NON-OVERLAPPING CONTROL SYSTEMS ON $Aff(\mathbb{R})$

YOUNKI CHAE AND YONGDO LIM

1. Introduction

Let G be a Lie group with Lie algebra $L(G)$ and let Ω be a non-empty subset of $L(G)$. If Ω is interpreted as the set of controls, then the set of elements attainable from the identity for the system Ω is a subsemigroup of G. A system Ω is called a non-overlapping control system if any element attainable for Ω is only attainable at one time. In [1], we showed that a compact, convex generating non-overlapping control systems on a connected solvable Lie group must be contained in $X + E$, where E is a subspace of codimension one containing the commutator and the homomorphism from the attainable semigroup into \mathbb{R}^+ extends continuously to the whole group. In this paper, we show that in $aff(\mathbb{R})$, the unique two dimensional non-abelian Lie algebra, a non-overlapping control system must be contained in $X + [aff(\mathbb{R}), aff(\mathbb{R})]$ and the homomorphism from the attainable semigroup into \mathbb{R}^+ extends continuously to $Aff(\mathbb{R})$.

Let G be a Lie group with Lie algebra $L(G)$. Normally we identify $L(G)$ with the set of right invariant vector fields on G. For a non-empty subset Ω of $L(G)$, we consider the control system on G given by the differential equation

$$x'(t) = U(t)(x(t)),$$

where U belongs to the class $\mathcal{U}(\Omega)$ of measurable functions from $\mathbb{R}^+ = [0, \infty)$ into Ω which are locally bounded. A solution of (*) is an absolutely continuous function $x(\cdot)$ defined on \mathbb{R}^+ such that the equation

Received December 2, 1993.
1991 AMS Subject Classification: 54H15.
Key words: control system.
This work is done under the support of TGRC-KOSEF and the Korea Research Foundation, the Ministry of Education.
Younki Chae and Yongdo Lim

(*) holds almost everywhere. In [8], for $U \in \mathcal{U}(\Omega)$, it is known that there exists a unique solution $x(\cdot)$ on G of the initial value problem

$$x'(t) = U(t)(x(t)), \quad x(0) = g.$$

We denote this solution by $\pi(g, \cdot, U)$, i.e., $\pi(g, 0, U) = g$ and $\pi(g, t, U) = x(t)$ for all $t \in \mathbb{R}^+$. If there exists $U \in \mathcal{U}(\Omega)$ such that $h = \pi(g, t, U)$, then we say that h is attainable from g at time t for the system Ω. The set of such elements attainable from g at time t for the system Ω (resp. using only piecewise constant controls into Ω) is denoted $A(g, t, \Omega)$ (resp. $A_{pc}(g, t, \Omega)$). We also employ the notation

$$A(g, T, \Omega) = \bigcup_{0 \leq t \leq T} A(g, t, \Omega)$$

$$A(g, \Omega) = \bigcup_{0 \leq t < \infty} A(g, t, \Omega)$$

The set $A(g, \Omega)$ is called the attainability set from g. From the right invariance of the control system, $A(g, T, \Omega) = A(e, T, \Omega)g$, and $A(g, \Omega) = A(e, \Omega)g$. Thus we restrict our attention to the attainability set at the identity.

For a non-empty subset Ω of $L(G)$, we have the one-parameter semigroup of sets $t \rightarrow A(e, t, \Omega)$. That is, $A(e, s, \Omega)A(e, t, \Omega) = A(e, s + t, \Omega)$ for all $s, t \in \mathbb{R}^+$ ([5],[8]). This implies that the attainability set at the identity is a subsemigroup of G and $S(\Omega) := A(e, \Omega)$ is called the attainable semigroup for Ω. In this paper, we say that Ω generates $L(G)$ if $L(G)$ is the smallest subalgebra containing Ω.

2. Non-overlapping control systems on $\text{Aff}(\mathbb{R})$

We start by summarizing the useful properties concerning control systems on Lie groups. The following results could be found in [5].

Proposition 1. Let Ω be a non-empty subset of $L(G)$ and $\hat{\Omega}$ be its closed convex hull. Then

1. $A_{pc}(e, t, \Omega) = \{\exp(t_1X_1) \cdots \exp(t_nX_n) : \sum_{i=1}^n t_i = t, t_i \in \mathbb{R}^+, \ X_1, \ldots, X_n \in \Omega\}$ and $A_{pc}(e, \Omega)$ is equal to the semigroup generated by the set $\exp \mathbb{R}^+ \Omega$.

