STABILITY OF ISOMETRIES BETWEEN
FINITE DIMENSIONAL HILBERT SPACES

KIL-WOUNG JUN AND DAL-WON PARK*

1. Introduction

It is a well-known classical result of Mazur and Ulam that an isometry \(T \) from a real Banach space \(X \) onto a real Banach space \(Y \) with \(T(0) = 0 \) is automatically linear[5]. A map \(T \) between Banach spaces \(X \) and \(Y \) is called an \(\epsilon \)-bi-Lipschitz map if

\[
(1 - \epsilon) \|x - y\| \leq \|Tx - Ty\| \leq (1 + \epsilon) \|x - y\| \text{ for } x, y \in X.
\]

Jarosz[3] conjectured that if \(X, Y \) are real Banach spaces such that there is a surjective \(\epsilon \)-bi-Lipschitz map between \(X \) and \(Y \), then \(X \) and \(Y \) are linearly isomorphic for sufficiently small \(\epsilon \).

The above statement is known to be true for certain special classes of Banach spaces like uniform algebras [2]. It is also known that this is false, even for \(C(K) \) spaces, if we do not assume that \(\epsilon \) is close to zero[1]. Mankiewicz [4] proved that if there is a surjective \(\epsilon \)-bi-Lipschitz map between a Banach space \(X \) and a Hilbert space \(Y \), then \(X \) and \(Y \) are linearly homeomorphic. In this note we show that if \(T \) is an \(\epsilon \)-bi-Lipschitz map from a Hilbert space \(X \) onto a Hilbert space \(Y \) with \(\dim X < \infty \), then there is an isometry from \(X \) onto \(Y \) which is near \(T \).

2. The result

Theorem. Let \(X \) and \(Y \) be real Hilbert spaces with \(\dim X < \infty \). If \(T \) is an \(\epsilon \)-bi-Lipschitz map from \(X \) onto \(Y \) with \(T(0) = 0 \) and with \(\epsilon \leq \epsilon_0 \), then there is an isometry \(I \) from \(X \) onto \(Y \) for which \(\|Tx - Ix\| \leq \epsilon_0 \).

Received November 1, 1993.
1991 Mathematics Subject Classification: Primary 46 E 20
Key words and Phrases: Hilbert space, \(\epsilon \)-bi-Lipschitz map
* This work was partially supported by KOSEF, Grant No 91-08-00-01.
\(C(\epsilon)(\|x\|^{\frac{1}{3}} + \|x\|^{\frac{3}{2}}) \) where \(\epsilon_0 \) is an absolute constant and \(C(\epsilon) \to 0 \) as \(\epsilon \to 0 \).

Proof. We divide the proof into a number of simple steps and at various points of the proof we use inequalities involving \(\epsilon \) which are valid only if \(\epsilon \) is sufficiently small; in these circumstances we will merely assume that \(\epsilon \) is near zero. Let \(\epsilon_1, \epsilon_2, \ldots, \epsilon_n \) be an orthonormal basis of \(X \). We denote the inner product in \(X \) and \(Y \) by \((,\)\).

Step 1.

\[
-6\sqrt{2}\epsilon - 18\epsilon^2 \leq \left(\frac{T\epsilon_i}{\|T\epsilon_i\|}, \frac{T\epsilon_j}{\|T\epsilon_j\|} \right) \leq 6\sqrt{2}\epsilon - 18\epsilon^2
\]

for \(i \neq j, i, j = 1, 2, \ldots, n \).

Proof. Let \(i \neq j \) and \(i, j = 1, 2, \ldots, n \). Since \(T \) is an \(\epsilon \)-bi-Lipschitz map, \(1 - \epsilon \leq \|T\epsilon_i\| \leq 1 + \epsilon \) and

\[
\sqrt{2}(1 - \epsilon) \leq \|T\epsilon_i - T\epsilon_j\| \leq \sqrt{2}(1 + \epsilon).
\]

Thus we get

\[
\frac{\|T\epsilon_i\|}{\|T\epsilon_j\|} - \frac{T\epsilon_j}{\|T\epsilon_j\|} \leq \frac{1}{\|T\epsilon_j\|}(2\epsilon + (1 + \epsilon)\sqrt{2})
\]

\[
\leq \sqrt{2} + \frac{(2 + 2\sqrt{2})\epsilon}{1 - \epsilon}
\]

\[
\leq \sqrt{2} + 6\epsilon.
\]

Also, we have

\[
\frac{\|T\epsilon_i\|}{\|T\epsilon_j\|} - \frac{T\epsilon_j}{\|T\epsilon_j\|} \geq \frac{1}{\|T\epsilon_j\|} \left(\|T\epsilon_i - T\epsilon_j\| - \|T\epsilon_j\| - \|T\epsilon_i\| \right)
\]

\[
\geq \frac{1}{1 + \epsilon}((1 - \epsilon)\sqrt{2} - 2\epsilon)
\]

\[
\geq \sqrt{2} - 6\epsilon.
\]

