A STUDY ABOUT THE CONVERSE OF R.B. HOLMES' THEOREM

SUNG HO PARK AND HYANG JOO RHEE

Let M be a nonempty subset of a normed linear space X and let $x \in X$. An element $y \in M$ satisfying

$$
\|x - y\| = d(x, M) := \inf\{\|x - m\| : m \in M\}
$$

is called a best approximation to x from M. For a given $x \in X$, the set of all best approximations to x from M is denoted by

$$
P_M(x) := \{m \in M : \|x - m\| = d(x, M)\}.
$$

The set M is called proximinal (resp., Chebyshev) if for every x in X, $P_M(x)$ is nonempty (resp., a singleton). If M is a proximinal subset of X, then the set-valued mapping $P_M : X \rightarrow 2^M$ defined by $x \mapsto P_M(x)$ is called the metric projection onto M.

For a given normed linear space X, let

$$
B(X) = \{x \in X : \|x\| \leq 1\}
$$

$$
S(X) = \{x \in X : \|x\| = 1\}.
$$

$B(X)$ is called the unit ball, and $S(X)$ is called the unit sphere in X.

Received May 2, 1994.

AMS Classification: 41A65, 46B20.

Key words: Best approximation, proximinal, uniformly convex, metric projection, uniformly equicontinuous.

The Present Studies were Supported in part by the Basic Science Research Institute Program, Minstry of Education, KOREA.
Definition 1. The modulus of convexity of a normed linear space X is the function $\delta = \delta_X : [0, 2] \rightarrow [0, 1]$ defined by

$$\delta(\varepsilon) = \inf\{1 - \frac{1}{2}\|x + y\| : x, y \in S(X), \|x - y\| \geq \varepsilon\}.$$

X is called a uniformly convex space if $\delta(\varepsilon) > 0$ for every $0 < \varepsilon \leq 2$. Geometrically, X is uniformly convex if the midpoints of line segments having length at least ε and its endpoints on the unit sphere must lie uniformly deep inside the unit ball.

The next result is well known.

Lemma 2. [1, 2] If X is a finite-dimensional normed linear space, then X is strictly convex if and only if it is uniformly convex.

Definition 3. Let X be a normed linear space and let $H(X)$ denote the family of all nonempty, bounded, closed and convex subsets of X. Define $H : H(X) \times H(X) \rightarrow \mathbb{R}$ by

$$H(A, B) = \max\{h(A, B), h(B, A)\}$$

where $h(A, B) = \sup_{a \in A} d(a, B)$. Then H is a metric on $H(X)$, called the Hausdorff metric.

In [2], we know that R.B.Holmes proved the following theorem.

Theorem 4. [2] Let X be a uniformly convex space. For any $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that for any x, y in the unit ball of X with $\|x - y\| < \delta$ imply that

$$\|P_M(x) - P_M(y)\| < \varepsilon$$

for every proximinal subspace M of X. In other words, the set of metric projections

$$\{P_M : M \text{ is a proximinal subspace }\}$$

is a uniformly equicontinuous family on the unit ball.
Open Problem. Does the converse of R.B. Holmes' Theorem hold? That is, if
\[\{ P_M : \text{M is a proximinal subspace} \} \]
is a uniformly equicontinuous family on the unit ball of a normed linear space \(X \), must \(X \) be uniformly convex?

In [2], F.R. Deutsch gave the open problem and expected that the answer is no. By the following theorem, we will give a counterexample for the above open problem.

Theorem 5. Let \(X = \mathbb{R}^2 \) be a normed linear space with \(\|(x, y)\| = |x| + |y| \). For any \(\varepsilon > 0 \) and any \(x, y \) in the unit ball of \(X \) with \(\|x - y\| < \frac{\varepsilon}{2} \),
\[H(P_M(x), P_M(y)) < \varepsilon \]
for every proximinal subspace \(M \) of \(X \).

Proof. Let \(\varepsilon > 0 \) be given and let \(x, y \in B(X) \) be with \(\|x - y\| < \frac{\varepsilon}{2} \), that is, \(d(x, y) = \|x - y\| = |x_1 - y_1| + |x_2 - y_2| < \frac{\varepsilon}{2} \), where \(x = (x_1, x_2), y = (y_1, y_2) \). Assume that \(M = \text{span}\{(1, \alpha)\} \) if \(\alpha \in \mathbb{R} \) and \(M = \text{span}\{(0, 1)\} \) if \(\alpha = \infty \).

