GENERALIZED FRACTIONS, GALOIS THEORY
AND INJECTIVE ENVELOPES OF SIMPLE
MODULES OVER POLYNOMIAL RINGS

YEONG MOO SONG

1. Introduction

In [9], we gave a very explicit description of the injective envelope of an arbitrary simple module over a polynomial ring \(K[X_1, \ldots, X_n] \) over a field \(K \) in indeterminates \(X_1, \ldots, X_n \). This paper presents another approach to give a description.

Our another generalization is based on Galois theory, as well as modules of generalized fractions. Given a maximal ideal \(m \) of the polynomial ring \(K[X_1, \ldots, X_n] \), it is possible to find a finite, normal extension field \(L \) of \(K \) such that, if \(\mathcal{M}_1, \ldots, \mathcal{M}_t \) denote the (necessarily finitely many) maximal ideals of \(L[X_1, \ldots, X_n] \) whose contractions to \(K[X_1, \ldots, X_n] \) are equal to \(m \), then there exist \(a_{ij} \in L \) \((i = 1, \ldots, t, j = 1, \ldots, n)\) such that

\[
\mathcal{M}_i = (X_1 - a_{i1}, \ldots, X_n - a_{in}) \quad \text{for all} \quad i = 1, \ldots, t.
\]

We then use the results of [9, Section 2] to provide a description, in terms of modules of generalized fractions, of the injective envelope of the \(L[X_1, \ldots, X_n] \)-module \(\bigoplus_{i=1}^t L[X_1, \ldots, X_n]/\mathcal{M}_i \); it turns out that the Galois group \(G \) of \(L \) over \(K \) acts on this injective envelope in a natural way, and we shall show, in some cases, including the case where \(K \) has characteristic zero, that the ‘fixed submodule’ is naturally \(K[X_1, \ldots, X_n] \)-isomorphic to the injective envelope of the simple \(K[X_1, \ldots, X_n] \)-module \(K[X_1, \ldots, X_n]/m \).

When discussing modules of generalized fractions, we shall use the same notation and terminology as in [9].

Received February 7, 1994.

1991 AMS Subject Classifications: 13B05, 13C11, 13E05.

Key words and phrases: modules of generalized fractions, injective module, dd-sum, Galois theory.
2. Use of Galois theory

We begin by setting up notation which will be in force throughout the paper.

Notation and Terminology 2.1. Throughout the paper, we shall use K to denote a field, and A will denote $K[X_1, \ldots, X_n]$, the ring of polynomials over K in n indeterminates (where $n > 0$). Also, m will denote a maximal ideal of A, and \overline{K} will denote an algebraic closure of K.

If L is an algebraic extension field of K, then $A = K[X_1, \ldots, X_n]$ is a subring of $L[X_1, \ldots, X_n]$, and the latter ring is integral over A. We shall say that a prime ideal p of $L[X_1, \ldots, X_n]$ lies over m if $p \cap A = m$. Observe that such a p must be maximal.

Let L be an algebraic extension field of K. We shall say that m splits in L if the (necessarily finitely many (see 2.2 below)) maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_t$ of $L[X_1, \ldots, X_n]$ which lie over m are such that, for suitable $a_{ij} \in L \ (i = 1, \ldots, t, \ j = 1, \ldots, n)$,

$$\mathfrak{m}_i = (X_1 - a_{i1}, \ldots, X_n - a_{in}) \quad \text{for all} \quad i = 1, \ldots, t.$$

Lemma 2.2. Let L be an algebraic extension field of K. Then there are only finitely many maximal ideals of $L[X_1, \ldots, X_n]$ which lie over m.

Proof. The natural ring homomorphism $f : K[X_1, \ldots, X_n] \to L[X_1, \ldots, X_n]$ is faithfully flat, and the fibre ring of f over m is isomorphic to $L \otimes_K A/m$; see [3, Section 2]. Note that this fibre ring is Noetherian, and by [4, 3.1], even Artinian. Hence, by [1, (2.2)], there are only finitely many maximal ideals of $L[X_1, \ldots, X_n]$ which lie over m.