164
(2) $A_{pc}(e, t, \Omega)$ is dense in $A(e, t, \hat{\Omega})$.
(3) $A_{pc}(e, \Omega)$ is dense in both $A(e, \Omega)$ and $A(e, \hat{\Omega})$.
(4) If Ω generates $L(G)$, then $A(e, \hat{\Omega})$ has non-empty interior and is equal to $\text{int}A_{pc}(e, \Omega)$.
(5) If Ω is compact and convex, then $A(e, T, \Omega)$ and $A(e, T, \Omega)$ are compact.
(6) If $X_1, \cdots, X_n \in \Omega$ form a basis for $L(G)$ and $X = \sum_{i=1}^{n} t_i X_i$, where $t_i > 0$ for each $i = 1, \cdots, n$ and $t = \sum_{i=1}^{n} t_i$, then $\exp X \in \text{int}A_{pc}(e, s, \Omega)$ for each $s > t$.

DEFINITION. Let G be a Lie group with its Lie algebra $L(G)$. A non-empty subset Ω of $L(G)$ is called a non-overlapping control system (abbreviated NOC set) if the corresponding members of the one-parameter semigroup $t \to A(e, t, \Omega)$ are pairwise disjoint.

LEMMA 1. Let Ω be a NOC set of $L(G)$. Then

1. The map h_{Ω} from $S(\Omega)$ onto \mathbb{R}^+, $A(e, t, \Omega) \to t$ is a well-defined homomorphism.
2. $S(\Omega) \cap S(\Omega)^{-1} = \{e\}$. In particular, zero is not contained in Ω.
3. Any two vectors in Ω are not contained in a one dimensional subspace of $L(G)$.
4. Every subset of NOC set is a NOC set.

Proof. (1) If Ω is a NOC set, then any element attainable for Ω is only attainable at one time. Thus the map $A(e, t, \Omega) \to t$ is a well-defined homomorphism from $S(\Omega)$ onto \mathbb{R}^+. (2) Let $x \in S(\Omega) \cap S(\Omega)^{-1}$. Then $x \in A(e, t, \Omega)$ and $x^{-1} \in A(e, s, \Omega)$ for some $s, t \in \mathbb{R}^+$. Since $e = xx^{-1} \in A(e, t, \Omega)A(e, s, \Omega) = A(e, s+t, \Omega)$, $A(e, 0, \Omega) \cap A(e, s+t, \Omega) \neq \emptyset$. Therefore $0 = s + t$ and hence $s = t = 0$. Note that $A_{pc}(e, 0, \Omega) = \{e\}$ is dense in $A(e, 0, \Omega)$ from Proposition 1. This implies that $A(e, 0, \Omega) = \{e\}$ and hence $x = e$. To prove (3), let $X_0, X_1 \in \Omega$ such that $X_0 = tX_1$ for some $t \neq 1$. If $t > 0, \exp X_0 = \exp tX_1 \in A(e, 1, \Omega) \cap A(e, t, \Omega)$. If $t < 0, \exp X_0 \exp(-t)X_1 = e \in A(e, 0, \Omega) \cap A(e, 1-t, \Omega)$. Since Ω is a NOC set, which is a contradiction. Finally, since $A(e, t, K) \subset A(e, t, \Omega)$ for any subset K of Ω, it is clear that every subset of NOC set is a NOC set.
Let $\text{Aff}(\mathbb{R})$ denote the unique 2-dimensional non-abelian connected Lie group. It may be identified with the set of ordered pairs $\{(x, y) \in \mathbb{R}^2 \mid x > 0\}$ with multiplication $(a, b)(x, y) = (ax, ay + b)$. Let $\text{aff}(\mathbb{R})$ denote the Lie algebra of $\text{Aff}(\mathbb{R})$. We may identify it with $\{(a, b) \in \mathbb{R}^2 \mid a, b \in \mathbb{R}\}$ under the Lie bracket $[(a, b), (x, y)] = (0, ay - bx)$. A direct calculation yields $\exp A = (e^a, \frac{b}{a}(e^a - 1))$, where $A = (a, b)$ and \exp is a diffeomorphism. Hence $\exp W$ is a closed subsemigroup of $\text{Aff}(\mathbb{R})$ for any wedge W (closed, convex, contains 0, and is additively closed) in $\text{aff}(\mathbb{R})$[3].

