \ge 0$,
- (2) if $y \in W_d^u(x, \varepsilon_0)$, then $d(f^n(x), f^n(y)) \le c\lambda^{-n} d(x, y)$ for all $n \le 0$,
 - (3) if $d(x,y) \leq \delta_0$, then $W_d^s(x,\varepsilon_0) \cap W_d^u(y,\varepsilon_0) = \{[x,y]\}.$

The following lemma is due to Frink ([2], [3]).

LEMMA 2.1. Let $(W_n)_{n=0}^{\infty}$ be a nested sequence of symmetric neighborhoods of the diagonal Δ of X^2 with $W_0 = X^2$ such that

$$W_{n+1} \circ W_{n+1} \circ W_{n+1} \subset W_n$$
 for all $n \ge 0$,
 $\bigcap_{n=0}^{\infty} W_n = \Delta$.

Then there exists a metric d compatible with the topology of X such that

$$W_n \subset B_d(\frac{1}{2^n}) \subset W_{n-1}$$
 for all $n \ge 1$.

3. Proof of the theorem

Suppose that f is hyperbolic with respect to a metric d. Let $e = \min\{\varepsilon_0, \delta_0\}$. If $d(f^n(x), f^n(y)) \leq e$ for all $n \in \mathbb{Z}$, then $x, y \in W_d^s(x, \varepsilon_0) \cap W_d^u(y, \varepsilon_0) = \{[x, y]\}$. Thus x = y. Hence f is expansive.

To show that f has the pseudo orbits tracing property the following lemma is needed.

LEMMA 3.1. Assume that for any $\varepsilon > 0$ there exists a $\delta > 0$ such that every δ -pseudo orbit $(x_i)_{i=0}^n, 0 \le n < \infty$, is ε -traced by some point of X. Then f has the pseudo orbits tracing property.

Proof. We first show that every δ -pseudo orbit $(x_i)_{i=m}^n, -\infty < m \le 0 \le n < \infty$, can be ε -traced by some point of X. Let $y_j = x_{j+m}, 0 \le j \le n-m$. Then $(y_j)_{j=0}^{n-m}$ is also a δ -pseudo orbit. Thus $(y_j)_{j=0}^{n-m}$ is ε -traced by some point y of X. Let $x = f^{-m}(y)$. For $m \le i \le n$, we have

$$d(f^{i}(x), x_{i}) = d(f^{i-m}(y), x_{i})$$
$$= d(f^{j}(y), x_{j+m}) = d(f^{\epsilon}(y), y_{j}) \le \varepsilon.$$

Thus $(x_j)_{i=m}^n$ is ε -traced by x.

We now show that f has the pseudo orbits tracing property. Let $(x_i)_{i=-\infty}^{\infty}$ be a δ -pseudo orbit. For each n > 0, the δ -pseudo orbit $(x_i)_{i=-n}^n$ is ε -traced by some point y_n of X. Since X is compact, the sequence (y_n) has a convergent subsequence (y_{n_j}) . Let $y_{n_j} \to y$. For each $i \in \mathbb{Z}$, since $f^i(y_{n_j}) \to f^i(y)$, we can choose j such that

$$d(f^{i}(y), f^{i}(y_{n_{i}})) \le \varepsilon$$
 and $-n_{i} \le i \le n_{j}$

Then we have

$$d(f^{i}(y), x_{i}) \leq d(f^{i}(y), f^{i}(y_{n_{j}})) + d(f^{i}(y_{n_{j}}), x_{i})$$

$$\leq 2\varepsilon.$$

Thus $(x_i)_{i=-\infty}^{\infty}$ is 2ε -traced by y. Hence f has the pseudo orbits tracing property.

Let us show that f has the pseudo orbit tracing property. Given any $\varepsilon > 0$, let 0 . Then

$$d(x,y) \leq \delta_1 \quad \text{implies} \quad W_d^s(x,p) \cap W_d^u(y,p) = \{[x,y]\}.$$

Take m > 0 such that $\lambda^m < \frac{\delta_1}{2cp}$ and let $\delta_2 = \frac{\delta_1}{2m}$. There exists a $\delta > 0$ such that

$$d(x,y) \le \delta$$
 implies $d(f^i(x), f^i(y)) \le \delta_2$ for all $0 \le i < m$.

