EPIMORPHISMS OF ANNIHILATORS
OF POOR M-COSEQUENCES

SANG-CHO CHUNG

0. Introduction

Let R be a commutative ring with identity and M an R-module. In ([Mt], 8), Matlis proved that, for a given M-sequence $\{x_1, \ldots, x_n\}$, the following map

$$M/(x_1^t, \ldots, x_n^t)M \rightarrow M/(x_1^{t+1}, \ldots, x_n^{t+1})M$$

is a monomorphism for all $t > 0$, and if $\{x_1, \ldots, x_n\}$ is an M-cosequence, then

$$\text{Ann}_M(x_1^{t+1}, \ldots, x_n^{t+1})R \rightarrow \text{Ann}_M(x_1^t, \ldots, x_n^t)R$$

is an epimorphism for all $t > 0$.

As a generalization of the first result of Matlis, in ([O], 3.2), O’carroll described that, when $\{y_1, \ldots, y_n\}$ is a poor M-sequence and $\{x_1, \ldots, x_n\}$ is a sequence of elements of R such that $H[x_1 \ldots x_n]^T = [y_1 \ldots y_n]^T$ for some $n \times n$ lower triangular matrix H, the map

$$M/(x_1, \ldots, x_n)M \rightarrow M/(y_1, \ldots, y_n)M$$

is a monomorhism and $\{x_1, \ldots, x_n\}$ is also a poor M-sequence.

So we consider the dual case of O’carroll. That is, let $\{y_1, \ldots, y_n\}$ be a poor M-cosequence and $\{x_1, \ldots, x_n\}$ is a sequence of elements of R such that $H[x_1 \ldots x_n]^T = [y_1 \ldots y_n]^T$ for some $n \times n$ lower triangular matrix H. We give an epimorphism

$$\text{Ann}_M(y_1, \ldots, y_n)R \rightarrow \text{Ann}_M(x_1, \ldots, x_n)R$$

and $\{x_1, \ldots, x_n\}$ is also a poor M-cosequence.

Received July 9, 1994.
1991 AMS Subject Classification: 13B10, 13C05.
Key words: poor M-sequence, poor M-cosequence, annihilator, epimorphism.
1. Preliminaries

Throughout this note, \(R \) is a commutative ring with identity and \(M \) an \(R \)-module. We use \(T \) to denote matrix transpose and \(D_n(R) \) \((n \geq 1)\) to denote the set of \(n \times n \) lower triangular matrices over \(R \). For \(H \in D_n(R) \), \(|H|\) denotes the determinant of \(H \). Let \((a_1, \ldots, a_i)R\) be the ideal of \(R \) generated by \(\{a_1, \ldots, a_i\} \) and \((a_1, \ldots, a_i)M\) the submodule of \(M \) generated by \(\{ajm : j = 1, \ldots, i \text{ and } m \in M\} \).

Let \(\{x_1, \ldots, x_n\} \) be a sequence of elements of \(R \) and \(M \) an \(R \)-module. Then \(\{x_1, \ldots, x_n\} \) is said to be a poor \(M \)-sequence if multiplication by \(x_i \) on \(M/(x_1, \ldots, x_{i-1})M \) is a monomorphism for all \(i = 1, \ldots, n \) (where \(x_0 = 0 \)). If, in addition, \(M/(x_1, \ldots, x_n)M \neq 0 \), we call \(\{x_1, \ldots, x_n\} \) an \(M \)-sequence.

If \(b \) is an ideal of \(R \), we define \(\text{Ann}_M b = \{m \in M : bm = 0\} \). We have a dual definition; \(\{x_1, \ldots, x_n\} \) is said to be a poor \(M \)-cosequence if multiplication by \(x_i \) on \(\text{Ann}_M(x_1, \ldots, x_{i-1})R \) is an epimorphism for all \(i = 1, \ldots, n \) (where \(x_0 = 0 \)). Similarly, if \(\text{Ann}_M(x_1, \ldots, x_n)R \neq 0 \), \(\{x_1, \ldots, x_n\} \) is called an \(M \)-cosequence.