Lemma 2. In $\text{aff}(\mathbb{R})$, the following conclusions hold:

1. Every non-zero singleton set in $\text{aff}(\mathbb{R})$ is a NOC set.
2. Every non-singleton NOC set generates $\text{aff}(\mathbb{R})$.
3. If Ω is a non-empty subset of $\text{aff}(\mathbb{R})$ such that $\widehat{\Omega}$ has non-empty interior, then there exist a three vectors $X_0, X_1, X_2 \in \Omega$ such that the closed convex hull of $\{X_0, X_1, X_2\}$ has non-empty interior.

Proof. (1) Let $0 \neq X \in \text{aff}(\mathbb{R})$. Then $A(e, t, \{X\}) = \exp tX$. Since \exp is a diffeomorphism, $\{X\}$ is a NOC set. (2) From Lemma 1, every non-singleton NOC set generates $\text{aff}(\mathbb{R})$. (3) Suppose $\widehat{\Omega}$ has non-empty interior. Then we can select a basis $\{X_0, X_1\}$ in Ω. Since $\widehat{\Omega}$ has non-empty interior, we can choose a vector $X_2 \in \Omega$ such that X_2 is not contained in the straight line through X_0 and X_1. Trivially, the closed convex hull of $\{X_0, X_1, X_2\}$ has non-empty interior.

The following Lemma shows that a closed convex hull of NOC set in $\text{aff}(\mathbb{R})$ has empty interior. This implies that a closed convex hull of a NOC set in $\text{aff}(\mathbb{R})$ is contained in a straight line.

Lemma 3. Let Ω be a NOC set of $\text{aff}(\mathbb{R})$. Then $\widehat{\Omega}$ has empty interior.

Proof. Suppose that $\widehat{\Omega}$ has non-empty interior. By above note, we may assume that $\Omega = \{X_0, X_1, X_2\}$. Let $W = \mathbb{R}^+X_0 + \mathbb{R}^+X_1 + \mathbb{R}^+X_2$. Then $W \neq \text{aff}(\mathbb{R})$. If not, then $\mathbb{R}^+\widehat{\Omega} = \text{aff}(\mathbb{R})$ and hence $\text{Aff}(\mathbb{R}) = A(e, \widehat{\Omega}) = A(e, \Omega)$ because $A(e, \widehat{\Omega})$ and $A(e, \Omega)$ have the same interior. Therefore we may assume that $W = \mathbb{R}^+X_1 + \mathbb{R}^+X_2$ and $X_0 \in \text{int} W$. 166
Since \(\{X_1, X_2\} \) is a basis for \(\text{aff}(\mathbb{R}) \), \(X_0 = sX_1 + tX_2 \) for some \(s, t \in \mathbb{R}^+ \). If \(s + t = 1 \), then \(\Omega \) has empty interior. Suppose \(s + t < 1 \). Since \(\Omega \) has interior, we find small \(s + t < u < 1 \) such that \(X_0 \in u(\text{int} \Omega) \). Then \(\exp X_0 \in \text{int} \mathbb{A}_{pc}(e, u, \Omega) \subset \mathbb{A}(e, u, \Omega) \) by Proposition 1. This is a contradiction from \(\exp X_0 \in \mathbb{A}(e, 1, \Omega) \). Suppose \(s + t > 1 \). Since \(\mathbb{A}(e, 1, \Omega) \) is dense in \(\mathbb{A}(e, 1, \hat{\Omega}) \), we can choose \(Y \) in \(\text{int} \hat{\Omega} \cap W' \) such that \(\exp Y \in \mathbb{A}(e, 1, \Omega) \), where \(W' = \mathbb{R}^+ X_0 + \mathbb{R}^+ X_1 \). Then \(Y \) lies below of the line segment joining \(X_0 \) and \(X_1 \). Since \(\{X_0, X_1\} \) is a basis for \(\text{aff}(\mathbb{R}) \), \(Y = t' X_0 + s' X_1 \) for some \(s', t' \in \mathbb{R}^+ \) and \(s' + t' < 1 \). Similarly we have a contradiction.

