SOME REMARKS FOR THE SPECTRUM OF THE
\(p \)-LAPLACIAN ON SASAKIAN MANIFOLDS

TAE HO KANG AND JIN SUK PAK

1. Introduction

Let \((M, g)\) be a compact manifold of dimension \(n\) with metric tensor \(g\). Let \(\Delta^p = d\delta + \delta d\) be the Laplace-Beltrami operator acting on the space of smooth \(p\)-forms. Then we have the spectrum of \(\Delta^p\) for each \(0 \leq p \leq n\)

\[Spec^p(M, g) = \{0 \leq \lambda_{1,p} \leq \lambda_{2,p} \cdots \uparrow +\infty\}, \]

where each eigenvalue is repeated according to its multiplicity. Many authors have studied the relationship between the spectrum of \(M\) and the geometry of \(M\). And also, Z.Olszak[1], J.S.Pak, J.C.Jeong and W.T.Kim[2], S.Yamaguchi and G.Chüman[7] and others studied the spectrum of Sasakian manifolds. In this paper we shall prove;

Theorem A. Let \(M = (M, \phi, \xi, \eta, g)\) and \(M' = (M', \phi', \xi', \eta', g')\) be compact c-Einstein Sasakian manifolds with \(Spec^pM = Spec^pM'\) for an arbitrary fixed \(p \geq 1\) (which implies \(dimM=dimM'=n\)). If \((n,p) \notin \{(15,1),(15,2),(15,13),(15,14)\}\), then \(M\) is of constant \(\phi\)-sectional curvature \(c\) if and only if \(M'\) is of constant \(\phi'\)-sectional curvature \(c'=c\).

Received March 25, 1994.

1991 AMS Subject Classifications: 53C12; 53A50.

Key words: Sasakian manifold, spectrum, contact Bochner curvature tensor

This research was partially supported by TGRC-KOSEF and the Basic Science Research Institute Program, Ministry of Education, 1994, Project No. BSRI-94-1404.
Theorem B. Let $\mathcal{M} = (M, \phi, \xi, \eta, g)$ and $\mathcal{M}' = (M', \phi', \xi, \eta, g)$ be compact Sasakian manifolds with $Spec^p(\mathcal{M}) = Spec^p(\mathcal{M}')$ (which implies $\dim M = \dim M' = n$). If n is given, there exists an integer $p (0 \leq p \leq n)$ such that \mathcal{M} is of constant ϕ-sectional curvature c if and only if \mathcal{M}' is of constant ϕ'-sectional curvature $c = c'$.

2. Preliminaries

By $R = (R_{ijk}^l), \rho = (R_{jk}) = (R_{ijk}^l)$ and $\sigma = (g^{jk}R_{jk})$ we denote the Riemannian curvature tensor, the Ricci tensor and the scalar curvature, respectively, and $g = (g_{ij})$ is a Riemannian metric tensor on M, $(g^{ij}) = (g_{ij})^{-1}$. For the tensor field T on M we denote $|T|$ the norm of T with respect to g. Then for each $p \leq 2m + 1(=\dim M)$ the Minakshisundaram-Pleijel-Gaffney asymptotic expansion for $Spec^p(M, g)$ is given by

$$
\sum_{\alpha=0}^{\infty} e^{\exp(-\lambda_{\alpha, p} t)} = (4\pi t)^{-\frac{2m+1}{2}} [a_{0, p} + ta_{1, p} + \cdots + t^N a_{N, p}]
$$

$$
+ o(t^{N-m+\frac{1}{2}}) \quad \text{as} \quad t \downarrow 0,
$$

where $a_{0, p}, a_{1, p}, a_{2, p}, \cdots$ are numbers which can be expressed by (see [3])

$$
a_{0, p} = \binom{2m + 1}{p} \int_M dM,
$$

(2.1)

$$
a_{1, p} = \frac{1}{6} \left[\binom{2m + 1}{p} - 6 \binom{2m - 1}{p - 1} \right] \int_M \sigma \, dM,
$$