Let \(E \) be an injective envelope of the direct sum of all of the simple \(R \)-modules, and define the functor \(* \) by \(* = \text{Hom}(\cdot, E) \), then \(* \) is a faithfully exact contravariant functor; that is, a sequence of \(R \)-modules is exact if and only if its \(\cdot * \) is exact.

Lemma 1.1. Let \(R \) be a ring and \(M \) an \(R \)-module. Assume that \(N \) is an injective \(R \)-module and \(a \) a finitely generated ideal of \(R \). Then we have the following.

1. \(R/a \otimes_R \text{Hom}(M, N) \cong \text{Hom}(\text{Hom}(R/a, M), N) \).

2. If, in addition, \(a \) is generated by a poor \(M \)-cosequence and \(N = E \), then we have
 \[a \otimes_R \text{Hom}(M, E) \cong \text{Hom}(\text{Hom}(a, M), E) \cong aM^* \).

3. If, in addition, \(a \) is generated by a poor \(M \)-sequence, then we have
 \[a \otimes M \cong aM. \]

In particular, we have \(\text{Hom}(a \otimes M, E) \cong \text{Hom}(a, \text{Hom}(M, E)) \cong (aM)^* \).
Epimorphisms of annihilators of poor M-cosequences

Proof. (1) Consider the following exact sequence

$$0 \longrightarrow a \longrightarrow R \longrightarrow R/a \longrightarrow 0.$$

Then by ([Mm], p.14 Exercise 2.5(b)) R/a is of finite presentation. Hence the assertion follows from ([R], 3.60).

(2) Assume that a is generated by an M-cosequence. Note that the generators of a forms an M^*-sequence by ([Mt], 5(2)), or the following Lemma 1.2(2). From the above short exact sequence, we have the following short exact sequence;

$$0 \longrightarrow \text{Hom}(R/a, M) \longrightarrow \text{Hom}(R, M) \longrightarrow \text{Hom}(a, M) \longrightarrow 0,$$

since $\text{Ext}_R^1(R/a, M) = 0$ by ([Mt], 4 and [BH], 1.1.12).

Hence we get the following exact sequence;

$$0 \longrightarrow \text{Hom}(\text{Hom}(a, M), E) \longrightarrow \text{Hom}(M, E) \longrightarrow \text{Hom}(\text{Hom}(R/a, M), E) \longrightarrow 0,$$

since E is an injective R-module.

Now, from (1) and the short exact sequence in the proof of (1), we have the following commutative diagram;

$$
\begin{array}{ccc}
0 & \longrightarrow & a \otimes \text{Hom}(M, E) \\
& \downarrow & \downarrow \\
& R \otimes \text{Hom}(M, E) & \longrightarrow R/a \otimes \text{Hom}(M, E) & \longrightarrow 0 \\
& \text{Hom}(\text{Hom}(a, M), E) & \longrightarrow \text{Hom}(M, E) & \longrightarrow \text{Hom}(\text{Hom}(R/a, M), E) & \longrightarrow 0,
\end{array}
$$

since $\text{Tor}_1^R(R/a, \text{Hom}(M, E)) = 0$ by ([BH], 1.1.12). Hence the five lemma gives the first isomorphism.

Next since $R \otimes \text{Hom}(M, E) \cong M^*$ and $R/a \otimes \text{Hom}(M, E) \cong M^*/aM^*$, we have $a \otimes \text{Hom}(M, E) \cong aM^*$ from the top exact sequence of the above commutative diagram.

(3) Using the short exact sequence in the proof of (1) again, we have the following short exact sequence;

$$0 \longrightarrow a \otimes M \longrightarrow M \longrightarrow M/aM \longrightarrow 0,$$

since $\text{Tor}_1^R(R/a, M) = 0$ by ([BH], 1.1.12). Hence we obtain $a \otimes M \cong aM$.

361
Lemma 1.2. (cf. [Mt], 1, 5 and 6) (1) \(\{x_1, \ldots, x_n\} \) is a poor \(M \)-sequence if and only if \(\{x_1, \ldots, x_n\} \) is a poor \(M^* \)-cosequence.