Given any δ -pseudo orbit $(x_i)_{i=0}^n, 0 \leq n < \infty$, choose k > 0 such that n < km and let

$$y_i = \begin{cases} x_i & \text{for } 0 \le i \le n \\ f^{i-n}(x_n) & \text{for } n \le i \le km. \end{cases}$$

Then $(y_i)_{i=0}^{km}$ is a δ -pseudo orbit. Let $1 \leq j \leq m$. For any i,

$$d(f^{j}(y_{i}), y_{i+j}) \leq \sum_{s=0}^{j-1} d(f^{j-s}(y_{i+s}), f^{j-s-1}(y_{i+s+1}))$$

$$\leq j\delta_{2} \leq \frac{\delta_{1}}{2}.$$

Let $z_j = [y_{jm}, f^m(z_{j-1})], z_0 = y_0$. Let $w = f^{km}(z_k)$. For $(i-1)m \le j < im, 1 \le i \le k$, we have

$$\begin{split} d(f^{j}(w),y_{j}) & \leq d(f^{j-km}(z_{k}),f^{j-(i-1)m}(z_{i-1})) \\ & + d(f^{j-(i-1)m}(z_{i-1}),f^{j-(i-1)m}(y_{(i-1)m})) \\ & + d(f^{j-(i-1)m}(y_{(i-1)m}),y_{j}), \end{split}$$

$$d(f^{j-km}(z_k), f^{j-(i-1)m}(z_{i-1}))$$

$$\leq \sum_{s=0}^{k-i} d(f^{j-(k-s)m}(z_{k-s}), f^{j-(k-(i-1)m)}(z_{k-s-1}))$$

$$\leq \sum_{s=0}^{k-i} cp\lambda^{(k-s)m-j},$$

Hyperbolic homeomorphisms

$$d(f^{j-(i-1)m}(z_{i-1}), f^{j-(i-1)m}(y_{(i-1)m})) \le cp\lambda^{j-(i-1)m} \le cp$$
$$d(f^{j-(i-1)m}(y_{(i-1)m}), y_j) \le \frac{\delta_1}{2}.$$

Thus $d(f^j(w), y_j) \leq cp \sum_{s=0}^{\infty} \lambda^s + \frac{b_1}{2} \leq \varepsilon$. Hence $(x_i)_{i=0}^n$ is ε -traced by w. By Lemma 3.1, f has the pseudo orbits tracing property.

Suppose that f is expansive and has the pseudo orbits tracing property with respect to metric d. To show that f is hyperbolic we need some lemmas.

We define a nested sequence of closed symmetric neighborhoods of the diagonal Δ of X^2 as follows. Set $V_0 = X^2$ and for $n \geq 1$ define the set V_n as follows:

$$V_n = \left\{ (x, y) \in X^2 \mid d(f^i(x), f^i(y)) \le \epsilon \quad \text{for} \quad |i| \le n - 1 \right\}.$$

LEMMA 3.2. For each $\varepsilon > 0$ there exists m > 0 such that $V_m \subset B_d(\varepsilon)$.

Proof. Suppose that Lemma 3.2 does not hold. There exists $\varepsilon_0 > 0$ such that $V_n \not\subset B_d(\varepsilon)$ for all n > 0. For each n > 0 there exists $(x_n, y_n) \in V_n - B_d(\varepsilon_0)$. Since X^2 is compact, the sequence $((x_n, y_n))$ has a convergent subsequence. Let $(x_n, y_n) \to (x, y)$. For any $n \in \mathbb{Z}$, take m > |n|, then

$$d(f^{n}(x_{m}), f^{n}(y_{m})) \leq e$$
 because $(x_{m}, y_{m}) \in V_{m}$.

As $m \to \infty$, $d(f^n(x), f^n(y)) \le \epsilon$. Thus x = y. Since $d(x_n, y_n) > \epsilon_0$ for all n > 0, take $n \to \infty$, $d(x, y) \ge \epsilon_0$. We have a contradiction. Thus Lemma 3.2 holds.