Lemma 2.3. Let L be an algebraic extension field of K such that m splits in L; let L' be an algebraic extension field of L. Then m splits in L'.

Proof. Let \mathfrak{M} be a maximal ideal of $L'[X_1, \ldots, X_n]$ which lies over m. Then $\mathfrak{M} := \mathfrak{M} \cap L[X_1, \ldots, X_n]$ is a maximal ideal of $L[X_1, \ldots, X_n]$ which lies over m, and so there exist $a_1, \ldots, a_n \in L$ such that

$$\mathfrak{M} = \sum_{i=1}^{n} (X_i - a_i)L[X_1, \ldots, X_n].$$
But then $\mathfrak{N} \supseteq \sum_{i=1}^{n} (X_i - a_i)L'[X_1, \ldots, X_n]$, and since the latter ideal of $L'[X_1, \ldots, X_n]$ is maximal, it follows that

$$\mathfrak{N} = \sum_{i=1}^{n} (X_i - a_i)L'[X_1, \ldots, X_n].$$

Lemma 2.4. Suppose that L is an algebraic extension field of K and that \mathfrak{m} splits in L. Let $\mathfrak{M}_1, \ldots, \mathfrak{M}_t$ be the maximal ideals of $L[X_1, \ldots, X_n]$ which lie over \mathfrak{m}, and suppose that $a_{ij} \in L$ ($i = 1, \ldots, t$, $j = 1, \ldots, n$) are such that

$$\mathfrak{M}_i = (X_1 - a_{i1}, \ldots, X_n - a_{in}) \text{ for all } i = 1, \ldots, t.$$

Let K' be a subfield of L which contains $K(\{a_{ij} | i = 1, \ldots, t, \ j = 1, \ldots, n\})$. Then \mathfrak{m} splits in K'.

Proof. By the 'Lying-over Theorem', each maximal ideal of $K'[X_1, \ldots, X_n]$ which lies over \mathfrak{m} is the contraction of one of $\mathfrak{M}_1, \ldots, \mathfrak{M}_t$. Also, for each $i = 1, \ldots, t$.

$$\mathfrak{M}_i \cap K'[X_1, \ldots, X_n] = \sum_{j=1}^{n} (X_j - a_{ij})K'[X_1, \ldots, X_n].$$

Lemma 2.5. There exists a finite extension field L of K, with $K \subseteq L \subseteq \overline{K}$, such that \mathfrak{m} splits in L.

Proof. By 2.2, there are only finitely many maximal ideals of $\overline{K}[X_1, \ldots, X_n]$ which lie over \mathfrak{m}: let these be $\mathfrak{N}_1, \ldots, \mathfrak{N}_t$. By the Nullstellensatz, there exist $a_{ij} \in \overline{K}$ ($i = 1, \ldots, t$, $j = 1, \ldots, n$) such that

$$\mathfrak{N}_i = (X_1 - a_{i1}, \ldots, X_n - a_{in}) \text{ for all } i = 1, \ldots, t.$$

Then $K(a_{11}, \ldots, a_{1n}, a_{21}, \ldots, a_{tn})$ is, by 2.4, a suitable candidate for L.
Remark 2.6. It follows from 2.5 and 2.3 that we can find a finite normal extension field L' of K, with $K \subseteq L' \subseteq \overline{K}$, such that m splits in L'.

