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L, ESTIMATION ON THE
LEAST ENERGY SOLUTIONS

DAE HYEON PAHK AND SANG DoN PARK

1. Introduction
Let us consider the Neumann problem for a quasilinear equation

e™div(|Vu|" "2 Vu) — uu|™ "2 + f(u) =0 in Q

L
(1) @ =( on 9.

where ] < m < N, N > 2, ¢ >0, Qis a smooth bounded domain
in RY and v is the unit outer normal vector to Q. Moreover f is in
C?(R) and satisfies the following conditions:

(f1) f(1)=0 for £ <0
(f2) fO/t™ 11T 400 as t — 400
(f3) f(t) = o(t™ 1) at 0F and f(¢) = O(#’™') at +oo, where m <
P<Fom
(fa) there exists 6 € (0,-L) such that F(t) = [, f(s)ds < 8tf(t)

In this paper, we study the asymptotic Ly behavior of the mountain
pass solutions, as ¢ — 0, which are critical points of the functional J¢

defined on W™(Q) by

1 ,
(1.1) Je(v) = — / e™|Vol]™ + o™ dz - / F(v)dz
m Jao Q
In relation to J,, a critical value is determined by

(1.2) ce = inf sup J(g(t)),
g€l <<t
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where I' = {g € C([0,1],W?™(Q)) | 9(0) = 0andg(l) =€} and € is
a nontrivial and nonnegative element in W1™({) such that J.(¢) < 0.

In the case m = 2, this model is reduced to a semilinear problem
which is deeply studied by C.H. LIN, W.M.-NT and I. TAKAGI,[6, 7].
They also showed that the peak point of the mountain pass solution
corresponding to sufficiently small ¢ is located at the boundary point
whose mean curvature is maximal. We discuss the existence of the
mountain pass solution of (I.) in section 2 and estimate the growth of
internal energy

E.(v) = —/Q e™IVu|™ + |v|™ dz.

and show the Lg-behavior of the solutions in terms of < in section 3.

2. Existence of positive solution of (I.)

We first verify the constant c. is a positive critical value of J., whose
corresponding critical point is called a mountain pass solution or a least
energy solution.

LEMMA 2.1. ¢, in (1.2) is a positive critical value of J. defined in

(1.1)

Proof. Since J. is C! functional, it suffices to show that J. satis-
fies all hypotheses of Mountain Pass lemma, [8, Theorem 2.2]. Let
{u;} ¢ WH™(Q) be a Palais Smale sequence, that is, there is a posi-
tive constant a; satisfying |J.(u;)| < ai and DJ.(u;) — 0. Then we

obtain by (f4),

ay + o D)|[ujllwrm 2 Je(uj) — 8(DJe(uj), u;,

1
= (— ——9)/ e™Vu|™ + |uj|™ da
m Q

+ /;2(6‘ujf(uj) — F(uj))dz

1
> (= 8) [ e Tul" + | d

m
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Hence {u;} is bounded in W1™(Q). So there is a subsequence, again
denoted by {u;}, and a point u € W™ () such that u; — u, weakly
in W1 ™(Q). To show that u; — u in WH™(Q), we first assume m > 2
and set A(u) = —ulu|™"? + f(u). Since m - Laplacian is strongly
monotone (see e.g., [3, Lemma 4.10], we have

aze™||Vu; — Vul|Tm
< e'"/(|vu,»|"""2vu,- — |Vu|" 2 Vu)(Vuy; — Vu)dz
Q
(2.1) = (DJc(u), u; —u) + (DJe(u;), u; —u)
+ L(h(u]) — h(uz))(u; —w)dz.

Applying ( f3), H6lder’s inequality and Sobolev imbedding theorem, we
can show that the right side of (2.1) tends to 0 as j — oco. For the case
l1<m<2let Hiz) = (|[Vu;|™ ?Vu; — |Vu|™2Vu)(Vu; — Vu).
Due to u; — u weakly and [3, Lemma 4.10}, [, Hjdz — 0 and

(IVu; = Vul?) < Hi(2)(|Vu;] +[Vul)*7™.

Hence we have, from Holder’s inequality,

Awuj — Vu|™dz < (/Q H, dx)% (/Q(W“” + |Vu)™ d:r) = ,

which shows ||Vu; — Vu|| — 0. Since u; — uin Ln(R), u; — uin

W1™(Q). This shows Palais Smale condition. Finally by (f3), there is

az > 0,
/F(u)dz < 9/ !ulmdx—lf—a;-ev/ |ul? dz
Q Q Q

1 m
Tow) = =l — [ Fluda

1 m
> (= = Ol = asffulfyn > 0

and

for sufficiently small ||u|w:.m. Hence by the mountain pass lemma, (8,
Theorem 2.2], c¢. in (1.2) is a positive critical value. O

We now call the critical point u. corresponding to ¢, by the least
energy solution. To show the reason, we need the following lemma
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LEMMA 2.2. Let v € WH™(Q) and v # 0 and define

(2.2) ha(t) = t™! / d|Vo|™ + |v|™ dx — / vf(tv)de,
Q Q

where d is a positive constant, then there exists unique A > 0 satisfying

ha(A) = 0 such that h(t) > 0 for 0 <t < X and hq(t) <. 0 fort > A.