By the above two inequalities, we have

\[
\sqrt{2} - 6\epsilon \leq \left(\frac{T\epsilon_i}{\|T\epsilon_i\|}, \frac{T\epsilon_j}{\|T\epsilon_j\|} \right) \leq \sqrt{2} + 6\epsilon.
\]
Hence
\[-6\sqrt{2}\epsilon - 18\epsilon^2 \leq \left(\frac{T_{e_i}}{\|Te_i\|}, \frac{T_{e_j}}{\|Te_j\|} \right) \leq 6\sqrt{2}\epsilon - 18\epsilon^2.\]

STEP 2. There is an orthonormal basis \(f_1, f_2, ..., f_n \) of \(Y \) for which
\[\| f_i - \frac{T_{e_i}}{\|Te_i\|} \| \leq C_i(\epsilon), i = 1, 2, ..., n\]
where \(C_i(\epsilon) \to 0 \) as \(\epsilon \to 0 \).

Proof. Put \(f_1 = \frac{T_{e_1}}{\|Te_1\|} \). Then \(C_1(\epsilon) = 0 \). Suppose \(f_1, ..., f_m(m < n) \) are linearly independent such that \(\|f_i\| = 1, (f_i, f_j) = 0 \) for \(i \neq j, i, j = 1, ..., m \) and
\[\| f_i - \frac{T_{e_i}}{\|Te_i\|} \| \leq C_i(\epsilon), i = 1, 2, ..., m.\]

Let \(S\epsilon_{m+1} = \{ f \in Y | \|f\| = 1, (f, f_1) = \cdots = (f, f_m) = 0, \frac{T_{\epsilon_{m+1}}}{\|Te_{m+1}\|} = \alpha_1 f_1 + \cdots + \alpha_m f_m + \beta f, \ \alpha_1, \alpha_2, ..., \alpha_m, \beta \text{ are real numbers} \} \). Suppose that \(S\epsilon_{m+1} \) is empty. Without loss of generality we can assume that \(\frac{T_{\epsilon_{m+1}}}{\|Te_{m+1}\|} = \alpha_1 f_1 + \cdots + \alpha_m f_m \). Then, by Schwarz inequality and Step 1,
\[\left| \left(\frac{T_{\epsilon_{m+1}}}{\|Te_{m+1}\|}, f_j \right) \right| \leq 6\sqrt{2}\epsilon + 18\epsilon^2 + C_j(\epsilon).\]
Thus we have
\[\left(\frac{T_{\epsilon_{m+1}}}{\|Te_{m+1}\|}, \frac{T_{\epsilon_{m+1}}}{\|Te_{m+1}\|} \right) \leq (|\alpha_1| + \cdots + |\alpha_m|)(6\sqrt{2}\epsilon + 18\epsilon^2 + C_1(\epsilon) + \cdots + C_m(\epsilon)) < m(6\sqrt{2}\epsilon + 18\epsilon^2 + C_1(\epsilon) + \cdots + C_m(\epsilon)) < 1.\]

This contradicts that \(\| \frac{T_{\epsilon_{m+1}}}{\|Te_{m+1}\|} \| = 1 \). Thus \(S\epsilon_{m+1} \neq \emptyset \). We choose a \(f \in S\epsilon_{m+1} \) and let \(f_{m+1} = f \). Thus \(\dim X \leq \dim Y \). Since \(T \)
is an ϵ-bi-Lipschitz map, $\dim Y \leq \dim X$. Hence f_1, f_2, \ldots, f_n is an orthonormal basis of Y. Since \(\frac{T_{n+1} e_{m+1}}{\|T_{n+1} e_{m+1}\|} = \alpha_1 f_1 + \cdots + \alpha_m f_m + \beta f_{m+1} \),

\[
\left\| f_{m+1} - \frac{T_{n+1} e_{m+1}}{\|T_{n+1} e_{m+1}\|} \right\|^2 = 2 - 2\beta.
\]

Since \((\frac{T_{n+1} e_{m+1}}{\|T_{n+1} e_{m+1}\|}, f_i) = \alpha_i, i = 1, 2, \ldots, m \), we have \(|\alpha_i| \leq 6\sqrt{2}\epsilon + 18\epsilon^2 + C_1(\epsilon) \). Thus

\[
\beta^2 = 1 - \alpha_1^2 - \alpha_2^2 - \cdots - \alpha_m^2 \\
\geq 1 - m(6\sqrt{2}\epsilon + 18\epsilon^2) - (C_1(\epsilon) + C_2(\epsilon) + \cdots + C_m(\epsilon)).
\]

Hence

\[
2 - 2\beta \leq 2 - 2\beta^2 \\
\leq 2m(6\sqrt{2}\epsilon + 18\epsilon^2) + 2(C_1(\epsilon) + C_2(\epsilon) + \cdots + C_m(\epsilon)).
\]

Let \(C_{m+1}(\epsilon) = \sqrt{2m(6\sqrt{2}\epsilon + 18\epsilon^2) + 2(C_1(\epsilon) + C_2(\epsilon) + \cdots + C_m(\epsilon))} \). Then \(C_{m+1}(\epsilon) \rightarrow 0 \) as \(\epsilon \rightarrow 0 \).