Now we claim that for every proximinal subspace \(M \) of \(X \),
\[H(P_M(x), P_M(y)) \leq 2\|x - y\| \]
for every \(x, y \in B(X) \).

If \(1 < |\alpha| \leq \infty \), then \(P_M(x) = \{(\frac{x_2}{\alpha}, x_2)\} \). So
\[\|P_M(x) - P_M(y)\| = \frac{1}{\alpha} |x_2 - y_2| + |x_2 - y_2| < 2 |x_2 - y_2| \leq 2 \|x - y\|. \]

If \(0 \leq |\alpha| < 1 \), then \(P_M(x) = \{(x_1, \alpha x_1)\} \). So
\[\|P_M(x) - P_M(y)\| = |x_1 - y_1| + |\alpha| |x_1 - y_1| < 2 |x_1 - y_1| \leq 2 \|x - y\|. \]
It remains to prove the claim for $\alpha = 1$, and $\alpha = -1$.

Case 1: $\alpha = 1$. Note that for every $x = (x_1, x_2) \in X$,

$$P_M(x) = [(x_1, x_1), (x_2, x_2)]$$

where $[(x_1, x_1), (x_2, x_2)]$ is the line segment with the end points (x_1, x_1) and (x_2, x_2).

If $x_1 \leq x_2$, $y_1 \leq y_2$ or $(x_2 \leq x_1$, $y_2 \leq y_1$), then

$$H(P_M(x), P_M(y)) = \max\{d((x_1, x_1), (y_1, y_1)), d((x_2, x_2), (y_2, y_2))\}$$

$$= \max\{2|x_1 - y_1|, 2|x_2 - y_2|\}$$

$$\leq 2|x_1 - y_1| + 2|x_2 - y_2|$$

$$= 2\|x - y\|.$$

If $x_1 \leq x_2$, $y_2 \leq y_1$ or $(x_2 \leq x_1$, $y_2 \leq y_1$), then

$$H(P_M(x), P_M(y)) = \max\{d((x_1, x_1), (y_2, y_2)), d((x_2, x_2), (y_1, y_1))\}$$

$$= \max\{2|x_1 - y_2|, 2|x_2 - y_1|\}.$$

First, we will prove the claim when $(x_1 \leq x_2$, $y_2 \leq y_1$).

(1) If

$$(-\frac{1}{2} \leq x_1 \leq 0, \ \frac{1}{2} \leq x_2 \leq 1 \ \text{and} \ \frac{1}{2} \leq y_1 \leq 1, \ \ 0 \leq y_2 \leq \frac{1}{2}) \ \text{or}$$

$$(-1 \leq x_1 \leq -\frac{1}{2}, \ 0 \leq x_2 \leq \frac{1}{2} \ \text{and} \ \left\{0 \leq y_1 \leq \frac{1}{2}, \ 0 \leq y_2 \leq \frac{1}{2}, \ y_2 \leq y_1 \ \text{or} \right.$$

$$\quad \quad \left.0 \leq y_1 \leq \frac{1}{2}, \ -\frac{1}{2} \leq y_2 \leq 0\right\}) \ \text{or}$$

$$(-1 \leq x_1 \leq -\frac{1}{2}, \ -\frac{1}{2} \leq x_2 \leq 0 \ \text{and}$$

$$\quad \quad \left.-\frac{1}{2} \leq y_1 \leq 0, \ -\frac{1}{2} \leq y_2 \leq 0, \ y_2 \leq y_1 \right\}) \ \text{or}$$

$$\left(-\frac{1}{2} \leq x_1 \leq 0, \ 0 \leq x_2 \leq \frac{1}{2} \ \text{and} \right.$$

$$\quad \quad \left.0 \leq y_1 \leq \frac{1}{2}, \ 0 \leq y_2 \leq \frac{1}{2}, \ y_2 \leq y_1 \right).$$
then

\[|x_1 - y_2| = y_2 - x_1 \leq y_1 - x_1 = |x_1 - y_1| \]
\[|x_2 - y_1| = x_2 - y_1 \leq x_2 - y_2 = |x_2 - y_2| \quad \text{if } y_1 \leq x_2 \]
\[|x_2 - y_1| = y_1 - x_2 \leq y_1 - x_1 = |x_1 - y_1| \quad \text{if } x_2 \leq y_1. \]