Proof. Clearly hg(t) is continuous and

}ld(t m m m
20 = [aver +popmas - [ o L2

Noting that the last integral is strictly increasing in ¢ by ( f2) and taking
(f3) into account, it is easy to check the assertion. [

THEOREM 2.3. Let e be non trivial such that J.(e) = 0 and let c,
be a critical value corresponding to e, which is determined by Mountain
Pass lemma. Then c. is characterized by

(2.3) ce = inf{sup Je(tv)|v € W™ (Q), v #0 andv > 0}.
>0

Proof. Let u. be a critical point corresponding to ¢.. Then by
Lemma 2.2, with d = ™ in (2.2),

ce = sup Joltu)
>0

Hence

ce > inf{sup J.(tv) |v € WH™(Q), v # 0and v >0}
>0
Now suppose that there exists nontrivial and nonnegative © with J. (%)
= 0 such that
ce > sup J(0).
>0

By Lemma 2.2, there exists { > 0 such that ¢ = o satisfies J.(¢) = 0.
Let V. = {ae+bé|a, b € R}and V¥ = {ae+bé |a, b € R}
Let us choose a ball Bg with R > max{||e|lwi.m@). ||€|lw1.m) } such
that on 8BRNV™, J. < 0. Let v be a path consisting of line segments
0 to Ré/||€|| and the arc 9Br NV and the line segment Re/|le]| to e.
Clearly v € T and it is easy to see that c¢. > sup,¢, Je(v). But it is
against the definition of ¢.. O
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REMARK. Theorem 2.3 shows that c. is independent on the choice
of e. Moreover, it is the least energy in the sense that if v is another
solution then Je(v) > c. (= Je(ue)).

3. The asymptotic behavior of the least energy solution

We now define an (internal) energy functional by
E.(v) = / e™|Vo|™ + |v|™ de.
Q

Note that if u is a critical point of J., u satisfies the following relation,
which easily comes from (DJ.(u), u) = 0.

Bu) = [ uf(wd.

THEOREM 3.1. Let u. be a least energy solution to (I.). Then
there exist positive constants by and by such that for all sufficiently
small ¢ > 0,

bie™ < Ee(ue) < boe™.

Proof. Let v be a critical point of J.. Set Q. = {z|exz € Q} and
define w(z) by v(z) = w(e~'z). Then for any ¢ with m < ¢ < ]\',n_}\:n,
applying the Sobolev imbedding theorem,

m

(BN F = ([ 190l + )

> b, </ fw|? d:f‘) ’
Q.
—;'
b, <5‘N/ [vl? d:c)
Q

(3.1) e—N/Q|u|‘1 dz < b, (e“NEs(u))J"I"

Hence
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On the other hand by (f3), there exists o > 0 such that

e_NEs(U)zc‘"N/vf(v)rlx

Q
(3.2) < o(l)e"N/ v dzr + ae“N/ vl dz
Q )
by (3.1) and (3.2) it is easily seen that
(™ Ee(@)"™ " > b8 fa(1 = o( 1)

Since £ —1 > 0 and bm, b, depend on only ¢,m, N and the cone
property of §, (see e.g., [1, Lemma 5.14 |), the left inequality holds.
On the other hand, from (f4),

Je(ue) 2 (i - 9‘)/u5f(u5)d.r
m Ja
= (= = )E.(u.).
m
Hence
(3.3) E.(u.) < (%7— — 9\)”1J€(u5).

Now we may assume 0 € Q without loss of generality Set Q. = {z :
ez € }. Then for all ¢ sufficiently small, the unit ball B; C Q.. Now

choose a particular function ' given by

" )_{1—|$l for |z] < 1
=0 for o] > 1

Clearly by Lemma 2.2, there exists A 2> 0 independent of ¢ such that
| v o de = [ o ar.
Q: Qc

Let ve(z) = Ap(e™'z). Then Supp(ve) C Q, E.(ve) = fQ flve)v, da
and for b= [pn [AV|™ + |A9p|™ daz,

(3.4) Eo(ve) = eV (/ IAV|™ 4 [Ag|™ d:c) < eV,
Q,
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On the other hand,
(3.5) To(ue) < sup Je(tve) = Ju(ve) € —E.(vs).
t>0 m

Hence from (3.3), (3.4) and (3.5), we obtain the right inequality of (3.1),
with b, = (L — )~15. O

PROPOSITION 3.2. Let u. be a least energv solution corresponding
to ¢, defined by (1.2). Then u. is positive.