However, we cannot hope, in general, that we can always find such an extension of \overline{K} which is also separable, as consideration of the following example shows. Let $\mathbb{F}_p(\tau)$ be a simple extension field of the field \mathbb{F}_p of p elements, where p is a prime number, such that τ is transcendental over \mathbb{F}_p. Let m_1 be the maximal ideal $(X^p - \tau)$ of the polynomial ring $\mathbb{F}_p(\tau)[X]$. Let L be an algebraic extension field of $\mathbb{F}_p(\tau)$ in which m_1 splits, and let $b \in L$ be such that $(X - b)L[X]$ is a maximal ideal of $L[X]$ which lies over m_1. Now we can use 2.3 and enlarge L if necessary to be sure that it contains a p-th root $\tau^{1/p}$ of τ. Then

$$(X - \tau^{1/p})^p = X^p - \tau \in (X - b)L[X],$$

so that $X - \tau^{1/p} \in (X - b)L[X]$ and $\tau^{1/p} = b$. Thus L cannot be a separable extension of $\mathbb{F}_p(\tau)$.

Additional Notation 2.7. For the remainder of this paper, we shall suppose that L is a finite extension field of K such that m splits in L. We shall let M_1, \ldots, M_t be the maximal ideals of $L[X_1, \ldots, X_n]$ which lie over m, and we shall suppose that $a_{ij} \in L$ ($i = 1, \ldots, n$, $j = 1, \ldots, n$) are such that

$$M_i = (X_1 - a_{i1}, \ldots, X_n - a_{in}) \quad \text{for all} \quad i = 1, \ldots, t.$$

We shall denote $L[X_1, \ldots, X_n]$ by B, and we shall let $G := Gal(L : K)$ denote the Galois group of L over K. Note that each $\sigma \in G$ induces an isomorphism of the ring B which has restriction to A equal to the identity and restriction to L equal to σ : we shall denote this induced isomorphism also by σ.

For each $i = 1, \ldots, t$, let

$$U_i := \{(X_1 - a_{i1})^{r_1}, \ldots, (X_n - a_{in})^{r_n}, 1) \mid r_i \in \mathbb{N} \quad \text{for all} \quad i = 1, \ldots, n\},$$

and set $E'(B/M_i) = U_i^{-1}B$; by [9, 2.4], $E'(B/M_i)$ is an injective envelope of the B-module B/M_i. Lastly, set

$$E' := \bigoplus_{i=1}^t E'(B/M_i),$$

an injective B-module. Note that the comments in [9, 2.4] enable us to describe elements of E' in a very explicit manner.
Remark 2.8. Let the situation be as in 2.1 and 2.7. Let $\sigma \in G$, and let $j \in \mathbb{N}$ with $1 \leq j \leq t$. Then $\sigma(\mathcal{M}_j)$ must also be a maximal ideal of B which lies over \mathcal{M}_i, and so must be \mathcal{M}_k for some k with $1 \leq k \leq t$. It follows that $\sigma(a_{ji}) = a_{ki}$ for all $i = 1, \ldots, n$.

It is easy to deduce from [7, 3.3(ii)] and [6, 2.2] that σ induces an isomorphism of A-modules $\sigma^{(j)} : E'(B/\mathcal{M}_j) \to E'(B/\mathcal{M}_j)$ which is such that

$$\sigma^{(j)} \left(\frac{h}{((X_1 - a_{j1})^{r_1}, \ldots, (X_n - a_{jn})^{r_n}, 1)} \right) = \frac{\sigma(h)}{((X_1 - a_{k1})^{r_1}, \ldots, (X_n - a_{kn})^{r_n}, 1)}$$

for all $h \in B$, $r_1, \ldots, r_n \in \mathbb{N}$. It follows that σ induces an A-module automorphism of $E' = \bigoplus_{i=1}^{t} E'(B/\mathcal{M}_i)$ which has, for all $j = 1, \ldots, t$, restriction to $E'(B/\mathcal{M}_j)$ equal to $\sigma^{(j)}$. We shall denote this induced automorphism also by σ. Our plan is to study the ‘fixed submodule’

$$E'^G := \{ e' \in E' | \sigma(e') = e' \text{ for all } \sigma \in G \},$$

and show that, in certain circumstances, this A-module is an injective envelope of the simple A-module A/m.

Remark 2.9. Let the situation be as in 2.1 and 2.7. It follows from [2, (3.5)] that E', when regarded as an A-module by restriction of scalars, is injective.

