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ON SUBMANIFOLDS OF A SPHERE WITH
BOUNDED SECOND FUNDAMENTAL FORM

YOSHIO MATSUYAMA

1. Introduction

Let S™*?(¢) be the (n + p)—dimensional Eaclidean sphere of con-
stant curva ture ¢ and let M be an n-dimensional compact mimmal
submanifold isometric ally immersed in S®*?(¢). Let 4¢ be the second
fundamental form of M in the direction of a normal € and T the tensor
defined by T(£.n) = traccA¢ A,

Recently, Montiel, Ros and Urbano [M2] proved the following: Let
M be an n-dimensional compact minimal submanifold isometrically
immersed in $"7P(¢). Let h be the second fundamental form of A in

Sm+P(¢), If M is Einstein, T = k <, > and

e < PRI,
2An+p+2)

then M is isotropic and has parallel second fundamental form, where
<, > 1s the Riemannian metric.

We'd like to consider the following problem:

Let M he an n-dimensional compact minimal submanifold isometri-
cally immersed in $"™?(¢). Then if |h]? < 21()2(4;:4—22) and T = k <, >.
th en is the second fundamental form parallel ¥

With respect to this problem Xia [X] showed: Let 3 be an n- dimen-
sional compact minimal submanifold isometrically immersed in S"17(¢)

. Then

S>{(nu—1) - M(? and 1T =k <, >
2(n +p+2)
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if and only if one of the following conditions is satisfied: A) S = (n—1)c

a nd M is totally geodesic, B) S = (n — 1)c — E(L]E(%:i—)ﬂc and M is
isotropic and has parallel second fundamental form.

Using the result of Sakamoto [S], we know that M which is isotropic
with parallel second fundamental form is a compact rank one symmet-
ric space. Hence if the immersion ¥ of M into S™*?(c) is full, then ¥ is
one of the following standard ones (See §2): S™(c) — §™(¢); PR*(3¢) —
5%(c); S (5¢) — S*c);CPXe) — ST(e) @ QP*j¢c) — S"(c);
Casz(%c) — 5%(¢).

The purpose of this paper is to prove under the assumption of |h(v, v)[*
cforany v € UM and T = k <, > the above result remains

< P
— n+p+2
true.

THEOREM. Let M be an n-dimensional compact minimal submani-
fold isomet rically immersed in S"*?(c) and ¢ the imamersion. Let A
be t he second fundamental form of M in the direction of a normal ¢

and T the t ensor defined by T(€,n) = traceA¢ A, for any norma I £, 1.

Then
P

v, v)]? < ——o
[h(v. )‘ “n4+p+2

candT =k <, >

if and only if one of the following conditions is satisfied:

A) |h(v,v)|? = 0 and M is totally geodesic,

B) |h(v,v)]? = o7z ¢ and M is isotropic and has parallel secon
d fundamental form, where < , > is the Riemannian metric. Hence
if ¥ is full, then v is one of the following standard ones: S™(c¢) —
§7(c); PRA(Le) — S1(e); 8%(e) — S4(e); CPHe) — S7(¢) s QP (k)
— S13(c); CayP*(3c) — §%%(c).

REMARK. With respect to Theorem Gauchman [G] proved the simi-
lar result und er the assumption of |[h(v,v)|* < ¢ without the assump-
tionon 7.

2. Preliminaries

Let M be a compact Riemannian manifold, UM its unit tangent
bundle, and UM, the fibre of UM over a point x of M. We denote by
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dr, dv and dv; denote the canonical measures on M, UM and UM,
respec tively.
For any continuous function f : UM — R, we have

/ fdv = / (/ fdv, )dx.
UM Jar Jua,

If T 1s a k-covariant tensor on M and V7T 1s its covariant derivati
ve, then we have

{ (VT,)(()i,’('iﬁ/”‘,". 71")‘(1'”:07
./{’Uw Z

=1

where €1, , €, Is an orthonormal basis of T, M,z € M.