(2) If

\[
\left(0 \leq x_1 \leq \frac{1}{2}, \quad \frac{1}{2} \leq x_2 \leq 1 \quad \text{and} \quad \frac{1}{2} \leq y_1 \leq 1, \quad 0 \leq y_2 \leq \frac{1}{2} \right) \quad \text{or} \]

\[
\left(-\frac{1}{2} \leq x_1 \leq 0, \quad \frac{1}{2} \leq x_2 \leq 1 \quad \text{and} \quad \frac{1}{2} \leq y_1 \leq 1, \quad -\frac{1}{2} \leq y_2 \leq 0 \right) \quad \text{or} \]

\[
\left(-1 \leq x_1 \leq -\frac{1}{2}, \quad 0 \leq x_2 \leq \frac{1}{2} \quad \text{and} \quad 0 \leq y_1 \leq \frac{1}{2}, \quad -1 \leq y_2 \leq -\frac{1}{2} \right) \quad \text{or} \]

\[
\left(-1 \leq x_1 \leq -\frac{1}{2}, \quad -\frac{1}{2} \leq x_2 \leq 0 \quad \text{and} \quad -\frac{1}{2} \leq y_1 \leq 0, \quad -1 \leq y_2 \leq -\frac{1}{2} \right) \quad \text{or} \]

\[
\left(0 \leq x_1 \leq \frac{1}{2}, \quad 0 \leq x_2 \leq \frac{1}{2}, \quad x_1 \leq x_2 \quad \text{and} \quad 0 \leq y_1 \leq \frac{1}{2}, \quad 0 \leq y_2 \leq \frac{1}{2}, \quad y_2 \leq y_1 \right) \quad \text{or} \]

\[
\left(-\frac{1}{2} \leq x_1 \leq 0, \quad 0 \leq x_2 \leq \frac{1}{2} \quad \text{and} \quad 0 \leq y_1 \leq \frac{1}{2}, \quad -\frac{1}{2} \leq y_2 \leq 0 \right) \quad \text{or} \]

\[
\left(-\frac{1}{2} \leq x_1 \leq 0, \quad -\frac{1}{2} \leq x_2 \leq 0, \quad x_1 \leq x_2 \quad \text{and} \quad -\frac{1}{2} \leq y_1 \leq 0, \quad -\frac{1}{2} \leq y_2 \leq 0 \right), \quad y_2 \leq y_1, \]

then

\[|x_1 - y_2| = x_1 - y_2 \leq x_2 - y_2 = |x_2 - y_2| \quad \text{if } y_2 \leq x_1 \]
\[|x_1 - y_2| = y_2 - x_1 \leq y_1 - x_1 = |x_1 - y_1| \quad \text{if } x_1 \leq y_2 \]
\[|x_2 - y_1| = x_2 - y_1 \leq x_2 - y_2 = |x_2 - y_2| \quad \text{if } y_1 \leq x_2 \]
\[|x_2 - y_1| = y_1 - x_2 \leq y_1 - x_1 = |x_1 - y_1| \quad \text{if } x_2 \leq y_1. \]
(3) If
\[
\left(0 \leq x_1 \leq \frac{1}{2}, \ 0 \leq x_2 \leq \frac{1}{2}, \ x_1 \leq x_2 \ \text{and} \ \frac{1}{2} \leq y_1 \leq 1, \ -\frac{1}{2} \leq y_2 \leq 0 \right) \ \text{or} \\
\left(-\frac{1}{2} \leq x_1 \leq 0, \ -\frac{1}{2} \leq x_2 \leq 0, \ x_1 \leq x_2 \ \text{and} \ 0 \leq y_1 \leq \frac{1}{2}, \ -1 \leq y_2 \leq -\frac{1}{2} \right),
\]

then
\[
|x_1 - y_2| = x_1 - y_2 \leq x_2 - y_2 = |x_2 - y_2| \\
|x_2 - y_1| = y_1 - x_2 \leq y_1 - x_1 = |x_1 - y_1|.
\]

