J. Korean Math. Soc. 32 (1995), No. 3, pp. 389-399

THE WELL POSEDNESS OF A PARABOLIC
DOUBLE FREE BOUNDARY PROBLEM

YOONMEE HaM

1. Introduction

We consider the reaction-diffusion system of two-component model
in one-dimensional space described by

(1) us = ditizz + f(u,v) v = davas + 79(u,v)

where d; and d; are the diffusion rates of u and v, and 7 is the ratio
of reaction rates. It is interesting the case of that there are differences
in the diffusion and reaction rates of u and v. The typical example
for this is the FitzHugh-Nagumo equations which are very well-known
example for a model of the nerve impulse. A free boundary (or inter-
face) may be appeared from sharp transition when a width of layer is
sufficiently small. Thus, we consider the reaction-diffusion system that
the first component u reacts much faster than the second component
v, although u diffuses slower than v. We define the new parameters

e=+di, T=7/\/di, D=ds/y

and write (1) as
(2) eTuy = €*uge + f(u,v) vy = Dugg + g(u,v)

where a new parameter ¢t = s was used. This system is defined on
(0,1) x (0,00) and is assumed to satisfy the zero flux boundary condi-
tions at x = 0, 1. The functions f and g are assumed to be of bistable
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type, i.e., the equation f = 0 determines u as atriple valued function
of v and the curves defined by f = 0,g = 0 have three points of in-
tersection, which determine all of the interactions between u and v.
The term bistable refers to the fact that these points of intersection
correspond to equilibria of the system (2), two of which are stable, and
the third is unstable.

In 1977, Paul Fife [1] showed that the stationary solution, being
smooth, exhibits an abrupt but continuously differentiable transition
at the location of the limiting discontinuity when € is small. The tran-
sition takes place with in an z-interval of length O(e). An z-interval,
in which such an abrupt change takes place, is loosely called a layer. In
1981, Mimura, Tabata and Hosono [4] proved the existence of nontrival
internal layer solutions to the stationary (time-independent) problem
associated with (2). The question of the stability of these stationary
layer solutions when ¢ is small was later dealt with in a pair of papers;
one by Nishiura and Fujii [5] appearing in 1987 for the case where 7 is
large and the solution is asymptotically stable and the second in 1989
by Nishiura and Mimura [6] for the case where 7 small and there is a
breakdown in the stability of the stationary solutions as 7 approaches
0. In the latter paper, a particularly dramatic phenomenon occurs as
the stationary solutions lose stability. The loss of stability results from
a Hopf bifurcation and produces a kind of periodic oscillation in the
location of the internal layers. (The amplitudes of the solutions also
undergo a somewhat less pronounced periodic oscillation.) These peri-
odic solutions are called “breathers” or “breathing solutions” because
of the nature of the oscillation in the position of the internal layers.

In this paper, we are interested in the singular limit € | 0 of the
system (2). In this case, an analysis of the layer solutions suggests that
the layer of width O(¢) converges to interfacial curves in z,t-space as
¢ | 0. An analysis of the dynamics of this process has been shown
(see for example [3],[6]) to lead a free boundary problem consisting of
the initial-boundary value problem. In 1992, Thompson, Schaaf and
I showed the well-posedness of a free boundary problem with a single
interfacial curve [8]. We now assume that the system (2) has a steady
state with double layers on a finite interval which is more realistic and
interesting case. In this case, an analysis of the layer solutions suggests
that the layer of width O(¢) converges to interfacial curves z = s(t)
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and z = m(t) in z,t-space as ¢ | 0 ([7]). An analysis of the dynamics
of this process has been shown (see for example [3],{6]) to lead a free
boundary problem consisting of the initial-boundary value problem.
By streching both space and time at the layer positions with respect
to €, we obtain the following free boundary problem with double layers

(vt = Dvgg — v+ H(z — s(t)) — H(z — m(t))
for (z,t) e Q- UQT,

v.(0,t) =0 =v,(1,¢) for ¢t >0,

v(z,0) = wve(z) for 0<z <1,

3 ds _
(3) \ 7= = C(v(s(t), 1)) for t >0,
dm
T—r = —C(v(m(t),t)) for t >0,

S(O)"—‘Sg, O0<so<l
L m(0) =mg, 0<my<1

where v(z,t) and v.(z,t) are assumed continuous in Q. Here H(y) is
the Heaviside function, = (0,1) x (0,00), Q™ = {(z,t) € Q:0 <z <
s(t),m(t) <z <1} and QF = {(2,t) € 0 : s(t) < z < m(t)} (see the
Figure 1 below).

x = s(t) z = m(t)
Q.
Q4
t
Q
0 T 1

Figure 1: The (z,t)-domain for problem(3).