Step 3. \(\|\lambda Tx - T\lambda x\| \leq 4\sqrt{\epsilon}(|\lambda|^\frac{1}{2} + |\lambda|^\frac{3}{2})\|x\| \) for \(\lambda \in \mathbb{R} \) and \(\|Tx + Ty - T(x + y)\| \leq 4\sqrt{\epsilon} (\|x\| + \|y\|) \).

Proof. Since \(T \) is an \(\epsilon \)-bi-Lipschitz map,

\[
(1 - \epsilon)|1 - \lambda|\|x\| \leq \|Tx - T\lambda x\| \leq (1 + \epsilon)|1 - \lambda|\|x\|.
\]

A routine calculation shows that

\[
(1 - \epsilon)^2(1 - \lambda)^2\|x\|^2 - \|Tx\|^2 - \|T\lambda x\|^2 \\
\leq -2\langle Tx, T\lambda x \rangle \\
\leq (1 + \epsilon)^2(1 - \lambda)^2\|x\|^2 - \|Tx\|^2 - \|T\lambda x\|^2.
\]

So we have

\[
\|\lambda Tx - T\lambda x\| \leq 4|\lambda|^\frac{3}{2}\sqrt{\epsilon}\|x\| \text{ for } \lambda \geq 1, \lambda \leq -1.
\]
Hence for $-1 < \lambda < 1$, we get

$$||\lambda Tx - T\lambda x|| \leq 4|\lambda|^\frac{1}{2} \sqrt{\epsilon} ||x||.$$

Thus for any real number λ, we get

$$||\lambda Tx - T\lambda x|| \leq 4\sqrt{\epsilon}(|\lambda|^\frac{1}{2} + |\lambda|^\frac{3}{2}) ||x||.$$

It is easy to see that

$$ (1 - \epsilon)^2 ||y||^2 - ||Tx||^2 - ||T(x + y)||^2 $$

$$ \leq -2(Tx, T(x + y)) $$

$$ \leq (1 + \epsilon)^2 ||y||^2 - ||Tx||^2 - ||T(x + y)||^2, $$

$$ (1 - \epsilon)^2 ||x||^2 - ||Ty||^2 - ||T(x + y)||^2 $$

$$ \leq -2(Ty, T(x + y)) $$

$$ \leq (1 + \epsilon)^2 ||x||^2 - ||Ty||^2 - ||T(x + y)||^2 $$

and

$$ (1 - \epsilon)^2 ||x - y||^2 - ||Tx||^2 - ||Ty||^2 $$

$$ \leq -2(Tx, Ty) $$

$$ \leq (1 + \epsilon)^2 ||x - y||^2 - ||Tx||^2 - ||Ty||^2. $$

So we have

$$ ||Tx + Ty - T(x + y)|| \leq 4\sqrt{\epsilon}(||x|| + ||y||). $$

Step 4. There is an isometry I from X onto Y for which $||Ix - Tx|| \leq C(\epsilon)(||x||^\frac{1}{2} + ||x||^\frac{3}{2})$ where $C(\epsilon) \to 0$ as $\epsilon \to 0$.

Proof. For $x \in X$, there are $\alpha_1, ..., \alpha_n$ such that $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$. We define $I : X \longrightarrow Y$ by $Ix = \alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_n f_n$. Then I is an isometry. By Step 3, we have

$$ (1) \ |T(\alpha_1 e_1 + \cdots + \alpha_n e_n) - T(\alpha_1 e_1) - \cdots - T(\alpha_n e_n)| \leq 8n\sqrt{\epsilon} ||x||. $$
By Step 2, we get

$$
\|Te_i - f_i\| \leq \left\| Te_i - \frac{Te_i}{\|Te_i\|} \right\| + \left\| \frac{Te_i}{\|Te_i\|} - f_i \right\| \leq \epsilon + C_i(\epsilon) \text{ for } i = 1, 2, \ldots, n.
$$

By (1), (2) and Step 3, we obtain

$$
\|Tx - Ix\| \leq 8n \sqrt{\epsilon} \|x\| + 4n \sqrt{\epsilon} \left(\|x\|^{\frac{1}{2}} + \|x\|^{\frac{3}{2}} \right) + (n \epsilon + C_1(\epsilon) + \cdots + C_n(\epsilon))n\|x\|.
$$

Thus we have

$$
\|Tx - Ix\| \leq C(\epsilon)(\|x\|^{\frac{1}{2}} + \|x\|^{\frac{3}{2}})
$$

where $C(\epsilon) = 12n \sqrt{\epsilon} + n^2 \epsilon + n(C_1(\epsilon) + \cdots + C_n(\epsilon))$. This completes the proof of Step 4.

References

Kil-Woung Jun
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea

Dal-Won Park
Department of Mathematics Education
Kongju National University
Kongju 314-701, Korea