(2.2)

$$
a_{2, p} = \frac{1}{360} \left\{ \binom{5(2m + 1)}{p} - 60 \binom{2m - 1}{p - 1} + 180 \binom{2m - 3}{p - 2} \right\} \sigma^2
$$

$$
+ \left\{ -2 \binom{2m + 1}{p} + 180 \binom{2m - 1}{p - 1} - 720 \binom{2m - 3}{p - 2} \right\} |\rho|^2
$$

$$
+ \left\{ 2 \binom{2m + 1}{p} - 30 \binom{2m - 1}{p - 1} + 180 \binom{2m - 3}{p - 2} \right\} |R|^2 \, dM,
$$

(2.3)

where dM denotes the volume element of M, and $\binom{k}{r} = 0$ for $k \leq 0$ or $r < 0$.
Some remarks for the spectrum of the p-Laplacian

Let $\mathcal{M} = (M, \phi, \xi, \eta, g)$ be a compact Sasakian manifold (cf. [8]). This means that M is a $(2m + 1)$-dimensional compact differentiable manifold with a normal contact metric structure (ϕ, ξ, η, g), where $\phi = (\phi_i^j), \xi = (\xi^i), \eta = (\eta_i)$ are tensor fields of type (1,1), (1,0), (0,1) respectively.

Now we introduce the tensor fields $H = (H_{kjh})$ and $Q = (Q_{ij})$ on \mathcal{M} defined by

$$H_{kjh} = R_{kjh} - \frac{c+3}{4}(g_{kh}g_{ji} - g_{ki}g_{jh}) - \frac{c-1}{4}(\phi_{kh}\phi_{ji} - \phi_{ki}\phi_{jh})$$

$$- 2\phi_{kj}\phi_{ih} - g_{kh}\eta_j\eta_i + g_{ki}\eta_j\eta_h - g_{ji}\eta_k\eta_h + g_{jh}\eta_k\eta_i),$$

$$Q_{ij} = R_{ij} - ag_{ij} - b\eta_i\eta_j,$$

where $c = \frac{\sigma - m(3m + 1)}{m(m+1)}$, $a = \frac{\sigma}{2m} - 1$ and $b = 2m + 1 - \frac{\sigma}{2m}$.

Then we have

(2.4) $|H|^2 = |R|^2 - \frac{2}{m(m+1)}\sigma^2 + \frac{4(3m+1)}{m+1}\sigma - \frac{4m(2m+1)(3m+1)}{m+1},$

(2.5) $|Q|^2 = |\rho|^2 - \frac{1}{2m}\sigma^2 + 2\sigma - 2m(2m+1).$

A Sasakian manifold $\mathcal{M} = (M, \phi, \xi, \eta, g)$ is called a space of constant ϕ-sectional curvature c (resp. c-Einstein) if H (resp. Q) vanishes identically. It is well known that a space of constant ϕ-sectional curvature is c-Einstein. For any c-Einstein manifold of dimension ≥ 5, the scalar curvature is necessarily constant. A 3-dimensional c-Einstein manifold means that the scalar curvature is constant. On any 3-dimensional Sasakian manifold the tensor field H vanishes, but in this case the scalar curvature may be non-constant. Therefore, in dimension 3, it is of constant ϕ-sectional curvature if and only if σ is constant.

We also consider the so-called contact Bochner curvature tensor field $B = (B_{kjh})$ defined on \mathcal{M} by (cf. [1,7])

$$B_{kjh} = R_{kjh} - \frac{1}{2m+4}(g_{kh}R_{ji} - g_{ki}R_{jh} - g_{jh}R_{ki} + g_{ji}R_{kh})$$

$$- \phi_{kh}R_{ji}\phi_i^l + \phi_{ki}R_{jl}\phi_h^l - \phi_{ji}R_{kl}\phi_h^l + \phi_{jh}R_{kl}\phi_i^l$$