Proof. Suppose to the contrary that |{z : u. < 0}| > 0. Then u,
is changing sign solution i.e., |{z : v > 0}| > 0 since u} = 0 yields
absurdity that 0 < E.(u.) = [ uf f(ut)dz == 0. Clearly for all t > 0,

Je(tul) < Je(tue)

< sup Je(tue)
>0

= J(u,) = ce.

Hence by Theorem 2.3, there comes out a contradiction;

c. < supJo(tul) < ..
o<t

Hence u. is nonnegative. Now by the regularity result in [5, 9], u. is
CY and it is easy to see that u, > 0 using the extended version of
Hopf boundary point lemma, which can be seen in [4, 10]. O

COROLLARY 3.3. For all sufficiently small ¢, each least energy so-
lution is not constant

Proof. If X is a constant solution, A satisfy
A™E = F(A).
By (f2) and (f3), such X is unique. Then for all small ¢ > 0, we have
E.(ue) = AQ| > boe™.

But it is against theorem 3.1. 0O
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THEOREM 3.4. Let u. be a least energy solution to 'I.). Then there
exist positive constants ¢;, Cy and C.. independent on € such that for
gz2m

(3.6) cee™ S/Iuelq do < Cue™
Q
(3.7) ulloe < Coo.

Proof. We write u, by u for simplicity. Now we apply the idea of
Brezis and Kato which can be seen in [2]. Recall that each solution u
of (I.) satisfy

/ V™ 2VUVU+/ Ty = /f(b)l dz
Q

for all v € W!™(£). Now choose a sequence ({;);j>o sutisfying

{fo =1
(4 —m=(FL)-1-p  J=12...

(63 —1)m+1

First take v = u . Then we obtain

(3.8)
/ue‘mdz-{—smgl——;m_—-l-/ [Vu ‘"‘lmdx—/um_l)m“ (u) dz.
Q ¢ Q

And by (f3), there exists a positive constant ¢ = ¢(f) such that

(3.9) /Qu“l-”m“f(u)dm < o(1) /

J

uzlmdm«i—c‘/ u?®™ dz.
2

By (3.8) and (3.9), we have
/ e™Vul ™ ufi™ de < (:61"/ u™ dov.
Q Q
This shows uft € W™ by virtue of Sobolev imbedding theorem. Re-
peat this process (substituting u(% =™+ for 1) successively for the

sequence (€;);>1 to obtain

(3.10) /e’"ivu’i|"’+u.”fm dx Sd’}"/ w™ G- de,
Q Q
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This shows u% € W™(Q) and hence L+, () for all £;.
Now we can give the proof of (3.7). Apply Sobolev imbedding the-
orem to the left hand side of (3.10), then there exists ¢ such that

N-m

- N
(3.11) €™ (/ u(FR)G dm) < é/ em|Vub ™ 4+ ub™ da.
1] Q

Let I; = [ou%™ dz and a = —

.10) and (3.11) yields
(3.12) I; < (C*e—mé?fj_l)a 73 =1,2,---
Now by Theorem 3.1 and Sobolev imbedding theorem, we have

(3.13) Iy = /um‘ dz < cpe?
1]

From (3.12) and (3.13),
Il S (C*Cos—melIo)a

S leina&‘N, 1 = (("*Co)a.
Inductive process shows
(314) IJ S (cjeTaeT—alz"'E;naj)eNa ]:03 1323 Ty
; k=j
where ¢; = & *Tilie Clearly there exist positive constants a, A
with a < 1 < A such that
(3.15) ac? <¥; < Ad’.

From (3.14) and (3.15), simple calculation shows

N N—mz2
m® T L 1N-=m N am
”U“Ltjm, = Ij’ < Cem AdTm N o

N(N-m)2

where C' = ((max(l c* % )m By letting j — oo, we can find
(3.7) with Co = CAS=" (NN ) "™ . Now it remains to show
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(3.6). To see the right inequality of (3.6), note that jou™dz < CceV
by (3.1) and from (3.14),

/uefm'dxgcjeN 7 =0,1,2, ...,
Q

where Cp = ¢p and C; = ¢ E;’f_o‘l?~~€’1""j. Then standard L,
interpolation yields the result. Finally for the left inequality, apply
(f3) and Theorem 3.4 to the equation:

E.(u) = /Quf(u)d;c.

Then we easily obtain the inequality for ¢ = p. Now for m < ¢ < p,
we have from (3.7)

e < /up de = /up_"'u" dz < Cgo_qj u? de.
Q Q 2

Finally for ¢ > p write p = (1 — A)m + Ag. Then

cpeN < /u" dr = /u“")‘)"h”\q da
Q Q

< (/Q u'"d:c)“*(/nuqcza:)*

< c}n"’\eN(l_’\)(./ w? dr)>,
Ja

Therefore we obtain
.
/?1qu[} > LA AN,
o = 7

This completes the proof. O
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