In this problem, we do not know a regular form of (3) for finding
an existence and uniqueness of solutions. It motivates our methods of
proof, which is based on Green’s function and the semigroup theory. In
the next section , a change of variable will be given in order to regular-
ize problem (3) and the theory of nonlinear evolution equations can be
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applied. In this way, we give a proof of well-posedness. This method
can be adapted to give an alternative proof for similar problems.

2. Regularization, existence, uniqueness and dependence
on initial conditions

We rewrite (3) as an abstract evolution equation.

d(v,s,m) ~

o + A(v,s,m) = F(v,s,m), (v,s,m)(0) = (vo(-),$0,M0)

of a differential equation in a space X of the form X = X x J x J,
where X is a Banach space of functions and J is a real interval. Here,
A is a differential operator, represented in matrix form, as

d2
- ~Dag ¢’ 0 0
— M
A= 0 00
0 0 0

and the nonlinear operator F' by

H(-—s(t))—- H(- —m(1))
Fi(v(-,t),s(t),m(t)) 1
F(v7s) = FZ('U(',t),S(t),m(t)g = ;C(U(S(t),t))

Fa(v(-, 1), 5(t), m(t) ~lc(v(m(t),t)).

The Neumann boundary conditions are incorporated in the definition
of the Banach space X.

Since the nonlinear forcing term F(v,s,m) contains a Heaviside
function in its first component, the combination of this jump disconti-
nuity and the nature of the dependence of v on s and m in the second
and third components of F' makes it impossible to find a function space
of the form X = L,,1 < p < oo such that F satisfies a Lipschitz condi-
tion on X C X x R x R. Therefore, we need to make a regular problem
for this one.
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We now examine a free boundary value problem depending on a new
parameter u € R, y = 1/7 of the form

v,+Av=H(x—s)—H(x-m), (z €(0,1)\ {s,m},t>0)
s'(t) = uC(v(s(t),t)), (t>0)

(F)q
m!(t) = —uClo(m(t), 1)), (¢ > 0)
v(z,0) = vo(z), s(0) = so m(0) =my.
Here A is the operator Av = —v,,+c%v together with Neumann bound-

ary conditions v;(0) = v,(1) = 0. Note that by a rescaling of ¢ in (3)
we can always achieve that D = 1. For the purposes of the results in
this section, A can also be any other invertible second order operator.
On the function C, we assume that

C : I Copen— R is continuously differentiable.
For the application of semigroup theory to (F), we choose the space
X = L3((0,1)) with norm |f - ||>.

DEFINITION 2.1. We call (v,s,m) a solution of (F), if it satisfies
the following natural properties: There exists T > 0 such that v(z,) is
defined for (z,t) € [0,1] x [0, T), s(t) € (0,1), m(t) € (0,1), v(s(t),t) €
I'for t €[0,T) and v(m(t),t) € I for t € [0,T),

(a) v(-,t) € C'([0,1]) for t > 0 with v,(0,1) = v,(1,¢) = 0,

(b) s € C°([0,T)) N C*((0,T)) with s(0) = so € (0,1) and m €
C°([0, T)) N C*((0,T)) with m(0) = my € (0, 1),

(¢) (Av)(z,t) and vy(z,t) exist for z € (0.1)\ {s(¢)} \ {m(¢)} and
te(0,T),

(d) t = v(-,t) € C°([0,T), X) with v(-,0) = vo € X and

(e) v, s and m solve the differential equation for ¢ € (0,T) and

z € (0, D)\ {s()} \ {m(1)}.

We obtain more regularity for the solution by semigroup methods,
considering A as a densely defined operator

A D(A) Cdense X — X
D(A):= {v e H**((0,1)) : v-(0) = v,(1) = 0}.
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For fixed s and m satisfying Definition 2.1, the map t +» (H(- —s(t)) —
H(- —m(t))) is locally Holder-continuous into X on (0,T'), so by stan-
dard results for parabolic problems (see e.g.[2]) we obtain from the first
equation in (F) that the following regularity holds for v:

PROPOSITION 2.2. If(v,s,m) is a solution of (F) thenv(-,t) € D(A)
and the map t — v(-,t) is in C°([0,T), X) N C*((0,T). X).