$$+ 2\phi_{kj}R_{il}\phi_h^l + 2\phi_{ih}R_{kl}\phi_j^l - R_{kh}\eta_j\eta_i + R_{ki}\eta_j\eta_h$$
\[
-R_{ji} \eta_k \eta_h + R_{jk} \eta_k \eta_l i + \frac{r - 4}{2m + 4} (g_{kh} g_{ji} - g_{ki} g_{jh}) \\
+ \frac{r + 2m}{2m + 4} (\phi_{kh} \phi_{ji} - \phi_{ki} \phi_{jh} - 2 \phi_{kj} \phi_{ih}) \\
- \frac{r}{2m + 4} (g_{kh} \eta_j \eta_j i - g_{ki} \eta_j \eta_h + g_{ji} \eta_k \eta_h - g_{jh} \eta_k \eta_i),
\]

where \(r = \frac{\sigma + 2m}{2m + 2} \). Then we also obtain

\[
|B|^2 = |R|^2 - \frac{8}{m + 2} |\rho|^2 + \frac{2}{(m + 1)(m + 2)} \sigma^2 \\
+ \frac{4(3m^2 + 3m - 2)}{(m + 1)(m + 2)} \sigma - 24m^2 + 36m - 56 + \frac{8(13m + 14)}{m + 1}(m + 2).
\]

Moreover, it may be easily seen that \(H = 0 \) if and only if \(B = 0 \) and \(Q = 0 \). From (2.4)~(2.6), we have

\[
|R|^2 = |B|^2 + \frac{8}{m + 2} |Q|^2 + \frac{2}{m(m + 1)} \sigma^2 - \frac{4(3m + 1)}{(m + 1)} \sigma \\
+ 24m^2 - 36m + 56 + \frac{8(4m^2 - 2m - 7)}{m + 1}.
\]

For \(p \notin \{1, 2, 3, 2m, 2m + 1\} \), substituting (2.7) into (2.3) yields

\[
a_{2,p} = \alpha \int_M \left[4P_1 |B|^2 + \frac{8}{m + 2} P_2 |Q|^2 + \frac{4}{m(m + 1)} P_3 \sigma^2 \\
+ \frac{16}{m + 1} P_4 \sigma + \frac{16m}{m + 1} P_5 \right] dM,
\]

where

\[
P_1 := P_1(m, p) = 8m^4 - (60p + 8)m^3 + (210p^2 - 120p - 2)m^2 \\
+ (-180p^3 + 225p^2 - 75p + 2)m \\
+ 45p^4 - 90p^3 + 60p^2 - 15p,
\]

\[
P_2 := P_2(m, p) = -4m^5 + (180p + 28)m^4 - (450p^2 - 300p + 23)m^3 \\
+ (360p^3 - 465p^2 + 15p - 7)m^2 \\
- (90p^4 - 180p^3 + 45p^2 - 15p - 6)m - 30p^2 + 30p,
\]
Some remarks for the spectrum of the p-Laplacian

\[P_3 := P_3(m,p) = 20m^6 - (120p + 4)m^5 + (240p^2 - 9)m^4
- (180p^3 + 30p^2 - 120p + 11)m^3
+ (45p^4 + 90p^3 - 180p^2 - 15p + 1)m^2
- (45p^4 - 90p^3 + 15p^2 - 3)m - 15p^2 + 15p, \]

\[\alpha := \frac{(2m - 3)}{(p - 2)} \]

P_4 and P_5 are also constant depending only on m and p.

For $p \in \{1, 2, 3, 2m, 2m + 1\}$, the formula (2.3) is of the form:

\[a_{2,p} = \beta \int_M \left[4Q_1|B|^2 + \frac{8}{m + 2} Q_2|Q|^2 + \frac{4}{m(m + 1)} Q_3 \sigma^2 + \frac{16}{m + 1} Q_4 \sigma + \frac{16m}{m + 1} Q_5 \right] dM, \]

