A NONEXISTENCE THEOREM FOR STABLE EXPONENTIALLY HARMONIC MAPS

Sung Eun Koh

1. Introduction

Let M and N be compact Riemannian manifolds and $f : M \to N$ be a smooth map. Following J. Eells, f is exponentially harmonic if it represents a critical point of the exponential energy integral

$$ E(f) = \int_M \exp(\|df\|^2) \, dM $$

where $\|df\|^2$ is the energy density defined as $\sum_{i=1}^m \|df(e_i)\|^2$, $m = \dim M$, for orthonormal frame e_i of M. The Euler-Lagrange equation of the exponential energy functional E can be written

$$ \exp(\|df\|^2)(\tau(f) + df(\nabla\|df\|^2)) = 0 $$

where $\tau(f)$ is the tension field along f. Hence, if the energy density is constant, every harmonic map is exponentially harmonic and vice versa.

An exponentially harmonic map is called stable if it represents, furthermore, a local minimum point of the exponential energy. When the target manifold is the standard sphere S^n, it is well known that every stable harmonic map $f : M \to S^n$, $n \geq 3$, is constant [2]. This is not the case with exponentially harmonic maps since every identity map of M is a stable exponentially harmonic map [1]. In this note, however, we can prove the following

Received February 14, 1994.
1991 AMS Subject Classification: 58E20.
Key words: exponentially harmonic map, stable exponentially harmonic map.
THEOREM. Let M be a compact Riemannian manifold of dimension m. Every nonconstant exponentially harmonic map $f : M \to S^n$ is unstable if $\|df\|^2(x) < n - 2$ for every $x \in M$.

2. Proof

We begin with a property of conformal vector fields on S^n. Embed S^n canonically into \mathbb{R}^{n+1}. Let $\phi : \mathbb{R}^{n+1} \to \mathbb{R}$ be a linear map with $\phi(O) = O$, $\|\nabla \phi\| = 1$. Set $V_\phi = \nabla \phi$ and let V^t_ϕ and V^n_ϕ be tangential and normal components of V_ϕ, respectively and ν be the outward unit normal vector to S^n, then we have the following lemma. For proof, refer, for example, to [2].

Lemma. For any vector X tangent to S^n,

$$\nabla_X V^t_\phi = -(V_\phi, \nu) X.$$

Let $f : M \to S^n$ be a nonconstant exponentially harmonic map. Consider V^t_ϕ and the variation of f in the direction of V^t_ϕ, then by the second variation formula for E (cf. [1]) we have

$$\frac{d^2 E_\phi}{dt^2}(0) = \int_M \exp(\|df\|^2) \sum_{i=1}^m \langle \nabla df(e_i) V^t_\phi, df(e_i) \rangle^2$$

$$+ \|\nabla df(e_i) V^t_\phi\|^2 - \langle R(df(e_i), V^t_\phi) df(e_i), V^t_\phi \rangle \, dM$$

where R is the curvature tensor of S^n. Write $\frac{d^2 E_\phi}{dt^2}(0)$ as

$$\frac{d^2 E_\phi}{dt^2}(0) = \int_M \exp(\|df\|^2) \left(\sum_{i=1}^m ((A) + (B) - (C)) \right) \, dM$$

and now calculate. By Lemma,

$$\|\nabla df(e_i) V^t_\phi\|^2 = (V_\phi, \nu)^2 \|df(e_i)\|^2$$

and since

$$\langle R(df(e_i), V^t_\phi) df(e_i), V^t_\phi \rangle = \|df(e_i)\|^2 \|V^t_\phi\|^2 - \langle df(e_i), V^t_\phi \rangle^2$$
A nonexistence theorem for stable exponentially harmonic maps

we have
\[\sum_{i=1}^{m} ((B) - (C)) \]
\[= \sum_{i=1}^{m} (\|df(e_i)\|^2 \langle (V_{\phi_i}^t, \nu)^2 - \|V_{\phi_i}^t\|^2 \rangle + \langle df(e_i), V_{\phi_i}^t \rangle^2) \]
\[:= \sum_{i=1}^{m} (D). \]

Consider now \(n + 1 \) linear functions \(\phi_j \) such that \(V_{\phi_j}^t := V_j \) form an orthonormal basis of \(\mathbb{R}^{n+1} \) and calculate \(\sum_{j=1}^{n+1} \frac{d^2 E_{\phi_j}}{dt^2} (0) \). From
\[\sum_j \langle df(e_i), V_j^t \rangle^2 = \sum_j \langle df(e_i), V_j \rangle^2 = \| df(e_i) \|^2, \]
\[\sum_j (V_j, \nu)^2 = \| \nu \|^2 = 1, \]
\[\sum_j ((V_j, \nu)^2 - \| V_j^t \|^2) = \sum_j (\| V_j^n \|^2 - \| V_j \|^2) \]
\[= \sum_j (2 \| V_j^n \|^2 - \| V_j \|^2) = 2 - (n + 1) \]
we have
\[\sum_{j=1}^{n+1} \int_M \exp(\| df \|^2) \sum_{i=1}^{m} (D) dM = (2 - n) \int_M \| df \|^2 \exp(\| df \|^2) dM, \]
and if \(\| df \|^2 < n - 2 \), we have
\[\sum_{j=1}^{n+1} \sum_{i=1}^{m} \langle \nabla df(e_i), V_{\phi_j}^t, df(e_i) \rangle^2 = \sum_j \sum_i (V_{\phi_j}, \nu)^2 \| df(e_i) \|^4 \]
\[= \sum_i \| df(e_i) \|^4 \sum_j (V_{\phi_j}, \nu)^2 = \sum_i \| df(e_i) \|^4 \]
\[\leq \left(\sum_i \| df(e_i) \|^2 \right)^2 = \| df \|^4 < (n - 2) \| df \|^2 \]
and consequently we have

$$\sum_{j=1}^{n+1} \int_M \exp(\|df\|^2) \sum_{i=1}^{m} (A_i) \, dM < (n-2) \int_M \|df\|^2 \exp(\|df\|^2) \, dM.$$

Hence, we have finally,

$$\sum_{j=1}^{n+1} \frac{d^2 E_{\phi_j}}{dt^2}(0) = \sum_{j=1}^{n+1} \int_M \exp(\|df\|^2) \left(\sum_{i=1}^{m} ((A_i) + (B_i) - (C_i)) \right) \, dM < 0.$$

Therefore, at least one $\frac{d^2 E_{\phi_j}}{dt^2}(0)$ should be negative, that is, a non-constant exponentially harmonic map f with $\|df\|^2 < n-2$ is not stable. This completes the proof.

References

Department of Mathematics, Konkuk University, Seoul 133-701, Korea