An existence proof for (F) can be obtained along these lines, but it
is impossible to get differential dependence on initial conditions this
way, because the right hand side H(- — s) — H(- — m) is not regular
enough.

We decompose v in (F) into a part u, which is a solution to a more
regular problem, and a part ¢, which is worse, but explicitly known in
terms of Green’s function G of the operator A.

PROPOSITION 2.3. Let G : [0,1]° — R be Green’s function of the
operator A. Defineg:[0,1]> — R

g(z,s,m) ==/ G(z,y)dy = A"/ (H(- —s) — H(- — m))()
and v:[0,1* — R

v(s,m) := g(s,s,m),

n:[0,1> — R
n(s,m) = g(m,s,m).
Then ¢(-,s,m) € D(A) for all s,m, %(m,s,m) = —G(z,s) is in
s
a .

HY((0,1) x (0, 1)), 5—%@,3, m) = G(z,m) is in H4*((0,1) x (0,1)),
and v € C*°([0,1] x {[0,1]), n € C>=([0,1] x [0,1]).

Proof. Everything follows from the fact that G is in H»* and C*
on either {z < y} or {z >y}, and that H(-—s)—- H(--m)e L% O

Using these preliminary observations, we decompose a solution (v, s,
m) of (F) into two parts by defining

u(t)(z) := v(z,t) — g(z, s(t),m(t)).
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Then
W (#)(2) = vi(3, ) + Gl s(t), m(t))s'(t) — Gz, m(t), m(t))m’(2)
= —(Av)(z,t) + H(z — s(t)) — H(zx — m(t))
+ G(=, s(£)C(v(s(t),1)) + Gz, m)C(v(m(2), 1))
= —(Au(®))(@) + uC (u(t)s(t)) + Y(s(), m(1))) G(=, 5(2)
+ 6 (w(t)(m(2)) + n(s(t), m(1))) Glz, m(2),

$'(t) = uC (u(£)(s()) +A(s(t), m(2)) )

and

m'(£) = —uC (u(t)(m(t)) + n(s(t), m(2)))

This system can be written as an abstract evolution equation with
a nonlinear forcing term f defined on the set W := {(u,s,m) €
C'([0,1])x(0,1)x(0,1) : u(s)+7(s,m) € I,u(m)+n(s,m) € I} Copen
C'([0,1]) x R x R as follows
Ff " W-oaXxRxR
f(u,s,m) = (f3(u737m)f1(3) + f4(u331m)f2(m)7
f3(u:3am)a —f4(ua3am))’

where

fi:(0,1) = X, fi(s)(z):=G(z,s),

f2:(0,1) = X, fa(m)(z) := G(z,m),

f3: W —-oR, fi(u,s,m):=C(u(s)+~v(s,m)) and
fa: W =R, fi(u,s,m):= C(u(m) + n(s,m)).

We denote the space X x R x R by X and define

D(A):=D(A) xR x R,
A: D(E) Cdense X — }~(, : E(u,s,m) := (Au,0,0).
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The initial value problem for (u,s,m) can then be written a

® { £ (ys,m) + A, 5,m) = ef(,5,m)
(u,s,m)(0) = (u(0), s(0),m(0)) = (ug, s0,m0) -

The advantage of (R) over (F) is, that the right hand side of (R) is
one step more regular than that of (F), since it involves G(z,s) and
G(z,m) instead of H(z — s) — H(z — m). More precisely, we can show
the following:

LEMMA 2.4. The functions f; : (0,1) —» X, f2: (0,1) — X, f5 :
WoR, fu:W—oRandf: W — X are continuously differentiable
with derivatives given by

fi(s) = -g—j<-,s>

film) = Z )
Dfs(U)(a,3,1m)

= C" (u(s) + (s, m)) - (W($)3 + 755,13 + Fon(5, )1 + 5(5))
Df4(U)(ﬁ,§,ﬁ’l)

= C' (u{m) + n(s,m)) - (u'(Mm)h + n(s,m)8 + nm(s, m)m + 4(m))

Df(U)(4,5,m) =
(fs(U)f{(S)é + Dfa(UNU) f1(s) + f4(U) f3(m)rn + Df4(U)(U)f2(m))

Df3(U)(U)
-Df(U)(U)

where U = (u, s,m) and U= (@, §,m).