(4) If
\[
\left(0 \leq x_1 \leq \frac{1}{2}, \ \frac{1}{2} \leq x_2 \leq 1 \ \text{and} \ \frac{1}{2} \leq y_1 \leq 1, \ -\frac{1}{2} \leq y_2 \leq 0 \right) \ \text{or} \\
\left(0 \leq x_1 \leq \frac{1}{2}, \ 0 \leq x_2 \leq \frac{1}{2}, \ x_1 \leq x_2 \ \text{and} \ \left\{ \begin{array}{l} 0 \leq y_1 \leq \frac{1}{2}, \ -1 \leq y_2 \leq -\frac{1}{2} \ \text{or} \\
0 \leq y_1 \leq \frac{1}{2}, \ -\frac{1}{2} \leq y_2 \leq 0 \end{array} \right\} \right) \ \text{or} \\
\left(-\frac{1}{2} \leq x_1 \leq 0, \ 0 \leq x_2 \leq \frac{1}{2} \ \text{and} \ 0 \leq y_1 \leq \frac{1}{2}, \ -1 \leq y_2 \leq -\frac{1}{2} \right) \ \text{or} \\
\left(-\frac{1}{2} \leq x_1 \leq 0, \ -\frac{1}{2} \leq x_2 \leq 0, \ x_1 \leq x_2 \ \text{and} \ -\frac{1}{2} \leq y_1 \leq 0, \ -1 \leq y_2 \leq -\frac{1}{2} \right),
\]

then
\[
|x_1 - y_2| = x_1 - y_2 \leq x_2 - y_2 = |x_2 - y_2| \\
|x_2 - y_1| = x_2 - y_1 \leq x_2 - y_2 = |x_2 - y_2| \text{ if } y_1 \leq x_2 \\
|x_2 - y_1| = y_1 - x_2 \leq y_1 - x_1 = |x_1 - y_1| \text{ if } x_2 \leq y_1.
\]

(5) If
\[
\left(-1 \leq x_1 \leq -\frac{1}{2}, \ 0 \leq x_2 \leq \frac{1}{2} \ \text{and} \ \left\{ \begin{array}{l} \frac{1}{2} \leq y_1 \leq 1, \ 0 \leq y_2 \leq \frac{1}{2} \ \text{or} \ \frac{1}{2} \leq y_1 \leq 1, \ -\frac{1}{2} \leq y_2 \leq 0 \end{array} \right\} \right) \ \text{or}
\]
\((-1 \leq x_1 \leq -\frac{1}{2}, \ -\frac{1}{2} \leq x_2 \leq 0\) and
\[
\begin{cases}
\frac{1}{2} \leq y_1 \leq 1, \ 0 \leq y_2 \leq \frac{1}{2} \quad \text{or} \\
\frac{1}{2} \leq y_1 \leq 1, \ -\frac{1}{2} \leq y_2 \leq 0 \quad \text{or} \\
0 \leq y_1 \leq \frac{1}{2}, \ 0 \leq y_2 \leq \frac{1}{2}, \ y_2 \leq y_1 \quad \text{or} \\
0 \leq y_1 \leq \frac{1}{2}, \ -\frac{1}{2} \leq y_2 \leq 0
\end{cases}
\] or

\((-\frac{1}{2} \leq x_1 \leq 0, \ 0 \leq x_2 \leq \frac{1}{2}\) and
\[
\frac{1}{2} \leq y_1 \leq 1, \ 0 \leq y_2 \leq \frac{1}{2}
\] or

\((-\frac{1}{2} \leq x_1 \leq 0, \ -\frac{1}{2} \leq x_2 \leq 0, \ x_1 \leq x_2, \ \text{and}
\[
\begin{cases}
\frac{1}{2} \leq y_1 \leq 1, \ 0 \leq y_2 \leq \frac{1}{2} \quad \text{or} \\
0 \leq y_1 \leq \frac{1}{2}, \ 0 \leq y_2 \leq \frac{1}{2}, \ y_2 \leq y_1
\end{cases}
\},
\]

then

\[
|x_1 - y_2| = y_2 - x_1 \leq y_1 - x_1 = |x_1 - y_1|
\]

\[
|x_2 - y_1| = y_1 - x_2 \leq y_1 - x_1 = |x_1 - y_1|
\]

(6) If

\((-1 \leq x_1 \leq -\frac{1}{2}, \ -\frac{1}{2} \leq x_2 \leq 0\) and
\[
0 \leq y_1 \leq \frac{1}{2}, \ -1 \leq y_2 \leq -\frac{1}{2}
\] or

\[
\begin{cases}
0 \leq x_1 \leq \frac{1}{2}, \ 0 \leq x_2 \leq \frac{1}{2}, \ x_1 \leq x_2 \quad \text{and} \\
\frac{1}{2} \leq y_1 \leq 1, \ 0 \leq y_2 \leq \frac{1}{2}
\end{cases}
\] or