Now, we suppose that M is isometrically immersed in an (n + p)-
dimensional R iemannian manifold M. We derote by <, > the metric
of M as well as that induced on M. If k is the second fundamental form
of the immersion and A¢ the Weingarten endomorphism associated a
normal vector €, we define

T:THM <TIM — I

by the expression

T(&,n) = traceAg Ay,
where T;X M is the normal space to M at x. Then T is a svmmetr ic
bilinear map.

Let X.Y. Z and W denote the tangent vector fields on M. Then,
if Vi and V2h denote the first and second covariant derivatives of
h, respectively, one has that ¥V is symmetric and V2h satisfies the
following relation:

(21) (VU)X Y. Z.W)= (VY. X.ZW + R X, Y h(Z,W)
~ WR(X.Y)Z, W)~ h(Z, R(X.Y)W),

‘
where R~ and R are the curvature operators of the normal and tangent
bundles over A, respectively.
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Now let v € UM,,z ¢ M. If e3,...,e, are orthonormal vecto rs
in UM, orthogonal to v, then we can consider {es,...,e,} as an or-
thonormal basis of T,(U M, ). We remark that {v = €;.€3,...,€,} is an
orthonormal basis of T, M. If we denote the Laplacian of UM, = S n-l
by A, then Af = esea f+---+enenf, where f is a differentiable function
on UM,.

Define a function fy on UM,z € M, by

filv) = |Ah(v,v)vt2 = Z < h(v,v), h(v,€;) >2
=1

Using the minimality of M we can prove that
2.2) |
(Afi)(v) = =6(n +4) fi(v)

n n
+ SZ < Ah(v,v)v7Ah(v,e,')ei > +SZ < Ah(v,t)ei»Ah(v,e;)v >

t=] =1

n

+ 82 < Ah(u,e,-)l’,Ah(v,e.')U >
1=
n

+ 22 < —Ah(v,v)ez\ Ah(v,v)ei > .
=1

Similarly, define f2, f3, f4. f5, fs, f7, fs, fo and fio by

fz(U) - Z < Ah(v,e.')vah(v,c.')v >,

=1
f3(v) = Z < Ab(v,e)Vs Ab(v,0)€i >,

1=1

n
f4(’L') = Z < Ah(ej,e;)ejsAh(v,u)ei >,
ig=1
n
fs(v) = Z < An(o,0) 0 Ab(v,e)€i >
i=1
T
fe(v) = Z < Ah(e; €5 An(v,e)V >

i,j=1
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n

fa(v) = Z < Ah(c.-‘u)('iaAh(u,e',)fij >,
[ES!
n

fﬁ(“) - L < ‘4})(1v,IV)(Y1‘,v‘4h(v, 0 Gy >,
1= 1

fate) = [h(e, o))t
Frolv) = [h{v, )]

respectively. Then we know that

(2.4)

(Af2)e)= —Hn+2)fa(v)+ 4fe(v)

"
+ 4 }_J < Antes et Ao >
il

1

+ 2 2 < ‘Ah(r'].e,)""a Ah((,j.(‘,‘)v >
v, 3= 1

L

TN
+2 é << AAh(‘u.e,)(_l"4/1(‘1',(‘,)(] >

[

(Afa)e) = —4n +2)fs(v)+ 2fs(r)

T

A Y
+ 4 L < A.,l,((.J e Uy .'1,},“,] ) Ca >

INE: {

n
+ ‘1 Z.{ < ‘4f1('1up'»)(]. '4"((’)',1?)(‘1 .

gl

(Aft (o) = =2nfq(v).

(Afs)v)=—dn+2)falv) +4fa(v) +4f200) + 2f4(v),

(37‘] (-A/(())(l') = -—-~271f0-("(,‘) -+ 2 Z < .4[,(‘]“,‘.)(']’.44[1((,‘“(‘.)( & >

1. k=1
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n

(2.8)  (Af1)(v) = =2nfr(v) +2 > < Ane; en€s An(enren) €k >

t,5,k=1

(29) (Afg)(’l') = —4(n + 2)f8(v) + 8 Z < Ah(e,',v)aia“lh(e,' W)€ >,

i,j=1

(2.10)
(Afo)(v) = —8(n+6)fs(v) + 32f1(v)