(2.9)

where for $i = 1, 2, 3, 4, 5$

(i) if $p = 1, m \geq 2$, then

\[\beta = \frac{1}{360}, \quad Q_i = Q_i(m) = \frac{P_i(m,1)}{2m(2m-1)(2m-2)}, \]

while for $(m,p) = (1,1)$, \(Q_1 = -6, Q_2 = \frac{165}{4}, Q_3 = 9 \),

(ii) if $p = 2, m \geq 2$, then

\[\beta = \frac{1}{2 \times 360}, \quad Q_i = Q_i(m) = \frac{P_i(m,2)}{(2m-1)(2m-2)}, \]

while for $(m,p) = (1,2)$, \(Q_1 = -12, Q_2 = \frac{165}{2}, Q_3 = 18 \),

(iii) if $p = 3, m \geq 2$, then

\[\beta = \frac{1}{6 \times 360}, \quad Q_i = Q_i(m) = \frac{P_i(m,3)}{2m-2}, \]

while for $(m,p) = (1,3)$, \(Q_1 = 3, Q_2 = \frac{15}{2}, Q_3 = 18 \),
(iv) if \(p = 2m, m \geq 2 \), then
\[
\beta = \frac{1}{360}, \quad Q_i = Q_i(m) = \frac{P_i(m, 2m)}{2m(2m - 1)(2m - 2)},
\]

(v) if \(p = 2m + 1, m \geq 2 \), then
\[
\beta = \frac{1}{360}, \quad Q_i = Q_i(m) = \frac{P_i(m, 2m + 1)}{(2m + 1)(2m)(2m - 1)(2m - 2)}.
\]

Remark 1. The signs of the coefficients of \(|B|^2, |Q|^2\) and \(\sigma^2 \) in the formulae (2.8) and (2.9) are respectively determined by the polynomials \(P_1, P_2 \) and \(P_3 \) when \((m, p) \neq (1, 1), (1, 2), (1, 3)\).

Remark 2. In the following table we list some particular values of \(m \) for \(p \leq 100 \).

<table>
<thead>
<tr>
<th>(p)</th>
<th>the values of (m) such that (P_1, P_2, P_3 > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[8,51]</td>
</tr>
<tr>
<td>2</td>
<td>[2,4] 6 [8,93]</td>
</tr>
<tr>
<td>3</td>
<td>[2,6] [9,136]</td>
</tr>
<tr>
<td>4</td>
<td>[3,8] [12,178]</td>
</tr>
<tr>
<td>5</td>
<td>[2,10] [14,221]</td>
</tr>
<tr>
<td>6</td>
<td>[4,12] [17,263]</td>
</tr>
<tr>
<td>7</td>
<td>[3,14] [19,305]</td>
</tr>
<tr>
<td>8</td>
<td>[5,16] [22,348]</td>
</tr>
<tr>
<td>9</td>
<td>4 [6.19] [25,390]</td>
</tr>
<tr>
<td>10</td>
<td>[6,9] [11,21] [27,433]</td>
</tr>
<tr>
<td>20</td>
<td>[10,11] [13,17] [24,43] [52,857]</td>
</tr>
<tr>
<td>30</td>
<td>[15,17] [19,25] [36,66] [77,1281]</td>
</tr>
<tr>
<td>40</td>
<td>[20,23] [26,33] [49,89] [101,1705]</td>
</tr>
<tr>
<td>50</td>
<td>[25,30] [32,41] [62,112] [126,2129]</td>
</tr>
<tr>
<td>60</td>
<td>[30,36] [39,50] [75,135] [150,2553]</td>
</tr>
<tr>
<td>70</td>
<td>[35,42] [45,58] [87,158] [174,2976]</td>
</tr>
<tr>
<td>80</td>
<td>[40,48] [52,181] [198,3400]</td>
</tr>
<tr>
<td>90</td>
<td>[280,3824]</td>
</tr>
<tr>
<td>100</td>
<td>[300,4248]</td>
</tr>
</tbody>
</table>

We obtain all the values found in \([1.7]\) when \(p = 1.2 \).
From now on we shall write (2.8) and (2.9) in the following form;

\[
\begin{align*}
\alpha_{2,p} &= \gamma \int_M \left[4R_1|B|^2 + \frac{8}{m+2} R_2|Q|^2 + \frac{4}{m(m+1)} R_3 \sigma^2 \\
&\quad + \frac{16}{m+1} R_4 \sigma + \frac{16m}{m+1} R_5 \right] dM,
\end{align*}
\]

(2.10)

where \(\gamma \) is either \(\alpha \) or \(\beta \), and \(R_i \) is either \(P_i \) or \(Q_i \) (i=1,2,3,4,5).