(2) \(\{x_1, \ldots, x_n\} \) is a poor \(M \)-cosequence if and only if \(\{x_1, \ldots, x_n\} \) is a poor \(M^* \)-sequence.

(3) \(\{x_1, \ldots, x_n\} \) is a poor \(M \)-sequence if and only if \(\{x_1^{\alpha_1}, \ldots, x_n^{\alpha_n}\} \) is a poor \(M \)-sequence for any positive integers \(\alpha_1, \ldots, \alpha_n \).

(4) \(\{x_1, \ldots, x_n\} \) is a poor \(M \)-cosequence if and only if \(\{x_1^{\alpha_1}, \ldots, x_n^{\alpha_n}\} \) is a poor \(M \)-cosequence for any positive integers \(\alpha_1, \ldots, \alpha_n \).

Proof. ((1) and (2)) Note that for \(i = 1, \ldots, n \)

\[
(M/(x_1, \ldots, x_i)M)^* \cong \text{Hom}(R/(x_1, \ldots, x_i)R \otimes M, E) \\
\cong \text{Hom}(R/(x_1, \ldots, x_i)R, \text{Hom}(M, E)) \cong \text{Ann}_{M^*}(x_1, \ldots, x_i)R
\]

and

\[
(\text{Ann}_M(x_1, \ldots, x_i)R)^* \cong \text{Hom}(\text{Hom}(R/(x_1, \ldots, x_i)R, M), E) \\
\cong R/(x_1, \ldots, x_i)R \otimes \text{Hom}(M, E) \cong M^*/(x_1, \ldots, x_i)M^*
\]

by Lemma 1.1(1).

Then the results follow easily from the above isomorphisms, since \(\ast \) is faithfully exact.

(3) This follows from ([K], p.102 Exercise 12).

(4) The proof follows immediately from (2) and (3).

2. Main results

Lemma 2.1. ([O], 3.2) Let \(R \) be a ring and \(M \) an \(R \)-module. Consider two sequences \(\{x_1, \ldots, x_n\} \) and \(\{y_1, \ldots, y_n\} \) of elements of \(R \) such that

(i) \(H[x_1 \ldots x_n]^T = [y_1 \ldots y_n]^T \) for some \(H \in D_n(R) \), and

(ii) \(\{y_1, \ldots, y_n\} \) is a poor \(M \)-sequence.

Then the map from \(M/(x_1, \ldots, x_n)M \) to \(M/(y_1, \ldots, y_n)M \) induced by multiplication by \(|H| \) is a monomorphism and \(\{x_1, \ldots, x_n\} \) is also a poor \(M \)-sequence.
Theorem 2.2. Let R be a ring and $M \in R$-module. Consider two sequences $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_n\}$ of elements of R such that
(i) $H[x_1 \ldots x_n]^T = [y_1 \ldots y_n]^T$ for some $H \in D_n(R)$, and
(ii) $\{y_1, \ldots, y_n\}$ is a poor M-cosequence.

Then the map from $\text{Ann}_M(y_1, \ldots, y_n)R$ to $\text{Ann}_M(x_1, \ldots, x_n)R$ induced by multiplication by $|H|$ is an epimorphism and $\{x_1, \ldots, x_n\}$ is also a poor M-cosequence.

Proof. We first prove that the map is well defined by induction on n. Suppose that $n = 1$, and that $H = (h)$ with $y_1 = hx_1$. Then for all $m \in \text{Ann}_M(y_1)$, i.e., $my_1 = 0$, and $mhx_1 = 0$. Hence $|H|m \in \text{Ann}_M(x_1)$.