LEMMA 3.3.
$$\bigcap_{n=0}^{\infty} V_n = \Delta.$$

Proof. It is obvious that $\Delta \subset \bigcap_{n=0}^{\infty} V_n$. Let $(x,y) \in \bigcap_{n=0}^{\infty} V_n$. For any $n \in \mathbb{Z}$, since $(x,y) \in V_{|n|+1}, d(f^n(x), f^n(y)) \leq e$. Thus x = y so $(x,y) \in \Delta$. Hence $\bigcap_{n=0}^{\infty} V_n = \Delta$

By Lemma 3.2, there exists m > 0 such that $V_{m+1} \subset B_d(\frac{e}{3}) \subset B_d(e) = V_1$. We define a new nested sequence of closed symmetric neighborhoods of Δ as follows. Put $W_0 = V_0$ and $W_k = V_{(k-1)m+1}$.

LEMMA 3.4.

- $(1) \bigcap_{k=0}^{\infty} W_k = \Delta$
- (2) $W_{k+1} \circ W_{k+1} \circ W_{k+1} \subset W_k$ for all $k \ge 0$.

Proof. (1) It is obvious that $\Delta \subset \bigcap_{n=0}^{\infty} W_n$. Let $(x,y) \in \bigcap_{n=0}^{\infty} W_n$. For any $n \geq 0$, there exists k > 0 such that $n \leq (k-1)m+1$. We have $(x,y) \in W_k = V_{(k-1)m+1} \subset V_n$. Thus $(x,y) \in \bigcap_{n=0}^{\infty} V_n = \Delta$. Hence $\bigcap_{n=1}^{\infty} W_n = \Delta$.

(2) Trivially, $W_1 \circ W_1 \circ W_1 \subset X^2 = V_0 = W_0$. Let $(x,y) \in W_2 \circ W_2 \circ W_2 = V_{m+1} \circ V_{m+1} \circ V_{m+1}$. There exist $z,w \in X$ such that $(x,z),(z,w),(w,y) \in V_{m+1} \subset B_d(\frac{e}{3})$. Since $d(x,y) \leq d(x,z) + d(z,w) + d(w,y) \leq \frac{e}{3} + \frac{e}{3} + \frac{e}{3} = e, (x,y) \in B_d(e) = V_1 = W_1$. Thus we have $W_2 \circ W_2 \circ W_2 \subset W_1$. Now suppose $(x,y) \in W_{k+1} \circ W_{k+1} \circ W_{k+1}$ for k > 1. Then there exist $z,w \in X$ such that $(x,z),(z,w),(w,y) \in W_{k+1} = V_{km+1}$. If (p,q) is any of those three pairs, then $d(f^i(p),f^i(q)) \leq e$ for $|i| \leq km$. If $|i| \leq (k-1)m$ and $|j| \leq m$, then $|i+j| \leq km$ so we may compute as follows:

$$d(f^{j}(f^{i}(p)), f^{j}(f^{i}(q))) = d(f^{i+j}(p), f^{i+j}(q)) \le e.$$

Therefore, $(f^{i}(p), f^{i}(q)) \in V_{m+1} = W_{2}$ and hence

$$(f^{i}(x), f^{i}(y)) \in W_{2} \circ W_{2} \circ W_{2} \subset W_{1} = V_{1} = B_{d}(e).$$

That is $d(f^{i}(x), f^{i}(y)) \leq e$ for $|i| \leq (k-1)m$. Therefore $(x, y) \in V_{(k-1)m+1} = W_k$. So $W_{k+1} \circ W_{k+1} \circ W_{k+1} \subset W_k$.

The following lemma is an immediate consequence of Lemma 2.1 and Lemma 3.4.

Lemma 3.5. There exists a metric D compatible with the topology of X such that

$$B_D\left(\frac{1}{2^{n+1}}\right) \subset W_n \subset B_D\left(\frac{1}{2^n}\right) \quad \text{for} \quad n \geq 1.$$

LEMMA 3.6.

$$f(W_d^s(x,e) \cap xV_n) = W_d^s(f(x),e) \cap f(x)V_{n+1},$$

$$f^{-1}(W_d^u(x,e) \cap xV_n) = W_d^u(f^{-1}(x),e) \cap f^{-1}(x)V_{n+1}$$

for all $n \ge 1$.