For a non-empty subset \(\Omega \) of \(L(G) \), if \(\Omega \) is interpreted as the set of controls, then it is an important problem to know whether \(\mathbb{A}(e, \Omega) = \mathbb{A}_{pc}(e, \Omega) \)? In the language of control theory, we are asking if piecewise constant bang-bang controls suffice to reach all points in the attainable set. A semigroup formulation is whether each member of \(S(\hat{\Omega}) \) can be written as a finite product of elements from \(\exp(\mathbb{R}^+ \Omega) \). In [4], it is known that if a compact subset \(\Omega \) of \(L(G) \) has the bounded factorization property (that is, there exists \(T > 0 \) and an \(m > 1 \) such that any product \(\exp(t_1 X_1) \cdots \exp(t_{m+1} X_{m+1}) \) with \(\sum_{i=1}^{m+1} t_i \leq T \) and \(X_1, \ldots, X_{m+1} \in \Omega \) can be written as a product \(\exp(s_{1} Y_1) \cdots \exp(s_{m} Y_{m}) \), where \(\sum_{i=1}^{m} s_{i} = \sum_{i=1}^{m+1} t_{i} \) and \(Y_1, \ldots, Y_m \in \Omega \)). Then for each \(t > 0 \), \(\mathbb{A}_{pc}(e, t, \Omega) = \mathbb{A}(e, t, \hat{\Omega}) \) and \(\mathbb{A}_{pc}(e, \Omega) = \mathbb{A}(e, \hat{\Omega}) \).

Let \(W \) be an arbitrary wedge in \(\text{aff}(\mathbb{R}) \) with its bounding rays \(\{tX : t \in \mathbb{R}^+\} \), \(\{tY : t \in \mathbb{R}^+\} \). In [2], I. Chon showed that if \(W \cap I = \{0\} \), where \(I = \{(0,y) : y \in \mathbb{R}\} \) (it is the commutator of \(\text{aff}(\mathbb{R}) \)), then \(\exp W = \exp(\mathbb{R}^+ X) \exp(\mathbb{R}^+ Y) = \exp(\mathbb{R}^+ Y) \exp(\mathbb{R}^+ X) \). Using this result, we have a useful lemma for our approach.

Lemma 4. If \(\Omega = \{X, Y\} \) is a NOC set in \(\text{aff}(\mathbb{R}) \) and \(\hat{\Omega} \cap I = \emptyset \), then \(\Omega \) has the bounded factorization property and hence for each \(t > 0 \), \(\mathbb{A}_{pc}(e, t, \Omega) = \mathbb{A}(e, t, \hat{\Omega}) \) and \(\mathbb{A}_{pc}(e, \Omega) = \mathbb{A}(e, \hat{\Omega}) \). Hence \(\hat{\Omega} \) is a NOC set.

Proof. Since \(\Omega \) is a NOC set, for any triple product \(\exp tX \exp sY \exp uX \), it is equal to \(\exp tX \exp u'X \exp s'Y = \exp(t + u')X \exp s'Y \), for some \(s', u' \in \mathbb{R}^+ \) such that \(s + u = s' + u' \). Thus \(t + s + u = (t + u') + s' \).
and hence Ω has the bounded factorization property. This implies that $A(e, t, \hat{\Omega}) = A(e, t, \Omega)$ for any $t > 0$, and hence $\hat{\Omega}$ is a NOC set.

Lemma 5. Let $X = (0, a) \in I, Y = (x, y)$ with $x \neq 0$. Then $\exp Y \exp X = \exp(e^y X) \exp Y$.

Proof. Straightforward.

Lemma 6. Let $X = (x_1, x_2), Y = (y_1, y_2) \in \Omega$. If $x_1 \leq 0$ and $y_1 > 0$ or $x_1 > 0, y_1 \leq 0$, then Ω is not NOC set.

Proof. If $x_1 = 0$, then $X \in \Omega \cap I$. By Lemma 5, $\exp Y \exp X = \exp(e^{y_1} X) \exp Y \in A(e, 2, \Omega) \cap A(e, e^{y_1} + 1, \Omega)$. Since $y_1 > 0$, Ω is not NOC set. Suppose $x_1 < 0$. Then the closed convex hull of $\{X, Y\}$ meets with I at $Z = (0, a)$. If $a = 0$, then X and Y lie in the one-dimensional subspace of $\text{aff}(\mathbb{R})$ and hence Ω is not NOC set from Lemma 1. Suppose Ω is a NOC set. From Lemma 5, $\exp Y \exp Z = \exp(e^{y_1} Z) \exp Y$ and hence $\exp Z, \exp(e^{y_1} Z) \in A(e, t, \Omega)$ for some $t > 0$. However, $\exp(e^{y_1} Z) = \exp Z \exp((0, e^{y_1} a - a))$ and $\exp((0, e^{y_1} a - a)) \in A(e, s, \Omega)$ for some $s > 0$. Therefore $A(e, t, \Omega) \cap A(e, t + s, \Omega) \neq \emptyset$. Since $y_1 > 0$, this is a contradiction.

