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ON THE CRITICAL MAPS OF THE DIRICHLET
FUNCTIONAL WITH VOLUME CONSTRAINT

Ko, YoOuNG MEE

1. Introduction

We consider a torus T, that is, a compact surface with genus 1 and
Q = D? x S! topologically with 0Q = T, where D? is the open unit
disk and S! is the unit circle. Let w = (z, y) denote the generic point
on T. For a smooth immersion v : T — R*. we define the Dirichlet
functional by

E(u) = %/ |Vu|?dw
“JT

/ U Uy A uyduw.
T

Now we define a Sobolev subspace

and the volume functional by

Viuw) =

LWl

W={ue Wh(T, Rs) V(v = %71}

Then the Euler-Lagrange equation of E on the volume constrained set
W is Au + Aug A uy = 0, where X is Lagrange multiplier. Let M be
the set of all the maps U : @ — W such that

1) U(p) = U, is continuous in p in the sense that
14 P I

1
1Up = Ugllrz = (/T VU, - VUq;‘2dzU) 20
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as p — ¢ in 2, and

(2) ifq € T and p — ¢, then U tends to a round sphere at g, that is,
for p sufficiently close to ¢ € T, U, maps a small neighborhood
of ¢ almost to a sphere while collapsing the complement of the
neighborhood of ¢ almost to a point.

For all u € W we have the following inequalities;
1 2 1 .2
= [ |Vu|®dw > | |ug Auy|dw > (367)3V (u)3 = 4n.
2 Jr T

The second inequality which we call the isoperimetric’ inequality be-
comes an equality only when u is a round sphere. So we obtain
E(u) = 1 [ |Vu|*dw > 47 for each u € W. However, it is easy to see
that inf,ew E(u) = 47. So a minimizing sequence ir: W cannot con-
verge. Instead, we consider a minimax sequence which might converge
to a map whose Dirichlet energy is strictly bigger than 4.

In this paper we will show that

inf sup E(U,) > 4.
Jot s BU)

2. Main Theorems

LEMMA 1. ForeachU € M, sup,cq [ |[VUp|*dw is achieved at some
point p = p(U) € Q.

Proof. Since as p — ¢ U, — a round sphere at ¢, fT VU, |*dw — 8=
as p — ¢. But for each p € Q we have [,.|VU,|*dw > 8x. So the
supremum is achieved at some point p = p(U) € Q and hence

sup/ |VU,|*dw :ma.x/ VU,
peQ JT P€R Jr

The following theorem gives us an information about the way bubbles
appear. Intuitively, bubbles occur where a sequence does not converge
and we may have some other bubbles on each bubble. and so on. But
‘the number of bubbles should be finite.

de:/ |VUP(U)|2d'w.
T
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THEOREM 2. Let {u/} be a bounded sequence in W satistying
dE|w(u') — 0 strongly in W*, that is, dE(w’ )+ AdV (u?) — 0 strongly.
where A is Lagrange multiplier. Then there exist positive numbers
M, < . < My, a solution ug € WH3(T, R®) of Au+ Au, Auy =0 and
solutions u; € W'I*Z(RQ, R3) of ANu + du, A uy =0 in R? and w(w) —
constant as |w| — oo for 1 < I < My such that for a subsequence
j — oo ul — uy weakly in WV3(T, R®), the first few u;’s are obtained
from ! — ug in the following sense; for 1 <1 < M; < My

u{ = (u! — 1LO)|B,(1~f(- - ur,])) — 7

weakly in W12(R?, R®) as j — oo, where By is a ball in R?, {7{} and
{w,’} are sequences of radii and points in R?, respectively, likewise, the
next few uy,’s, My < m < M; < M, are obtained as weak limits in
WY(R?, R®) from U.'Ii —uy for some l =1(m), 1 <1< M; < My, and
so on, and finally the last few u,’s, My_y < n < My, are obtained as
strong Ijmits in WI’Q(RZ, R3?) from uf-u,' for somet = 1(n), 0 <1 < My

with uj = u’. Moreover, we have

Alk Aik
E(uw) — Z E(u;) and V(u’) — Z V().
=0 =0

For a proof of Theorem 2, see [1, 2].

COROLLARY 3. If {u’} is a sequence in W satisfying E(u’) — 4w
and dE|w(u’) — 0, then for j sufficiently large v’ is close to a round
sphere at some point w € T.