Proposition 2.10. Let the situation be as in 2.1 and 2.7. Assume in addition that $|G|$, the order of the Galois group G of L over K, is not divisible by $\text{char } K$, the characteristic of K. (This condition is of course satisfied if $\text{char } K = 0$.) Then

$$E'^G = \{ e' \in E' | \sigma(e') = e' \text{ for all } \sigma \in G \}$$

is an injective A-module.

Proof. The map $\theta : E' \to E'^G$ defined by

$$\theta(e') = \frac{1}{|G|} \sum_{\sigma \in G} \sigma(e') \text{ for all } e' \in E'$$
is an A-homomorphism which satisfies $\theta \circ i = Id_{E'G}$, where $i : E'G \to E'$ denotes the inclusion map and $Id_{E'G}$ denotes the identity map on $E'G$. Hence $E'G$ is a direct summand of E' when the latter is considered as an A-module, and so, in view of 2.9, $E'G$ is an injective A-module.

3. The results

Theorem 3.1. Let the situation be as in 2.1 and 2.7. Assume that L is, in addition, a separable, normal extension of K.

The Galois group G acts transitively on $\{M_1, \ldots, M_t\}$: for each $i = 1, \ldots, t$, let $\sigma_i \in G$ be such that $\sigma_i(M_1) = M_i$, with the understanding that σ_1 is the identity. Set $a_j = a_{1j}$ for all $j = 1, \ldots, n$, so that

$$M_1 = \sum_{i=1}^{n} (X_i - a_i)B$$

and

$$M_j = \sum_{i=1}^{n} (X_i - \sigma_j(a_i))B \quad \text{for all} \quad j = 2, \ldots, t.$$

Let $K' := K(a_1, \ldots, a_n)$. Observe that, with the notation of 2.7, U_1 is a triangular subset of $K'[X_1, \ldots, X_n]^{n+1}$, and, in view of [7, 3.3(ii)], [6, 2.2], and [1, 2.4], we can regard $U_1^{-n-1}K'[X_1, \ldots, X_n]$ as an A-submodule of $E'(B/M_1) = U_1^{-n-1}B$ in an obvious natural way. When this is done, with the notation of 2.8,

$$E'G = \{(\delta, \sigma_2^{(1)}(\delta), \ldots, \sigma_t^{(1)}(\delta)) \in E' | \delta \in U_1^{-n-1}K'[X_1, \ldots, X_n]\}.$$

Note. By [9, 2.4], each element δ of $U_1^{-n-1}K'[X_1, \ldots, X_n]$ has a unique ddsum (with respect to $K'\setminus\{0\}$)

$$\delta = \sum_{i=1}^{w} \frac{k_i'}{((X_1 - a_1)^{\alpha_{i1}}, \ldots, (X_n - a_n)^{\alpha_{in}}, 1)},$$

where $w \in \mathbb{N}_0, k_1', \ldots, k_w' \in K'\setminus\{0\}$, and $(\alpha_{i1}, \ldots, \alpha_{in})$ ($i = 1, \ldots, w$) are w distinct elements of \mathbb{N}^n. When this fact is combined with the
result of 3.1 above, we obtain a very explicit description of a general
element of E^{G}.

Proof. The fact that G acts transitively on $\{\mathcal{M}_1, \ldots, \mathcal{M}_t\}$ is well
known: see, for example, [5, Exercise 13.36].

First, let $e' = (\delta_1, \ldots, \delta_t) \in E'^{G}$, so that $\delta_1 \in E'(B/\mathcal{M}_1) = U_1^{-n-1}B$.