Assume that it is true when $n - 1$. Let $m \in \text{Ann}_M(y_1, \ldots, y_n)R$. Then we have $m \in \text{Ann}_M(y_1, \ldots, y_{n-1})R$ and $H'[x_1 \ldots x_{n-1}]^T = [y_1 \ldots y_{n-1}]^T$ where H' is the top left $(n-1) \times (n-1)$ submatrix of H. Hence by inductive hypothesis we have

$$h_{11} \ldots h_{n-1,n-1}m \in \text{Ann}_M(x_1, \ldots, x_{n-1})R.$$

Since $m \in \text{Ann}_M(y_n)$, we get $my_n = m(\sum_{j=1}^{n} h_{nj}x_j) = 0$. Therefore we have

$$h_{11} \ldots h_{n-1,n-1}m(\sum_{j=1}^{n-1} h_{nj}x_j + h_{nn}x_n) = 0$$

or

$$h_{11} \ldots h_{nn}mx_n = 0.$$

Hence

$$|H|m \in \text{Ann}_M(x_1, \ldots, x_{n-1})R \cap \text{Ann}_M(x_n) = \text{Ann}_M(x_1, \ldots, x_n)R.$$

Now, we consider the following exact sequence;

$$\text{Ann}_M(y_1, \ldots, y_n)R \xrightarrow{|H|} \text{Ann}_M(x_1, \ldots, x_n)R \rightarrow C \rightarrow 0,$$

so that

$$\text{Hom}(R/(y_1, \ldots, y_n)R, M) \xrightarrow{|H|} \text{Hom}(R/(x_1, \ldots, x_n)R, M) \rightarrow C \rightarrow 0.$$
Hence we have the following exact sequence;

$$0 \rightarrow \text{Hom}(C, E) \rightarrow \text{Hom}(\text{Hom}(R/(x_1, \ldots, x_n)R, M), E)$$

$$\rightarrow \text{Hom}(\text{Hom}(R/(y_1, \ldots, y_n)R, M), E).$$

By Lemma 1.1(1), we obtain

$$0 \rightarrow \text{Hom}(C, E) \rightarrow R/(x_1, \ldots, x_n)R \otimes_R M^*$$

$$\rightarrow R/(y_1, \ldots, y_n)R \otimes_R M^*.$$

That is,

$$0 \rightarrow \text{Hom}(C, E) \rightarrow M^*/(x_1, \ldots, x_n)M^* \rightarrow M^*/(y_1, \ldots, y_n)M^*.$$

Since \{y_1, \ldots, y_n\} is a poor \(M^*\)-sequence by Lemma 1.2(2), we have \(\text{Hom}(C, E) = 0\) and \{x_1, \ldots, x_n\} is a poor \(M^*\)-sequence by Lemma 2.1. Hence we get \(C = 0\), since \(\text{Hom}(-, E)\) is faithfully exact.

Corollary 2.3. (cf. [M_t], 8) (1) If \(\{x_1, \ldots, x_n\}\) is a poor \(M\)-sequence, then

$$\alpha_t : M/(x_1^t, \ldots, x_n^t)M \xrightarrow{\varphi} M/(x_1^{t+1}, \ldots, x_n^{t+1})M$$

defined by \(\alpha_t(m + (x_1^t, \ldots, x_n^t)M) = \varphi(m + (x_1^{t+1}, \ldots, x_n^{t+1})M\) with \(\varphi = x_1 \cdots x_n\) is a monomorphism for all \(t > 0\).

(2) If \(\{x_1, \ldots, x_n\}\) is a poor \(M\)-cosequence, then

$$\beta_t : \text{Ann}_M(x_1^{t+1}, \ldots, x_n^{t+1})R \xrightarrow{\varphi} \text{Ann}_M(x_1^t, \ldots, x_n^t)R$$

induced by multiplication by \(\varphi = x_1 \cdots x_n\) is an epimorphism for all \(t > 0\).

Proof. From Lemma 1.2(3)(4), we have \(\{x_1^{\alpha_1}, \ldots, x_n^{\alpha_n}\}\) is a poor \(M\)-sequence (-cosequence) for any positive integers \(\alpha_1, \ldots, \alpha_n\).

Hence consider that \(H\) is a diagonal matrix \(\text{diag}(x_1, \ldots, x_n)\) such that

$$H[x_1^t \ldots x_n^t]^T = [x_1^{t+1} \ldots x_n^{t+1}]^T.$$

Then the corollary follows easily from Lemma 2.1 (Theorem 2.2).
Epimorphisms of annihilators of poor M-cosequences

References

Department of Mathematics, Chungnam National University, Taejon 305-764, Korea