Theorem 1. Let Ω be a NOC set in $\text{aff}(\mathbb{R})$. Then $\Omega \subset X + I$ for some non-zero vector X.

Proof. If Ω does not generate $\text{aff}(\mathbb{R})$, then $\Omega = \{X\}$ for some non-zero vector X. Suppose that Ω generates $\text{aff}(\mathbb{R})$. Since $\hat{\Omega}$ has empty interior, it is a subset of a straight line. If $\hat{\Omega} \cap I \neq \emptyset$, then we can choose $X_1 = (x_1, y_1), X_2 = (x_2, y_2) \in \Omega$ such that $x_1 \leq 0, x_2 > 0$. By Lemma 6, $\{X_1, X_2\}$ is not NOC set. This is a contradiction. Therefore, $\hat{\Omega} \cap I = \emptyset$. Since Ω generates $\text{aff}(\mathbb{R})$, we have a distinct two vectors $X_1, X_2 \in \Omega$. Then the closed convex hull of $\{X_1, X_2\}$ does not meet with I. By Lemma 4, it is a NOC set and hence from the following theorem, it is contained in $X + I$ for some non-zero vector X. Therefore $\Omega \subset \hat{\Omega} \subset X + I$ because $\hat{\Omega}$ is a subset of a straight line.

Theorem 2. Let G be a connected solvable Lie group. Then a compact, convex generating NOC set must be contained in $X + E$, where E is a subspace of codimension one containing the commutator.

Proof. See [1].
Non-overlapping control systems on $Aff(\mathbb{R})$

In [1], we showed that for a bounded subset Ω of a Lie algebra $L(G)$ of Lie group G, Ω is a NOC set and h_Ω extends continuously to G if and only if there exists a continuous Lie group homomorphism from G into \mathbb{R} such that its differential map has a non-zero constant value on Ω. From Lemma 1, for any NOC set Ω in $aff(\mathbb{R})$, it is contained in $X + I$ for some non-zero vector $X \in aff(\mathbb{R})$. Since I is an ideal of $aff(\mathbb{R})$, we have a continuous Lie algebra homomorphism f from $aff(\mathbb{R})$ to \mathbb{R}, $tX + Y \rightarrow t$. Since $Aff(\mathbb{R})$ is a simple connected Lie group, we have a continuous Lie group homomorphism from G to \mathbb{R} such that its differential is f. Clearly $f(\Omega) = 1$ and hence we conclude that h_Ω extends continuously to the whole group if Ω is bounded. More generally, the following conclusion holds:

Theorem 2. Let Ω be a NOC set. Then h_Ω is continuous and it extends continuously to $Aff(\mathbb{R})$.

Proof. The map f from $aff(\mathbb{R})$ to \mathbb{R}, $tX + Y \rightarrow t$ is a continuous homomorphism. Hence there exists a continuous Lie group homomorphism $h : Aff(\mathbb{R}) \rightarrow \mathbb{R}$ such that $h \circ \exp = f$, where \exp is the exponential map of Lie group $Aff(\mathbb{R})$. Let $x \in A_{pc}(e, t, \Omega)$. Then $x = \exp t_1 X_1 \cdots \exp t_n X_n$, where $\sum_{i=1}^n t_i = t$ and $X_i \in \Omega$ for $i = 1, 2, \ldots, n$. Since $h(\exp t_i X_i) = t_i, h(x) = t$. Thus $A_{pc}(e, t, \Omega) \subset h^{-1}(t)$. By Proposition 1, $A_{pc}(e, t, \Omega)$ is dense in $A(e, t, \Omega)$ and $h^{-1}(t)$ is closed, we have that $h(A(e, t, \Omega)) = t$, for each $t \in \mathbb{R}^+$. This implies that $h_\Omega = h|_{S(\Omega)}$ extends continuously to $Aff(\mathbb{R})$.

References

Younki Chae and Yongdo Lim

YOUNKI CHAE, YONGDO LIM
DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA