A NONEXISTENCE THEOREM FOR STABLE EXPONENTIALLY HARMONIC MAPS

SUNG EUN KOH

1. Introduction

Let M and N be compact Riemannian manifolds and $f: M \to N$ be a smooth map. Following J. Eells, f is exponentially harmonic if it represents a critical point of the exponential energy integral

$$\mathbf{E}(f) = \int_{M} \exp(\|df\|^2) \ dM$$

where $||df||^2$ is the energy density defined as $\sum_{i=1}^m ||df(e_i)||^2$, $m = \dim M$, for orthonormal frame e_i of M. The Euler-Lagrange equation of the exponential energy functional \mathbf{E} can be written

$$\exp(\|df\|^2)(\tau(f) + df(\nabla \|df\|^2)) = 0$$

where $\tau(f)$ is the tension field along f. Hence, if the energy density is constant, every harmonic map is exponentially harmonic and vice versa.

An exponentially harmonic map is called *stable* if it represents, furthermore, a local minimum point of the exponential energy. When the target manifold is the standard sphere S^n , it is well known that every stable harmonic map $f: M \to S^n, n \geq 3$, is constant [2]. This is not the case with exponentially harmonic maps since every identity map of M is a stable exponentially harmonic map [1]. In this note, however, we can prove the following

Received February 14, 1994.

¹⁹⁹¹ AMS Subject Classification: 58E20.

Key words: exponentially harmonic map, stable exponentially harmonic map.

THEOREM. Let M be a compact Riemannian manifold of dimension m. Every nonconstant exponentially harmonic map $f: M \to S^n$ is unstable if $||df||^2(x) < n-2$ for every $x \in M$.

2. Proof

We begin with a property of conformal vector fields on S^n . Embed S^n canonically into \mathbf{R}^{n+1} . Let $\phi: \mathbf{R}^{n+1} \to \mathbf{R}$ be a linear map with $\phi(O) = O$, $\|\nabla \phi\| = 1$. Set $V_{\phi} = \nabla \phi$ and let V_{ϕ}^t and V_{ϕ}^n be tangential and normal components of V_{ϕ} , respectively and ν be the outward unit normal vector to S^n , then we have the following lemma. For proof, refer, for example, to [2].

LEMMA. For any vector X tangent to S^n ,

$$\nabla_X V_{\phi}^t = -\langle V_{\phi}, \nu \rangle X.$$

Let $f: M \to S^n$ be a nonconstant exponentially harmonic map. Consider V_{ϕ}^t and the variation of f in the direction of V_{ϕ}^t , then by the second variation formula for E (cf. [1]) we have

$$\frac{d^{2}\mathbf{E}_{\phi}}{dt^{2}}(0) = \int_{M} \exp(\|df\|^{2}) \sum_{i=1}^{m} (\langle \nabla_{df(e_{i})} V_{\phi}^{t}, df(e_{i}) \rangle^{2} + \|\nabla_{df(e_{i})} V_{\phi}^{t}\|^{2} - \langle R(df(e_{i}), V_{\phi}^{t}) df(e_{i}), V_{\phi}^{t} \rangle) dM$$

where R is the curvature tensor of S^n . Write $\frac{d^2 \mathbf{E}_{\phi}}{dt^2}(0)$ as

$$\frac{d^2 \mathbf{E}_{\phi}}{dt^2}(0) = \int_M \exp(\|df\|^2) \left(\sum_{i=1}^m ((\mathbf{A}) + (\mathbf{B}) - (\mathbf{C})) \right) dM$$

and now calculate. By Lemma,

$$\|\nabla_{df(e_i)}V_{\phi}^t\|^2 = \langle V_{\phi}, \nu \rangle^2 \|df(e_i)\|^2$$

and since

$$\langle R(df(e_i), V_{\phi}^t) df(e_i), V_{\phi}^t \rangle = ||df(e_i)||^2 ||V_{\phi}^t||^2 - \langle df(e_i), V_{\phi}^t \rangle^2$$

A nonexistence theorem for stable exponentially harmonic maps

we have

$$\begin{split} \sum_{i=1}^{m} \left((\mathbf{B}) - (\mathbf{C}) \right) \\ &= \sum_{i=1}^{m} \left(\|df(e_i)\|^2 (\langle V_{\phi}^t, \nu \rangle^2 - \|V_{\phi}^t\|^2) + \langle df(e_i), V_{\phi}^t \rangle^2 \right) \\ &:= \sum_{i=1}^{m} (\mathbf{D}). \end{split}$$

Consider now n+1 linear functions ϕ_j such that $V_{\phi_j}^t := V_j$ form an orthonormal basis of \mathbf{R}^{n+1} and calculate $\sum_{j=1}^{n+1} \frac{d^2 \mathbf{E}_{\phi_j}}{dt^2}(0)$. From

$$\sum_{j} \langle df(e_i), V_j^t \rangle^2 = \sum_{j} \langle df(e_i), V_j \rangle^2 = \|df(e_i)\|^2,$$

$$\sum_{j} \langle V_j, \nu \rangle^2 = \|\nu\|^2 = 1,$$

$$\sum_{j} (\langle V_j, \nu \rangle^2 - \|V_j^t\|^2) = \sum_{j} (\|V_j^n\|^2 - \|V_j^t\|^2)$$

$$= \sum_{j} (2\|V_j^n\|^2 - \|V_j\|^2) = 2 - (n+1)$$

we have

$$\sum_{j=1}^{n+1} \int_{M} \exp(\|df\|^{2}) \sum_{i=1}^{m} (\mathbf{D}) dM = (2-n) \int_{M} \|df\|^{2} \exp(\|df\|^{2}) dM,$$
 and if $\|df\|^{2} < n-2$, we have

$$\sum_{j=1}^{m} \sum_{i=1}^{m} \langle \nabla_{df(e_i)} V_{\phi_j}^t, df(e_i) \rangle^2 = \sum_{j} \sum_{i} \langle V_{\phi_j}, \nu \rangle^2 \| df(e_i) \|^4$$

$$= \sum_{i} \| df(e_i) \|^4 \sum_{j} \langle V_{\phi_j}, \nu \rangle^2 = \sum_{i} \| df(e_i) \|^4$$

$$\leq \left(\sum_{i} \| df(e_i) \|^2 \right)^2 = \| df \|^4 < (n-2) \| df \|^2$$

and consequently we have

$$\sum_{i=1}^{n+1} \int_{M} \exp(\|df\|^{2}) \sum_{i=1}^{m} (\mathbf{A}) dM < (n-2) \int_{M} \|df\|^{2} \exp(\|df\|^{2}) dM.$$

Hence, we have finally,

$$\sum_{j=1}^{n+1} \frac{d^2 \mathbf{E}_{\phi_j}}{dt^2}(0) = \sum_{j=1}^{n+1} \int_M \exp(\|df\|^2) \left(\sum_{i=1}^m ((\mathbf{A}) + (\mathbf{B}) - (\mathbf{C})) \right) dM < 0.$$

Therefore, at least one $\frac{d^2\mathbf{E}_{\phi_j}}{dt^2}(0)$ should be negative, that is, a non-constant exponentially harmonic map f with $||df||^2 < n-2$ is not stable. This completes the proof.

References

- 1. J. Eells, L. Lemaire, Some properties of exponentially harmonic maps, Travaux de Mathematiques. (1991), 115-125.
- 2. P. F. Leung, On the stability of harmonic maps, Lecture Notes in Math. 949 (1982), 122-129.

DEPARTMENT OF MATHEMATICS, KONKUK UNIVERSITY, SEOUL 133-701, KOREA