Let

$$\delta_1 = \sum_{i=1}^{w} \frac{l_i}{((X_1 - a_1)^{\alpha_{i1}}, \ldots, (X_n - a_n)^{\alpha_{in}}, 1)},$$

where $w \in \mathbb{N}_0$, $l_1, \ldots, l_w \in L \setminus \{0\}$, and $(\alpha_{i1}, \ldots, \alpha_{in})$ ($i = 1, \ldots, w$) are

w distinct elements of \mathbb{N}^n, be the unique dd-sum for δ_1 with respect to $L \setminus \{0\}$. Our immediate aim is to show that $l_1, \ldots, l_w \in K'$ for all

$i = 1, \ldots, w$.

Let $\sigma \in Gal(L : K')$, a subgroup of $G = Gal(L : K)$. Then $\sigma(\mathcal{M}_1) = \mathcal{M}_1$, and so, since $\sigma(e') = e'$, we must have $\sigma^{(1)}(\delta_1) = \delta_1$, that is

$$\sum_{i=1}^{w} \frac{\sigma(l_i)}{((X_1 - a_1)^{\alpha_{i1}}, \ldots, (X_n - a_n)^{\alpha_{in}}, 1)}$$

$$= \sum_{i=1}^{w} \frac{l_i}{((X_1 - a_1)^{\alpha_{i1}}, \ldots, (X_n - a_n)^{\alpha_{in}}, 1)}.$$
where \(w \in \mathbb{N}_0, \ k'_1, \ldots, k'_w \in K' \setminus \{0\} \), and \((\alpha_{i1}, \ldots, \alpha_{in})(i = 1, \ldots, w)\) are \(w \) distinct elements of \(\mathbb{N}^n \), be the unique \(dd \)-sum for \(\delta \) with respect to \(K' \setminus \{0\} \).

Let \(r \) be the unique integer between 1 and \(t \) for which \(\sigma(\mathcal{M}_r) = \mathcal{M}_j \). Then the \(j \)-th component of \(\sigma(e') \) is

\[
\sigma^{(r)}(\sigma^{(1)}_r(\delta)) = \sum_{i=1}^w \frac{\sigma_r(k'_i)}{((X_1 - \sigma_j(a_1))^{\alpha_{i1}}, \ldots, (X_n - \sigma_j(a_n))^{\alpha_{in}}, 1)}.
\]

But \(\sigma_j^{-1}\sigma_r(\mathcal{M}_1) = \mathcal{M}_1 \), and so

\[
\sigma_j^{-1}\sigma_r(a_i) = a_i \quad \text{for all} \quad i = 1, \ldots, n.
\]

Hence \(\sigma_j^{-1}\sigma_r \in \text{Gal}(L : K') \) and so

\[
\sigma_r(k'_i) = \sigma_j\sigma_j^{-1}\sigma_r(k'_i) = \sigma_j(k'_i) \quad \text{for all} \quad i = 1, \ldots, w.
\]

Thus the \(j \)-th component of \(\sigma(e') \) is

\[
\sum_{i=1}^w \frac{\sigma_j(k'_i)}{((X_1 - \sigma_j(a_1))^{\alpha_{i1}}, \ldots, (X_n - \sigma_j(a_n))^{\alpha_{in}}, 1)} = \sigma^{(1)}_j(\delta),
\]

the \(j \)-th component of \(e' \). As this is true for all \(j = 1, \ldots, t \), and also for all \(\sigma \in G \), it follows that \(e' \in E'^{G} \). Hence

\[
E'^{G} \supseteq \{(\delta, \sigma_2^{(1)}(\delta), \ldots, \sigma_t^{(1)}(\delta)) \in E' | \delta \in U_1^{-n-1}K'[X_1, \ldots, X_n]\},
\]

and the proof is complete.

Theorem 3.2. Let the situation be as in 2.1 and 2.7. Assume in addition that \(L \) is a separable, normal extension of \(K \), and that \(|G| \), the order of the Galois group \(G \) of \(L \) over \(K \), is not divisible by \(\text{char} \ K \), the characteristic of \(K \). Then

\[
E'^{G} := \{e' \in E' | \sigma(e') = e' \quad \text{for all} \quad \sigma \in G\}
\]
is an injective envelope of the simple A-module A/m.