Remark 3. The equation \(\binom{2m+1}{p} - 6 \binom{2m-1}{p-1} = 0 \) does not admit the natural roots, In fact, \(\binom{2m+1}{p} - 6 \binom{2m-1}{p-1} = 0 \) if and only if \(m(2m+1) - 3p(2m-p+1) = 0 \) if and only if \(m = \frac{u-2}{2}, p = \frac{u-1}{2} \pm v \), where \(u^2 - 12v^2 = 1 \). Therefore \(m \) can not be a natural number, because \(u \) is an odd number.

Remark 4. Let \(\mathcal{M} = (\mathcal{M}, \phi, \xi, \eta, g) \) and \(\mathcal{M}' = (\mathcal{M}', \phi', \xi', \eta', g') \) be compact Sasakian manifolds with \(\text{Spec}^p(\mathcal{M}) = \text{Spec}^p(\mathcal{M}') \) for an arbitrary fixed \(p \geq 1 \). Then for any \(m \in N(2m+1 \geq p) \) such that the polynomials \(R_1, R_2 \) and \(R_3 \) are strictly positive(for example, some particular values listed in Remark 2), \(\mathcal{M} \) is of constant \(\phi \)-sectional curvature \(c \) if and only if \(\mathcal{M}' \) is of constant \(\phi' \)-sectional curvature \(c' \).

Proof. Assume that \(\mathcal{M}' \) has constant \(\phi' \)-sectional curvature \(c' \). Then our assumption \(\text{Spec}^p(\mathcal{M}) = \text{Spec}^p(\mathcal{M}') \) and Remark 3 imply

\[
\int_M \left[4R_1|B|^2 + \frac{8}{m+2} R_2|Q|^2 + \frac{4}{m(m+1)} R_3 \sigma^2 \right] dM
\]

(2.11)

\[
= \int_{\mathcal{M}'} \frac{4}{m(m+1)} R_3 \sigma'^2 dM,
\]

On the other hand

\[
\int_M \sigma^2 dM \geq \int_{\mathcal{M}'} \sigma'^2 dM',
\]

because \(\int_M \sigma dM = \int_{\mathcal{M}'} \sigma' dM' \), \(\sigma' = \text{constant} \), \(\int_M dM = \int_{\mathcal{M}'} dM' \). Hence from (2.11) we obtain \(B = 0 = Q \). Q.E.D.
3. Proof of Theorems

Proof of Theorem A. If \mathcal{M} and \mathcal{M}' are c-Einstein manifolds, then $Q = 0 = Q'$, and σ, σ' are constants. By Remark 3 and (2.2), we have $\sigma = \sigma'$. The assumption $Spec^p(\mathcal{M}) = Spec^p(\mathcal{M}')$ implies

$$\int_{\mathcal{M}} 4R_1|B|^2dM = \int_{\mathcal{M}'} 4R_1|B'|^2dM'$$

But for $(n, p) \notin \{(15, 1), (15, 2), (15, 13), (15, 14)\}, R_1 \neq 0$ (cf. Theorem 3.1(i) in [4]). Hence $B = 0$ if and only if $B' = 0$. Q.E.D.

Let S^n be an odd dimensional unit sphere with constant curvature 1. Then $\mathcal{S} = (S^n, \phi, \xi, \eta, g)$ admits a Sasakian structure $(\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ which is called a natural Sasakian structure on S^n. Using our THEOREM A, Remark 4 and Theorem 2([5]), we can deduce the characterization.