\((-\frac{1}{2} \leq x_1 \leq 0, \ 0 \leq x_2 \leq \frac{1}{2}\) and
\[
\frac{1}{2} \leq y_1 \leq 1, \ -\frac{1}{2} \leq y_2 \leq 0
\] or

\((-\frac{1}{2} \leq x_1 \leq 0, \ -\frac{1}{2} \leq x_2 \leq 0, \ x_1 \leq x_2 \) and
\[
\begin{cases}
\frac{1}{2} \leq y_1 \leq 1, \ -\frac{1}{2} \leq y_2 \leq 0 \quad \text{or} \\
0 \leq y_1 \leq \frac{1}{2}, \ -\frac{1}{2} \leq y_2 \leq 0
\end{cases}
\),
then
\[|x_1 - y_2| = x_1 - y_2 \leq x_2 - y_2 = |x_2 - y_2| \quad \text{if } y_2 \leq x_1 \]
\[|x_1 - y_2| = y_2 - x_1 \leq y_1 - x_1 = |x_1 - y_1| \quad \text{if } x_1 \leq y_2 \]
\[|x_2 - y_1| = y_1 - x_2 \leq y_1 - x_1 = |x_1 - y_1|. \]

(7) If
\[\left(0 \leq x_1 \leq \frac{1}{2}, \quad \frac{1}{2} \leq x_2 \leq 1 \right) \quad \text{and} \]
\[\left\{ \begin{array}{l}
0 \leq y_1 \leq \frac{1}{2}, \quad -1 \leq y_2 \leq -\frac{1}{2} \quad \text{or} \\
-\frac{1}{2} \leq y_1 \leq 0, \quad -1 \leq y_2 \leq -\frac{1}{2} \quad \text{or} \\
0 \leq y_1 \leq \frac{1}{2}, \quad -\frac{1}{2} \leq y_2 \leq 0 \quad \text{or} \\
-\frac{1}{2} \leq y_1 \leq 0, \quad -\frac{1}{2} \leq y_2 \leq 0, \quad y_2 \leq y_1 \end{array} \right\} \] or
\[\left(-\frac{1}{2} \leq x_1 \leq 0, \quad \frac{1}{2} \leq x_2 \leq 1 \right) \quad \text{and} \]
\[\left\{ \begin{array}{l}
0 \leq y_1 \leq \frac{1}{2}, \quad -1 \leq y_2 \leq -\frac{1}{2} \quad \text{or} \\
-\frac{1}{2} \leq y_1 \leq 0, \quad -1 \leq y_2 \leq -\frac{1}{2} \quad \text{or} \\
0 \leq y_1 \leq \frac{1}{2}, \quad -\frac{1}{2} \leq y_2 \leq 0 \quad \text{or} \\
-\frac{1}{2} \leq y_1 \leq 0, \quad -\frac{1}{2} \leq y_2 \leq 0, \quad y_2 \leq y_1 \end{array} \right\} \] or
\[\left(0 \leq x_1 \leq \frac{1}{2}, \quad 0 \leq x_2 \leq \frac{1}{2}, \quad x_1 \leq x_2 \right) \quad \text{and} \]
\[\left\{ \begin{array}{l}
-\frac{1}{2} \leq y_1 \leq 0, \quad -1 \leq y_2 \leq -\frac{1}{2} \quad \text{or} \\
-\frac{1}{2} \leq y_1 \leq 0, \quad -\frac{1}{2} \leq y_2 \leq 0, \quad y_2 \leq y_1 \end{array} \right\} \] or
\[\left(-\frac{1}{2} \leq x_1 \leq 0, \quad 0 \leq x_2 \leq \frac{1}{2} \right) \quad \text{and} \]
\[-\frac{1}{2} \leq y_1 \leq 0, \quad -1 \leq y_2 \leq -\frac{1}{2} \),

then
\[|x_1 - y_2| = x_1 - y_2 \leq x_2 - y_2 = |x_2 - y_2| \]
\[|x_2 - y_1| = x_2 - y_1 \leq x_2 - y_2 = |x_2 - y_2|. \]

(8) If
\[\left(-\frac{1}{2} \leq x_1 \leq 0, \quad \frac{1}{2} \leq x_2 \leq 1 \right) \quad \text{and} \]
\[0 \leq y_1 \leq \frac{1}{2}, \quad 0 \leq y_2 \leq \frac{1}{2}, \quad y_2 \leq y_1 \right\} \] or
\((-1 \leq x_1 \leq -\frac{1}{2}, \ 0 \leq x_2 \leq \frac{1}{2} \text{ and} \)
\(-\frac{1}{2} \leq y_1 \leq 0, \ -\frac{1}{2} \leq y_2 \leq 0, \ y_2 \leq y_1\),
then
\[|x_1 - y_2| = y_2 - x_1 \leq y_1 - x_1 = |x_1 - y_1|\]
\[|x_2 - y_1| = x_2 - y_1 \leq x_2 - y_2 = |x_2 - y_2|.
\]