+ 162 < An(ve)irv > |h(v,v)|?
t=1

> —8(n+2)fi(v)+ 16 Z < Ap(wenrirv > |h(v,v)[%.

i=1
Then we have the following (See [M1] and [M2)):

LEMMA 1. Let M be an n-dimensional compact ninimal submani-
fold iso metrically immersed in M. Then for all z € M, we have

s) n
2.1 h(v,v 2d'v.r = = / < Antpenti, v > dvg,
e [ e =25 [ Y < g

M: =
& 1
(2.12) / Z < Ah(t,,ei)e,',v > dv, = —/ |h|2dvz,
UM, ;= nJUM,
(213) / ‘Ah(v,v)vlzdvr
UM,
2

n
> n 12 Jom, ; < Ah(v'ei)e,-,Ah(,,,v)v > dv,,

(2.14) / | A(o.0)v) dvy
UM,
2

>

/ Z < An(ven)€ir v > |h(v, ) dv,,
U

n+2 M, e
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where v € UM, and {e;}_, is an orthonormal basis of the ta ngent
space T, M to M at ».

Since
— (V2 fro)ei, e, v) = < { nabla®*h)(e;, ci,v,v), h(v,v) >
2 < ‘ , a

=1 =1

+ Z < (Vh)(ei v, 0), (VR) (e v,v) >,

we have
LEMMA 2. Let M be an n-dimensional minirnal submanifold isomet-
rical ly immersed in S™*P(c). Then for v € UM, we have

(2.15)

1o,
5 L(vz.flo)(ﬁ,("i,u)

=1
n
= E R (e, v 0)]* + ne|hiv, v)|*
1=
n n
+ QZ < ‘4’I(v,l‘)ciw‘4h(('.‘,!']1" > =2 E < ‘4}l(v,c")€iv A-h(v,zv)v >
=1 ==
n
- Z < ‘411(1‘,1')(‘1544})(!',17‘)(}' >
=1

Also, as for v € UM, r € M the following equations hold:

n

Tt
Z < 44;,,((”&')1,‘.‘4],({‘7‘1‘)(\1 > Z < ‘4},(1,‘6')('],.4;,(,,,(1.)(;, >,
L= 1,j=1
n n
—
Z < ‘4]I(€),('.)Uﬂ‘Ah(ej,(’{)v >= L < -Ah(v‘(’.')("ja4411(1!,(.')('_]' >,
1,j=1 1,7=1

we get
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LEMMA 3. Let M be an n-dimensional minimal submanifold isomet-
rically immersed in S™*?(c). Then for v € UM, we have

(2.16)
1
'2‘2 (V2 fro)(es, €iy v) — —(Afl)(v —

m(ﬁfz)(“)

1, A S T S "
+ ——=(Af3)(v) + 3n(n 1 2)(Af4)( ) + 60 1 2)(Af5)( )

6(n + 2)
1 1 1

3n(n + Afr)v) + L+ 2)

= Z|(Vh)((if,-,zv,v)| + ncfig(v) + (n+4)fr(v) — 4 fs(v) — 2fs(v).

=1

(Afs)(v) +

T 3nn T2 (Afs)(v)

Now, We will consider the condition T' = k& < , >. Let M be a
compact Rieman nian manifold and 0 = Ay < Ay <. . the eigenvalue
sequen ce of its Laplacian A. Let ¢ : M — E™ be an isometric immersio
n in the Euclidean space. Then we have the L%-decomosition ¢ =
Youso Gurtt € N, where ¢, : M — E™ is a differentiable mapp ing
satigfying A¢y, = —A, $,. Note that ¢ is a constant map.

Let uy,uy € N, 1 <wuy < uy. We say that the immersi on ¢ is by the
{ur, ug }-th eigenfunctions if ¢, = 0 for all w € N,u # 0,u; or uy. If
uy = uz w e say that the immersion is by the uy-th eigenfunction.

We say that ¢ 1s a standard immersion by the u-th eigenfunctio n
if ¢ = &(fi,..., fm.) where k is a real constant and fi,..., fim, is an
orthonormal basis of the A,-eigenspace.