Proof. Let $y \in f(W_d^s(x,e) \cap xV_n)$. Then $f^{-1}(y) \in W_d^s(x,e) \cap xV_n$. For $i \geq 0$, $d(f^if(x), f^i(y)) = d(f^{i+1}(x), f^{i+1}f^{-1}(y)) \leq e$. Thus $y \in W_d^s(f(x), e)$. For $-n \leq i \leq n$, $d(f^if(x), f^i(y)) = d(f^{i+1}(x), f^{i+1}f^{-1}(y)) \leq e$ since $-(n-1) \leq i+1$. Thus $(f(x), y) \in V_{n+1}$. Hence $y \in W_d^s(f(x), e) \cap f(x)V_{n+1}$. Let $y \in W_d^s(f(x), e) \cap f(x)V_{n+1}$. Then $d(x, f^{-1}(y)) = d(f^{-1}f(x), f^{-1}(y)) \leq e$, and for $i \geq 1$, $d(f^i(x), f^if^{-1}(y)) = d(f^{i-1}f(x), f^{i-1}(y)) \leq e$. Thus $f^{-1}(y) \in W_d^s(x, e)$. For $-(n-1) \leq i \leq n-1$. $d(f^i(x), f^if^{-1}(y)) = d(f^{i-1}f(x), f^{i-1}(y)) \leq e$ since $-n \leq i-1$. Thus $(x, f^{-1}(y)) \in V_n$. Hence $f^{-1}(y) \in W_d^s(x, e) \cap xV_n$ that is $y \in f(W_d^s(x, e) \cap xV_n)$.

LEMMA 3.7. If $0 < D(x,y) \le \frac{1}{4}$, then there exists $n \ge 2$ such that $(x,y) \in W_{n-1} - W_n$.

Proof. Since $x \neq y, (x,y) \in \Delta^c = (\bigcap_{n=0}^{\infty} W_n)^c = \bigcup_{n=0}^{\infty} W_n^c$. Thus there exists $n \geq 1$ such that $(x,y) \notin W_n$. Let $k = \min\{n \geq 1 \mid (x,y) \notin W_n\}$. Then $(x,y) \in W_{k-1} - W_k$. Since $(x,y) \notin W_k$ and $B_D(\frac{1}{2^{k+1}}) \subset W_k, (x,y) \notin B_D(\frac{1}{2^{k+1}})$. Thus $\frac{1}{2^{k+1}} < D(x,y) \leq \frac{1}{4}$. Hence $k \geq 2$.

Let us show that f is hyperbolic with respect to D. There exists $\varepsilon_1 > 0$ such that $D(x,y) \leq \varepsilon_1$ implies $d(x,y) \leq \varepsilon$. Therefore $W_D^s(x,\varepsilon_1) \subset W_d^s(x,e)$. Let $\varepsilon_0 = \min\{\varepsilon_1,\frac{1}{4}\}$. We first show that if $y \in W_D^s(x,\varepsilon_0)$, then

$$D(f^{3m}(x), f^{3m}(y)) \le \frac{1}{2}D(x, y).$$

If x = y, then this is obvious. Let $x \neq y$. Since $0 < D(x,y) \le \varepsilon_0 \le \frac{1}{4}$, by lemma 3.7, there exists $n \ge 2$ such that $(x,y) \in W_{n-1} - W_n$. For $i \ge 0, d(f^i(x), f^i(y)) \le e$ since $D(f^i(x), f^i(y)) \le \varepsilon_0 \le \varepsilon_1$. Thus $y \in W_d^s(x, e)$. Since $(x, y) \in W_{n-1}$, $y \in xW_{n-1}$. Thus $y \in W_d^s(x, e) \cap X_d^s(x)$.

 xW_{n-1} . By Lemma 3.6,

$$f^{3m}(y) \in f^{3m}(W_d^s(x,e) \cap xW_{n-1})$$

$$= f^{3m}(W_d^s(x,e) \cap xV_{(n-2)m+1})$$

$$= W_d^s(f^{3m}(x),e) \cap f^{3m}(x)V_{(n+1)m+1}$$

$$= W_d^s(f^{3m}(x),e) \cap f^{3m}(x)W_{n+2}$$

$$\subset f^{3m}(x)W_{n+2} \subset f^{3m}(x)B_D\left(\frac{1}{2^{n+2}}\right).$$

Thus $(f^{3m}(x), f^{3m}(y)) \in B_D(\frac{1}{2^{n+2}})$. Therefore $D(f^{3m}(x), f^{3m}(y)) \le \frac{1}{2^{n+2}} = \frac{1}{2} \cdot \frac{1}{2^{n+1}} < \frac{1}{2}D(x,y)$. By induction,