(9) If
\((0 \leq x_1 \leq \frac{1}{2}, \ \frac{1}{2} \leq x_2 \leq 1 \text{ and} \)
\(0 \leq y_1 \leq \frac{1}{2}, \ 0 \leq y_2 \leq \frac{1}{2}, \ y_2 \leq y_1\) or
\((-\frac{1}{2} \leq x_1 \leq 0, \ \frac{1}{2} \leq x_2 \leq 1 \text{ and} \)
\(\left\{0 \leq y_1 \leq \frac{1}{2}, \ -\frac{1}{2} \leq y_2 \leq 0 \text{ or} \right.\)
\(-\frac{1}{2} \leq y_1 \leq 0, \ -\frac{1}{2} \leq y_2 \leq 0, \ y_2 \leq y_1\}\)
\((-1 \leq x_1 \leq -\frac{1}{2}, \ 0 \leq x_2 \leq \frac{1}{2} \text{ and} \)
\(-\frac{1}{2} \leq y_1 \leq 0, \ -1 \leq y_2 \leq -\frac{1}{2}\) or
\((-\frac{1}{2} \leq x_1 \leq 0, \ 0 \leq x_2 \leq \frac{1}{2} \text{ and} \)
\(-\frac{1}{2} \leq y_1 \leq 0, \ -\frac{1}{2} \leq y_2 \leq 0, \ y_2 \leq y_1\),
then
\[|x_1 - y_2| = x_1 - y_2 \leq x_2 - y_2 = |x_2 - y_2| \text{ if } y_2 \leq x_1\]
\[|x_1 - y_2| = y_2 - x_1 \leq y_1 - x_1 = |x_1 - y_1| \text{ if } x_1 \leq y_2\]
\[|x_2 - y_1| = x_2 - y_1 \leq x_2 - y_2 = |x_2 - y_2|.
\]
Thus, for any case of (1), \(\cdots\), (9), we have
\[
H(P_M(x), P_M(y)) = \max\{2|x_1 - y_2|, 2|x_2 - y_1|\}
\leq \max\{2|x_1 - y_1|, 2|x_2 - y_2|\}
\leq 2|x_1 - y_1| + 2|x_2 - y_2|
= 2||x - y||.
\]
Next, we can prove the claim when \((x_2 \leq x_1, \ y_2 \leq y_1)\) by changing the role of \(x = (x_1, x_2)\) and \(y = (y_1, y_2)\).

Case 2 : \(\alpha = -1\). This is, in fact, symmetric version of case 1 with respect to \(x\)-axis or \(y\)-axis.

Hence, for a given \(\varepsilon > 0\) there exists \(\delta(\varepsilon) = \frac{\varepsilon}{2} > 0\) such that for any \(x, y\) in the unit ball of \(X\) with \(||x - y|| < \delta||\),

\[
H(P_M(x), P_M(y)) \leq 2||x - y|| < 2\delta = \varepsilon
\]

for every proximinal subspace \(M\) of \(X\). In other words, the set of metric projections

\[
\{P_M : M \text{ is a proximinal subspace }\}
\]

is a uniformly equicontinuous family on the unit ball.

Remarks. (1) By Theorem 5, the set of metric projections

\[
\{P_M : M \text{ is a proximinal subspace }\}
\]

is the uniformly equicontinuous family on the unit ball of \((\mathbb{R}^2, \| \cdot \|_1)\). But \((\mathbb{R}^2, \| \cdot \|_1)\) is not a strictly convex space, so \((\mathbb{R}^2, \| \cdot \|_1)\) is not uniformly convex. Thus the converse of R.B.Holmes' theorem is not true.

(2) Furthermore, by the above theorem, even though the set of metric projections

\[
\{P_M : M \text{ is a proximinal subspace }\}
\]

is a uniformly equi-Lipschitz continuous family on the unit ball of \(X\), \(X\) can not be uniformly convex.
A study about the converse Of R.B.Holmes' theorem

References

Department of Mathematics
Sogang University
Seoul 121-742, Korea