Proof. By 2.10, E'^G is an injective A-module. We shall use the description of E'^G obtained in 3.1 to show that it is an injective envelope of A/m. By 3.1, and with the notation thereof, the element

$$
\zeta := \frac{1}{((X_1 - a_1), \ldots, (X_n - a_n), 1)},
\frac{1}{((X_1 - \sigma_2(a_1)), \ldots, (X_n - \sigma_2(a_n)), 1)},
\ldots,
\frac{1}{((X_1 - \sigma_t(a_1)), \ldots, (X_n - \sigma_t(a_n)), 1)}
$$

of E' actually belongs to E'^G; in view of [6, 2.2], it is not zero, and as it is annihilated by m (by [7, 3.3(ii)]), it follows that $S := A\zeta$ is a simple A-submodule of E'^G and $S \cong A/m$. Our aim is to show that E'^G is an essential extension of S, as this will complete the proof.

With this in mind, let us now consider the effect on a generalized fraction

$$
l \frac{1}{((X_1 - a_1)^{\alpha_1}, \ldots, (X_n - a_n)^{\alpha_n}, 1)} \in E'(B/\mathfrak{M}_1) = U_1^{-n-1}B,
$$

where $l \in L \setminus \{0\}$, $\alpha_1, \ldots, \alpha_n \in \mathbb{N}$ and $\alpha_1 > 1$, of multiplication by $(X_1 - c)$ for $c \in L$. First,

$$
(X_1 - a_1)\frac{l}{((X_1 - a_1)^{\alpha_1}, \ldots, (X_n - a_n)^{\alpha_n}, 1)}
= \frac{l}{((X_1 - a_1)^{-\alpha_1-1}, (X_2 - a_2)^{\alpha_2}, \ldots, (X_n - a_n)^{\alpha_n}, 1)},
$$

and this non-zero by [6, 2.2]. Secondly, for $c \in L$ with $c \neq a_1$,

$$
(X_1 - c)\frac{l}{((X_1 - a_1)^{\alpha_1}, \ldots, (X_n - a_n)^{\alpha_n}, 1)}
= (X_1 - a_1 + a_1 - c)\frac{l}{((X_1 - a_1)^{\alpha_1}, \ldots, (X_n - a_n)^{\alpha_n}, 1)}
= \frac{l}{((X_1 - a_1)^{-\alpha_1-1}, (X_2 - a_2)^{\alpha_2}, \ldots, (X_n - a_n)^{\alpha_n}, 1)}
+ \frac{(a_1 - c)l}{((X_1 - a_1)^{\alpha_1}, (X_2 - a_2)^{\alpha_2}, \ldots, (X_n - a_n)^{\alpha_n}, 1)},
$$
and both terms in this last expression are non-zero (again by [6, 2.2]), so that this expression is actually a dd-sum with respect to $L \setminus \{0\}$.

Now let m_1 be the minimal polynomial of a_1 over K. Bearing in mind that L is a normal, separable extension of K, it follows from ideas like those in the preceding paragraph that

$$m_1(X_1)^{\alpha_1 - 1} \frac{l}{((X_1 - a_1)^{\alpha_1}, \ldots, (X_n - a_n)^{\alpha_n}, 1)} = \frac{l'}{((X_1 - a_1), (X_2 - a_2)^{\alpha_2}, \ldots, (X_n - a_n)^{\alpha_n}, 1)}$$

for some $l' \in L \setminus \{0\}$. Note also that

$$m_1(X_1)^{\alpha_1} \frac{l}{((X_1 - a_1)^{\alpha_1}, \ldots, (X_n - a_n)^{\alpha_n}, 1)} = 0,$$

by [7, 3.3(ii)].