Proof. The function a—G(x, s) exists for z # s and is bounded inde-

dy
pendent of s as a function of z in L%((0,1)). Moreover, it is continuous
almost everywhere in [0,1] x [0,1]. Lebesgue’s theorem then implies
that f; is continuously differentiable. In similar way we obtain f, is
continuously differentiable.
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In order to show f3 is continuously differentiable, we consider the
following function

I:C'0,1] x (0,1) = R, T'(u,s):=u(s).

For perturbations @, § of u, s there exists, by the mean value theorem,

a 8 € (0,1) such that

P(u+ i, +8) — T(u,s) —u'(s)5 — (s

—’
i

= §(u'(s+03) — u'(s)) +4'(s+ 035)3
=: R(%, §)
and
R(4, 8)
laller + 13

As a result I' is differentiable with derivative given by

— 0 as |§], ||&]lcr — 0.

DT'(u, s)(1, 8) = u'(s)s + @(s).

Furthermore, since || DI'(u1, $1)— DT (uz, s2)|| < ||lui —uzllcr +[s1—s2],
the mapping (u, s) — DI'(u, s) is continuous.

From the relation f3(u,s, m) = C(I'(u,s) + v(s,m)) we obtain that
f3 is continuously differentiable with derivative

Dfs(u,s,m)(i, 3,m)
=C' (D(u, ) + 7(s,m)) - (DI(at,8)(,8) + 75(5,M)3 + (s, m)rin).
Similary, if we define
A:CY0,1] x (0,1) = R, A(u,m):=u(m).
then f4(u,s, m) is also continuously differentiable with derivative
Dfi(u,s,m)(ii, §,1M) =
C" (A(uym) + n(s,m)) - (DA, m)(d 17) + na(s,m)3 + m(s,m)in)
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which was to be shown.
Therefore, by the product rule, the derivative of f can be calculated
as indicated, and, moreover, D f is continuous. ]

We can now apply semigroup theory to (R) using domains of frac-
tional powers a € [0,1] of A and A:

X := D(A%), X*:=D(4%), X*=X°xR.

For this we need to find an « € (0,1) such that X* ¢ C'([0,1]), be-
cause then f: W nN X*— X is continuously differentiable. By imbed-
ding theorem [henry], we can find an « satisfying @ > 3/4. Standard
applications of theorems for existence, uniqueness and dependence on
initial conditions (cf. [2]) together with the starting regularity of solu-
tions to (F)(Proposition 2.1), as well as the regularity of the functions
g, v and n (Proposition 2.2) then give the following result:

THEOREM 2.4. (i) For any 1 > a > 3/4, (uo, S0, mg) € wnxe
and p € R there exists a unique solution

(u, s,m)(t) = (u,s,m)(t; uo, S0, Mo, it)
of (R). The solution operator
(wo, 80, M0, pt) ¥ (u, s, m)(t;ug, Sp, Mo, p)

is continuously differentiable from X® x R into X® for t > 0. The
functions v(z,t)

v(z,t) = u(t)(x) + gla, s(t), m(t))
and s,m then satisfy (F) with v(-,0) € X, v(30,0) € I, v(my,0) € 1.
(ii) If (v,s,m) is a solution of (F) for some u € R with initial

condition vo € X, 1> o > 3/4, so,m € (0,1), vo(so) € I, vo(myg) €
I, then (ug,s0,mo) := (vo — g(-,x0), 50,m0) € X*NW and

(v(-,t),s(t), TTL(t)) = (u15>7n’)(t;an 5037”05#‘) + (g('a S(t)a7n(t))’0)
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where (u, s, m)(t; ug, S0, Mo, i) is the unique solution of (R)
(iii) For any 1 > a > 3/4, € R (v, so,mq) € U := {(v,s) €
X* x(0,1) : v(s),v(m) € I} the problem (F) has a unique solution

(v(z,t),s(t),m(t)) = (v, s,m)(z,t;vo, S0, Mo, ft).
Additionally, the mapping
(vo, S0, Mo, 1) = (v, 8, m)(-,t; vo, S0, Mo, 1)
is continuously differentiable from X* x R® into X x RZ.

REMARK. It seems to be difficult to extend this approach for ex-
istence and uniqueness to a larger class of initial conditions. If we
want the operator f to be locally Lipschitz continuous in (u,s,m),
then, since it involves the map I'(u,s) = u(s) and A(u,m) = u(m),
we necessarily have to take a definition set with » € C%((0,1). In
terms of the problem of finding the right exponent « for X there is
no difference between C! and C%!.
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