Consider on the space SM(m) = {P € gl (m,R) : P = 'P} of the

symmetric matrices of order m with the metric ¢ givea by
c
g(P,.Q) = StracePQ forall P,Q € SM(m).

Then the mapping f : S”(c) — SM(m + 1) given by f(x) = 'za is an
isometric immersion by the second eigenfunction.

Let v» : M — S"*P(¢) be a full and minimal isometric immersion
of an n- dlmenblondl Riemannian manifold M. If ¢ is considered as an
immersio n in E"TP*! then ¢ is by the u-th eigenfunction for some
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u € N with A\, = nc. We consider the isometric immersion ¢ = f o :
M — SM(n+p+1). f M is a compact rank one symmetric space and
¢ is the first standard immersion, then ¢ = f ¢ ¢ is an immersi on by
the {1,2}-nd eigenfunctions. Then

LEMMA 4. ([M2]) Let ¢« M — S™P(¢) ve a full and min imal
isometric immersion and ¢ : M — SM(n+p+1 the associated immersi
on. Then ¢ is an immersion by the {wu;,uq}-th eigenfunctions i f and
only if M is Einstein and T = k < , >. Morecover, in this case ¢g 1s
proportional to the identity matrix in SM(n +p+1).

LEMMA 5. ([M2)) Let ¢ : M — S™*P(c¢) ve a full and minim al
isometric immersion by the first eigenfunctions Ie., Ay = ne. If

/ riedp = aby,
M

where « Is a real number and xy, ..., Tnqp are tiie coordinate f unctions
of v, then

2 (1t + 2)pA
/ |h|"dp > ;—T&vol‘ M).
Im 2(n+p+2)

The equality holds if and only if the immersion ¢ = f o is by the
{1,u}-th eigenfunctions for some u € N.

3. Proof of theorem

Integrating (2.16) over UM, and substituting (2.13), we obtain

0> / Z (Vh)(ei o, 0)Pde, + ne € tum, |h(v. o) dv,
JUM

=1

(31) -n / |‘4’l(v,17)1"!2dvr
UM,

n
— 2/ Z < A},(U'z,)(ii,Ah(l,vv)e; > dv,.
JUM,

=1
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For any v in UM,, we can put h(v,v) = |h(v, v)|¢ for some unit vector

€ normal to M. Since |h{v,v)}? < -ﬁhc for any v € UM, we have

by Schwarz’s inequality,

p

|A¢u|? < (maximum eigenvalue of A¢)? < cfor any u € UM,.

n+p+2
Hence
(3.2) | An(o.o0)? < —E——clh(v, v)2.

n+p+2
On the other hand, from the assumption of T = k <, >, taking the
2
trace, we h ave k = J%L. From (2.11) and (2.12) we have
(3.3)

n
1
/ Z < ‘411(17,11)Ci7Ah(v,v)e’i > dv, = "/ lhIQIh(’U, U)IQdUz
UM {2, D JuM,
1 2)
< ————c/ |h}2d‘vl. = L(le——)c |h(v,v)]2d'uz.
n+p+2 Jum, 2n+p+2) Jum,

Combining (3.1), (3.2) and (3.3), we have

3.4 OZ/ Vh)(e;, v, v)|*dv,
(34) 2 VR v )]

=]
np n{n + 2)

- h{v,v)|*dv, > 0.
n-i—p+2C Tl+P+2C)/UM1,| (v, 0) dvs 2

Hence h is parallel. Also, the equalities of (3.2) and [h{v,v)|* < 7{;1;:+_2C
hold. Thus we get

: P 2
Apio mvfde, = ————-——c/ h{v,v)|°dv
/(’,IM, Al n+p+2 Jum, (1, v)l dv:

2p / n
= c < Ap(ven€i,v > dug
(n+2)(n+p+2) KW,EZ M)

z =1

+ (ne —

-) i
= — < A hei v > |a(v,v)| du,.
2 Y < e > o, o

z =1

Therefore (2.10) and (2.16) show that |4Aag, . v|? = |h(v, )%, fe, M
is isotropic at .
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