We now return to the problem of showing that E'^G is an essential extension of $S = A\zeta$. Let $e' \in E'^G$ with $e' \neq 0$, so that, by 3.1, and with the notation thereof, $e' = (\delta, \sigma_2(1)(\delta), \ldots, \sigma_i(1)(\delta))$ for some non-zero $\delta \in U^{-n-1}_1 K'[X_1, \ldots, X_n]$. Bearing in mind [9, 2.4], let

$$\delta = \sum_{i=1}^w \frac{k_i'}{((X_1 - a_1)^{\alpha_{i1}}, \ldots, (X_n - a_n)^{\alpha_{in}}, 1)},$$

where $w \in \mathbb{N}$, $k'_1, \ldots, k'_w \in K' \setminus \{0\}$, and $(\alpha_{i1}, \ldots, \alpha_{in})(i = 1, \ldots, w)$ are w distinct elements of \mathbb{N}^n, be the unique dd-sum for δ with respect to $K' \setminus \{0\}$. For each $i = 1, \ldots, n$, let m_i be the minimal polynomial of a_i over K. We can, and do, assume that the n-tuples $(\alpha_{i1}, \ldots, \alpha_{in})(i = 1, \ldots, w)$ have been ordered so that, for each $i = 1, \ldots, w - 1$, there exists $h_i \in \mathbb{N}$ with $1 \leq h_i \leq n$ such that $\alpha_{ij} = \alpha_{wj}$ for all $j = 1, \ldots, h_i - 1$ and $\alpha_i h_i < \alpha_{wh_i}$. Since $m_1(X_1)^{\alpha_{w1} - 1} \ldots m_n(X_n)^{\alpha_{wn} - 1} \in A$, it now follows from 3.1, [9, 3.6] and ideas like those in the preceding paragraph
of this proof that
\[e'' := m_1(X_1)^{\alpha_{w_1}^{-1}} \ldots m_n(X_n)^{\alpha_{w_n}^{-1}} e' \]
\[= \left(\frac{k'}{((X_1 - a_1), \ldots, (X_n - a_n), 1)}, \frac{\sigma_2(k')}{((X_1 - \sigma_2(a_1)), \ldots, (X_n - \sigma_2(a_n), 1)}, \ldots, \frac{\sigma_t(k')}{((X_1 - \sigma_t(a_1)), \ldots, (X_n - \sigma_t(a_n), 1)} \right) \]
for some \(k' \in K' \setminus \{0\} \). But \(K' = K(a_1, \ldots, a_n) \) is a finite extension of \(K \), and so there exists \(f \in A \) such that \(k'^{-1} = f(a_1, \ldots, a_n) \). Also, the generalized fraction
\[k' \]
\[((X_1 - a_1), \ldots, (X_n - a_n), 1) \]
is annihilated by \(f - f(a_1, \ldots, a_n) \). It follows from this that
\[fe'' = \left(\frac{k'^{-1} k'}{((X_1 - a_1), \ldots, (X_n - a_n), 1)}, \frac{\sigma_2(k'^{-1} k')}{((X_1 - \sigma_2(a_1)), \ldots, (X_n - \sigma_2(a_n), 1)}, \ldots, \frac{\sigma_t(k'^{-1} k')}{((X_1 - \sigma_t(a_1)), \ldots, (X_n - \sigma_t(a_n), 1)} \right) = \zeta. \]
Hence \(Ae' \cap S \neq 0 \), and so the proof is complete.

Remark 3.3. We point out that, in the case in which \(K \) has characteristic 0, given a maximal ideal \(\mathfrak{M} \) of \(K[X_1, \ldots, X_n] \), we can, by 2.6, find a finite normal extension field \(L \) of \(K \), with \(K \subseteq L \subseteq \overline{K} \), such that \(\mathfrak{m} \) splits in \(L \); we can then use 3.2 to find a description for the injective envelope of the simple \(A \)-module \(A/\mathfrak{m} \), and we can give precise descriptions of the elements of this injective envelope, in terms of \(dd \)-sums, by means of 3.1.