$$D(f^{3km}(x), f^{3km}(y)) \le \frac{1}{2^k}D(x, y).$$

Let $\lambda=2^{-\frac{1}{3m}}$. Then $0<\lambda<1$. Let us show that if $y\in W^s_D(x,\varepsilon_0)$, then $D(f^n(x),f^n(y))\leq 8\lambda^nD(x,y)$ for $n\geq 0$. If x=y, then the above inequality holds. Let $x\neq y, n=3km+i, 0\leq i<3m$. Since $0< D(f^{3km}(x),f^{3km}(y))\leq \varepsilon_0\leq \frac{1}{4}$, by Lemma 3.7, there exists $p\geq 2$ such that $(f^{3km}(x),f^{3km}(y))\in W_{p-1}-W_p$. Since $f^{3km}(y)\in W^s_d(f^{3km}(x),e)\cap f^{3km}(x)W_{p-1}$,

$$\begin{split} f^n(y) &= f^i(f^{3km}(y)) \in f^i(W^s_d(f^{3km}(x), e) \cap f^{3km}(x)W_{p-1}) \\ &= f^i(W^s_d(f^{3km}(x), e) \cap f^{3km}(x)V_{(p-2)m+1}) \\ &= W^s_d(f^n(x), e) \cap f^n(x)V_{(p-2)m+i+1}. \end{split}$$

Thus $(f^n(x), f^n(y)) \in V_{(p-2)m+i+1} \subset V_{(p-2)m+1} = W_{p-1} \subset B_D(\frac{1}{2^{p-1}})$. Since $(f^{3km}(x), f^{3km}(y)) \notin W_p$ and $B_D(\frac{1}{2^{p+1}}) \subset W_p$,

$$(f^{3km}(x), f^{3km}(y)) \notin B_D\left(\frac{1}{2^{p+1}}\right).$$

Thus

$$D(f^{n}(x), f^{n}(y)) \leq \frac{1}{2^{p-1}} = \frac{4}{2^{p+1}} \leq 4D(f^{3km}(x), f^{3km}(y))$$

$$\leq 4\frac{1}{2^{k}}D(x, y) = 4\lambda^{3km}D(x, y)$$

$$\leq \frac{4}{\lambda^{i}}\lambda^{n}D(x, y)$$

$$\leq 8\lambda^{n}D(x, y).$$

Hyperbolic homeomorphisms

By the same way, we can show that if $y \in W_D^u(x, \varepsilon_0)$, then

$$D(f^n(x), f^n(y)) \le 8\lambda^{-n}D(x, y)$$
 for $n \le 0$.

f is expansive with respect to D. Let e be an expansive constant for f. We may assume that $\varepsilon_0 \leq \frac{e}{3}$. There exists $0 < \delta_1 \leq \varepsilon_0$ such that

$$D(x,y) \leq \delta_1$$
 implies $D(f(x), f(y)) \leq \varepsilon_0$.

Since f has the pseudo orbits tracing property with respect to D, there exists $0 < \delta_0 \le \delta_1$ such that every δ_0 -pseudo orbit is δ_1 -traced by some point of X. Let $(x, y) \in B_D(\delta_0)$. Define a δ_0 -pseudo orbit $(x_n)_{n \in \mathbb{Z}}$ by

$$x_n = \begin{cases} f^n(x) & \text{for} & n \ge 0\\ f^n(y) & \text{for} & n < 0. \end{cases}$$

There exists $z \in X$ such that

$$D(f^n(z), x_n) \le \delta_1$$
 for all $n \in \mathbb{Z}$.

It is easy to show that z is unique. Define a map $[\ ,\]:B_D(\delta_0)\to X$ by [x,y]=z. Since

$$D(f^{n}(x), f^{n}([x, y])) = D(x_{n}, f^{n}(z)) \leq \delta_{1} \leq \varepsilon_{0} \quad \text{for all} \quad n \geq 0,$$

$$D(f^{n}(y), f^{n}([x, y])) = D(x_{n}, f^{n}(z)) \leq \delta_{1} \leq \varepsilon_{0} \quad \text{for all} \quad n < 0, \quad \text{and}$$

$$D(f^{-1}(y), f^{-1}([x, y])) \leq \delta_{1} \quad \text{implies}$$

$$D(f(f^{-1}(y)), f(f^{-1}([x, y]))) = D(y, [x, y]) \leq \varepsilon_{0},$$

 $[x,y] \in W_D^s(x,\varepsilon_0) \cap W_D^u(y,\varepsilon_0)$. Let $z_1,z_2 \in W_D^s(x,\varepsilon_0) \cap W_D^u(y,\varepsilon_0)$. Since

$$D(f^{n}(z_{1}), f^{n}(z_{2})) \leq D(f^{n}(z_{1}), f^{n}(x)) + D(f^{n}(x), f^{n}(z_{2}))$$