Proof. By Theorem 2, we have solutions ug € WH3(T, R3),u;, -+,
up € WH2(S2) R®) of Au+ Muy Auy = 0 such that

k

k
E(uJ) - ZE((H)’ L"(‘ll,j) — Z V(“i) as J - 00
=0

1=0

By the hypothesis of {u’}, Zf:o E(u;) = 4. But if up € WH3(T, R*)
is not constant, then E(ug) > 47. So E(up) = V(up) = 0 and hence

k k 4n
E(u;) = 4n, Viu) = —.
2 B =i 2V =5
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Since Au; + Mz Aujy =0 for each 1 <2 <k, we obtain

k k
- Z / [V‘uiIde + A Z/ Ui - Uiz A ujydw = 0.
t=1 s? =1 52

So we have —87 + 47\ = 0, that is, A = 2. By Brezis and Coron’s
result (see [3]), each u,, 1 <i <k, is a conformal branched covering of
a sphere with radius 2 = 1. Note that E(u;) = Area(u;), 1 <t < k.
So there exists only one bubble u; at some point w € T. Hence u/ is
close to u; for sufficiently large j.

LEMMA 4. (Ekeland’s Variational Principle) Let {u’} be a sequence
in W such that

. 1
J i —
E(w) < ulél&/ E(u)+ 7T

Then there exists a sequence {v/} in U' such that E(v') — inf,ew E(u),
dE|w(v?) — 0 and ||/ — 07|12 < %
For a proof of Lemma 4, see [-}]

THEOREM 5. Let s = infyre v maxpeq 3 [ |VUp|°dw. Then s > 4.
Proof. Suppose that s = 47. Then we may choose a sequence {U 7}
in M such that

.5 1
max [ |VUI|*dw < 87 + =.
peEN T P ]2

So for each p € €, there exist u{; € W such that
1
||UJ — u; Hl 2 < = E(up) — 47 and dE|w/( u’) — 0
J

by Lemma 4. If we apply Corollary 3 with u] we can conclude that for
sufficiently large ) u’ is close to a bubble at wp € T and so 1s U’

We claim that p — w, : @ — T is continuous. Let ¢ > 0. Since
Ul : Q — W is continuous and ||[U} — u}|h,2 — 0 as 7 — oo, there
exist 6 = 6(¢) > 0 and J >
dist(p, ¢) < 6, and ||uJ - U]{HI_Q <,

3 — Ullh2 < € whenever

= Udllsz <& forj >
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So we have

g — uglliz < lluj — Ut 2 + 1U] = Ul 2 + [IU] = w12 < 3e,
for p, ¢ € 2 with dist(p, ¢) < é and j > J.

Since w, and w, are the unique points in 7' where subsequences
u’ — tp, and u) — uy, do not converge strongly to 0-in W'*(T, R®),
we have for some v>0

lim lim inf/ |Vu;;|2dw > 2
B,(wp)

p—0 j—o00
and

lim liminf |Vuz|2dw > 2
P0G ] 00 B,(w,)

Thus if dist(p, ¢) < & = é(¢), then for any p >> 0

v < liminf( |V1/.]];|2(lw)l2
J—0oo Bp(uvp)
< liminf(( IV'ul{ - V’ufl'Ide)% + (/ |Vué|2dw)%)
J—oo B,(wp) B,(wp)
< 3¢ + lim inf( |VILZ|2(ILLY)% .
I I B, (w,)

Letting ¢ — 0, we obtain p — ¢ and

=0

liminf/ |Vug!2(lu,’ > 1% forall p> 0.
B,(w,)

Hence w, — wy in T which is a compact set.

Now we define T 5 QUT ER T, where ¢ is an inclusion map, f(p) =
wp for p € Q and f(q) = g for ¢ € T so that f oz is the identity map
on T. Since for U € M, U is continuous and U, — a round sphere
at g € T asp € 2 —+ ¢, f is continuously defined. In fact, for p € Q
close to ¢ € T, there exists a sequence {Ug} such that UPJ is close to
a bubble at w, € T for large J. But by the way we have defined U’

Up‘] is already close to a bubble at ¢ € T. So w, is close to ¢. So we

have =, (T) I, m(QUT) ERt m(T) and f, o . is an isomorphism. But
" (T)=2 xZ and m(QUT)=2Z. Hence Z x Z - Z — Z x Z is an

isomorphism, which is impossible. So s > 4r.
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