The reader might find it helpful if we compare the approaches given in [9, 4.3] and 3.3 in a fairly simple, but not completely trivial, example.
EXAMPLE 3.4. (cf. [9, 4.4]) Let \(m \) be the maximal ideal \((X^2 - 2, Y^2 + 1) \) in the polynomial ring \(\mathbb{Q}[X, Y] =: A \). By [9, 4.2 & 4.3],

\[
E_{\mathbb{Q}[X,Y]}(\mathbb{Q}[X,Y]/m) \cong U_{(X^2 - 2, Y^2 + 1)}^{-3} A,
\]

and each element of \(U_{(X^2 - 2, Y^2 + 1)}^{-3} A \) can be written uniquely in the form

\[
\sum_{j=1}^{\omega} \frac{a_j + b_j X + c_j Y + d_j XY}{((X^2 - 2)^{\alpha_j}, (Y^2 + 1)^{\beta_j}, 1)},
\]

where \(\omega \) is a non-negative integer, \((a_j, b_j, c_j, d_j) (j = 1, \ldots, \omega) \) are \(\omega \) elements of \(\mathbb{Q}^4 \setminus \{(0,0,0,0)\} \) and \((\alpha_j, \beta_j) (j = 1, \ldots, \omega) \) are \(\omega \) distinct elements of \(\mathbb{N}^2 \).

On the other hand, an alternative description of \(E_{\mathbb{Q}[X,Y]}(\mathbb{Q}[X,Y]/m) \) is provided by 3.3, as follows. Let \(L \in \mathbb{Q}(\sqrt{2}, i) \) and \(B = L[X,Y] \). Let \(E' \) be the \(B \)-module

\[
U_{(X - \sqrt{2}, Y - i)}^{-3} B \oplus U_{(X - \sqrt{2}, Y + i)}^{-3} B \oplus U_{(X + \sqrt{2}, Y - i)}^{-3} B \oplus U_{(X + \sqrt{2}, Y + i)}^{-3} B
\]

Then \(E_{\mathbb{Q}[X,Y]}(\mathbb{Q}[X,Y]/m) \) is isomorphic to the \(A \)-submodule of \(E' \) consisting of all elements which can be written (actually, in just one way) in the form

\[
\left(\sum_{j=1}^{\omega} \frac{a_j + b_j \sqrt{2} + c_j i + d_j i \sqrt{2}}{((X - \sqrt{2})^{\alpha_j}, (Y - i)^{\beta_j}, 1)} \right), \sum_{j=1}^{\omega} \frac{a_j + b_j \sqrt{2} - c_j i - d_j i \sqrt{2}}{((X - \sqrt{2})^{\alpha_j}, (Y + i)^{\beta_j}, 1)}\right),
\]

\[
\sum_{j=1}^{\omega} \frac{a_j - b_j \sqrt{2} + c_j i - d_j i \sqrt{2}}{((X + \sqrt{2})^{\alpha_j}, (Y - i)^{\beta_j}, 1)}, \sum_{j=1}^{\omega} \frac{a_j - b_j \sqrt{2} - c_j i + d_j i \sqrt{2}}{((X + \sqrt{2})^{\alpha_j}, (Y + i)^{\beta_j}, 1)}\right)
\]

where \(\omega \) is a non-integer, \((a_j, b_j, c_j, d_j)(j = 1, \ldots, \omega) \) are \(\omega \) elements of \(\mathbb{Q}^4 \setminus \{(0,0,0,0)\} \), and \((\alpha_j, \beta_j) (j = 1, \ldots, \omega) \) are \(\omega \) distinct elements of \(\mathbb{N}^2 \). It is intriguing that the bijection this submodule of \(E' \) and \(U_{(X^2 - 2, Y^2 + 1)}^{-3} A \) whose existence is an obvious consequence of the above descriptions is not a \(\mathbb{Q}[X,Y] \)-isomorphism.

ACKNOWLEDGMENT. I am extremely grateful to professor R.Y. Sharp, the University of Sheffield, England, for his valuable advice and suggestions on this work.
References

Department of Mathematics Education
Sunchon National University
Sunchon, 540-742, Korea