 $\leq 2\varepsilon_{0} \leq e \text{ for all } n \geq 0$

and

$$D(f^{n}(z_{1}), f^{n}(z_{2})) \leq D(f^{n}(z_{1}), f^{n}(y)) + D(f^{n}(y), f^{n}(z_{2}))$$

$$\leq 2\varepsilon_{0} \leq e \quad \text{for all} \quad n \leq 0,$$

 $z_1=z_2$. Thus $W^s_D(x,\varepsilon_0)\cap W^u_D(y,\varepsilon_0)=\{[x,y]\}$. Let us show that $[\ ,\]$ is continuous. Given any $\varepsilon>0$, by lemma 3.2, there exists m>0 such that $V_{m+1}\subset B_D(\varepsilon)$. We can choose $\delta>0$ such that if $D(x,y)\leq \delta$, then $D(f^i(x),f^i(y))\leq \varepsilon_0$ for all $-m\leq i\leq m$. Let $(x_1,y_1),(x_2,y_2)\in B_D(\delta_0)$. $D(x_1,x_2)\leq \delta$, $D(y_1,y_2)\leq \delta$. Since $D(f^i(x_1),f^i(x_2))\leq \varepsilon_0$ for $-m\leq i\leq m$,

$$\begin{split} &D(f^i(x_1), f^i([x_1, y_1])) \leq \varepsilon_0 \quad \text{for} \quad i \geq 0, \quad \text{and} \\ &D(f^i(x_2), f^i([x_2, y_2])) \leq \varepsilon_0 \quad \text{for} \quad i \geq 0, \\ &D(f^i([x_1, y_1]), f^i([x_2, y_2])) \leq 3\varepsilon_0 \leq e \quad \text{for} \quad 0 \leq i \leq m. \end{split}$$

Since
$$D(f^{i}(y_{1}), f^{i}(y_{2})) \leq \varepsilon_{0}$$
 for $-m \leq i \leq m$,
 $D(f^{i}(y_{1}), f^{i}([x_{1}, y_{1}])) \leq \varepsilon_{0}$ for $i \leq 0$, and
 $D(f^{i}(y_{2}), f^{i}([x_{2}, y_{2}])) \leq \varepsilon_{0}$ for $i \leq 0$,
 $D(f^{i}([x_{1}, y_{1}]), f^{i}([x_{2}, y_{2}])) \leq 3\varepsilon_{0} \leq e$ for $-m < i < 0$.

Thus $([x_1, y_1], [x_2, y_2]) \in V_{m+1} \subset B_D(\varepsilon)$. So $D([x_1, y_1], [x_2, y_2]) \leq \varepsilon$. Hence [,] is continuous. Therefore f is hyperbolic with respect to D.

References

- 1. E. M. Coven and W. L. Reddy, Positively expansive maps of compact manifolds in Global Theory of Dynamical systems, Lecture Notes in Mathematics, Springer-Verlag, New York (1980), 96-110.
- 2. A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), 1408-1411.
- 3. J. L. Kelley, General Topology, Van Nostrand, Princeton, N. J., 1955.
- 4. R. Mane, Ergodic Theory and Ddifferentiable Dynamics, Springer-Verlag, 1987.
- J. Ombach, Consequences of the pseudo orbits tracing property and expansiveness, J. Austral. Math. Soc. 43 (1987), 301-313.
- J. S. Park, S. K. Choi, D. P. Chi and K. S. Koo, Topologically stable homeomorphisms, Bull. Korean Math. Soc. 28 (1991), 39-49.

JONG SUH PARK AND KEON HEE LEE

Department of Mathematics, Chungnam National University, Taejon 305-764, Korea

Кі Ѕнік Коо

DEPARTMENT OF MATHEMATICS, TAEJON UNIVERSITY, TAEJON 300-120, KO REA