Corollary. Let $\mathcal{M} = (M, \phi, \xi, \eta, g)$ be a compact Sasakian manifold with $Spec^p(\mathcal{M}) = Spec^p(\mathcal{S})$ for a given $p \geq 1$. If (i) the functions R_1, R_2, R_3 are strictly positive, or (ii) M is c-Einstein and $(n, p) \notin \{(15, 1), (15, 2), (15, 13), (15, 14)\}$, then \mathcal{M} is isomorphic to \mathcal{S}, that is, there is an isometry $f : (M, g) \longrightarrow (S^n, \tilde{g})$ such that $f_*\xi = \tilde{\xi}, f^*\tilde{\eta} = \eta$ and $f_* \circ \phi = \tilde{\phi} \circ f_*$.

Proof of Theorem B. By Remark 1, for $(m, p) \notin (1, 1), (1, 2), (1, 3)$, it is sufficient to show that there exists an integer p such that $P_1, P_2, P_3 > 0$. This can be done as follows $(2m + 1 =: n)$;

If $n = 3, 5, 7, 9, 11$, we choose $p = 0 ([1, 7])$. If $n = 13, 17 \leq n \leq 187$, we choose $p = 2$ (Remark 2). If $n = 15$, we choose $p = 4$ (Remark 2). If $n \geq 47(n = 16k - 1$ or $16k + 1$ or $16k + 3$ or $16k + 5$ or $16k + 7$ or $16k + 9$ or $16k + 11$ or $16k + 13(k \geq 3)$), we always choose $p = k$.

To see the last statement, we calculated the following polynomials $\overline{P}_1, \overline{P}_2, \overline{P}_3$, which can be obtained from (2.3) with $2m + 1 =: n$.

$$\overline{P}_1(n, p) := 4P_1(m, p) = 2n(n - 1)(n - 2)(n - 3) - 30(n - 2)(n - 3)p(n - p) + 180p(p - 1)(n - p)(n - p - 1),$$

$$\overline{P}_2(n, p) := 4P_2(m, p) = 2n(n - 1)(n - 2)(n - 3) - 30(n - 2)(n - 3)p(n - p) + 180p(p - 1)(n - p)(n - p - 1),$$

$$\overline{P}_3(n, p) := 4P_3(m, p) = 2n(n - 1)(n - 2)(n - 3) - 30(n - 2)(n - 3)p(n - p) + 180p(p - 1)(n - p)(n - p - 1).$$
\[
\widetilde{P}_2(n, p) := 8P_2(m, p) = -n(n - 1)(n - 2)(n - 3)(n + 3) \\
+ 90(n - 2)(n - 3)(n + 3)(n - p)p \\
- 360p(p - 1)(n - p)(n - p - 1)(n + 3) \\
+ 16n(n - 1)(n - 2)(n - 3) \\
- 240p(n - p)(n - 2)(n - 3) \\
+ 1440p(p - 1)(n - p)(n - p - 1),
\]

\[
\widetilde{P}_3(n, p) := 16P_3(m, p) \\
= 5(n + 1)n(n - 1)^2(n - 2)(n - 3) \\
- 60(n + 1)(n - 1)(n - 2)(n - 3)p(n - p) \\
+ 180p(p - 1)(n - p - 1)(n - p)(n - 1)(n + 1) \\
+ 16n(n - 1)(n - 2)(n - 3) - 240(n - 2)(n - 3)p(n - p) \\
+ 1440p(p - 1)(n - p - 1)(n - p) \\
- 2(n + 1)n(n - 1)(n - 2)(n - 3) \\
+ 180(n + 1)(n - 2)(n - 3)p(n - p) \\
- 720p(p - 1)(n - p - 1)(n - p)(n + 1). \quad Q.E.D.
\]

References

Tae Ho Kang
Department of Mathematics
University of Ulsan
Ulsan 680-749, KOREA

Jin Suk Pak
Department of Mathematics
Kyungpook National University
Taegu 702-701, KOREA