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AN EMPIRICAL CLT FOR STATIONARY
MARTINGALE DIFFERENCES

JONGSIG BAE

1. Introduction and main result

Let S be a set and B be a o-field on S. We consider (2 = S%,7 =
BZ, P) as the basic probability space. We denote by T the left shift on
2. We assume that P is invariant under T, i.e., PT~! = P, and that
T is ergodic. We denote by X = ... X_1, X, X1, - the coordinate
maps on {2. From our assumptions it follows that {X;};cz is a sta-
tionary and ergodic process. Next we define for each : € Z a o-fields
Mi=0(X;:5<t)and H; = {f : Q> R: fe M, and f €
L*(2)}. We denote for each f € L*(Q), Ei-1(f) := E(f|M:_1), and
HyoH_, :={f € Hy: E(f-g) =0 foreach g € H-1}. Finally
for every f, g € L*(Q2) we put d(f,g) := [E(f — ¢)*]*/?. We assume
F C Ho© H_i. From our setup it follows that for every f € F,
{f(T*(X)), M;} is a stationary martingale difference sequence. For
every f € F, we define

(1 Sulf) = == 0V

where V; := T%(X) and V := T°(X) (= X).

Our goal is to find sufficient conditions for an empirical central limit
theorem. This essentially means showing that £(S,(f) : f € F) —
L(G(f): f € F), where the processes that are involved here are in-
dexed by F and are considered as random elements in B(F), the space
of the bounded real-valued functions on F, taken with the sup norm.
(G(f) : f € F) is a Gaussian process which is continuous in f a.s..
Next we define the metric entropy with bracketing. See, for example,

Dudley (1984).
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DEFINITION 1. For (F,d) and 6 > 0 we define the covering number
with bracketing vB(6, F, d), or vB(§) if there is no risk of ambiguity,
as the smallest n for which there exists {f s fosr fE s fns) © Ho
so that for every f € F there exist some 0 < 7 < n sa‘rlsfymg

(a) fil,é SfFL< S
and
(b) d(fis, fiis) < 6.
Define the metric entropy with bracketing to be
HB(6):= HB(6, F,d) :=InvB(6, F,d).
We also define the associated integral for 0 < § < 1

I3
J(8) ::/0 [H5(u)]? du.

We use the following notations: For a function ¢ : F — R, we let
llollx := supser |o(f)| denote the sup of |p| over F. We write [l 1]
in stead of || - || when there is no risk of ambiguity. We also let

llolls := sups) lo(f) — @(g)| denote the sup of |o(f) - ¢(g)| over (&)
where (8) := {(f,g) € }' x F:d(f,g) < é}.

We are now ready to state our main result.

THEOREM 1. (An eventual uniform equicontinuity). Assume that
(a) J(1) = fol [HB(w)]?du < oo and
(b) there exists a constant D > 0 such that

P{ sup Z z 1 (V)— ( )]ZZD}__)O

f.9€Hy = nd*(f,g)
Then for every € > 0 there is 6§ > 0 such that
(2) limsup P*{||Sn|ls > €} <,

where P* denotes outer probability.

In the following Corollary 1 we state an empirical central limit theo-
rem for martingale differences. It is well known that B(F) is complete
in the sup-norm, so that (B(F), ||-||5) form a Banach space. We use the
following deﬁn1t10n of weak convergence due to Hoffmann-Jérgensen
(see Hoffmann-J¢rgensen, 1991, p 149).
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DEFINITION 2. A sequence of B(F)-valued random functions {Yx :
n > 1} converges in law to a B(F)-valued Borel measurable random
function Y, denoted Y,, = Y, if

Eg(Y) = lim E"¢(Ya),¥g € C(B(F)I|- |l7),

where C(B(F),|| - ||5) is the set of all bounded, continuous functions
from (B(F),]| - ||#) into R. Here E* denotes upper expectation.

COROLLARY 1. Under the assumptions of Theorem 1,
S = G,

where G(f) is a Gaussian process with EG(f) = 0 and EG(f1)G(f2) =
E f1(X) f2(X) which is uniformly continuous in f a.s..

Proof of Corollary 1. The proof follows from the finite dimensional
convergence and the eventual uniform equicontinuity of S,,. 0

The following remarks verify that the two conditions (the finite di-
mensional convergence and the eventual uniform equicontinuity) are
sufficient for the proof of the Corollary 1 (see Andersen (1985) and
Andersen and Dobric (1987) for the similar argument of i.i.d. setup).

REMARK 1. {S,} is eventually bounded. L.e.
limg oo limsup,, P*{||Sn|lx > a} = 0. Indeed, note that Ve > 0, 36 >
0 such that

lim sup P* sup  |Sa(f1) = Sn(f2)| 2 €} <e.
n d(fi.f2)<8

Let A be the finite set of the é-nets. Then, by the finite dimensional
convergence, we have

lim limsup P*{sup |Sn(fa)| > a} = 0.
a-—-+00 n (.\’GA

We write M, := sup,¢ 4 |Sa(fa)|. Then note that

HSnH.'F S A4n + sup 'Sﬂ(fl) - Sn(fZ)l a.s..
d(f1,f2)<6
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Then we have
ali_’rgolimsup P*{||Sallr > a+ €}
<limsup ;*{]]Sn]]}- - M, > €}

+ lim limsup P*{M, > a} <.
a—+cO n

Letting € — 0, we get the eventual boundedness of {S,}.

REMARK 2. {S,} is eventually tight. Le. Ve > 0, 3 a compact
set K such that limsup, P*{S, ¢ G} < ¢ for all open sets G so that
G 2 K. Indeed, the eventual uniform equicontinuity and the even-
tual boundedness together imply the eventual tightness of {S,} (see
Andersen and Dobric (1987), Theorem 2.12).

REMARK 3. Apply Theoremn 7.11 (case 3, Remark (1)) in Hoffmann-
Jgrgensen (1991) to conclude that S, = G. Indeed, we consider

o= {eiz'c @ fi . ar € R, fr € F, and Zakfk is a finite sum}
k

where e 2 “efr(t) ;= ¢! 2k %) Then ¥ is a selfadjoint semigroup
of bounded, continuous complex-valued functions on B(F). By the fi-
nite dimensional convergence of {Sn}, we have that lim, Ev(S,) exists
VY € W If t; # ty, then we can find v € ¥ such that (t;) # ¥(t,).
Also we can find f € F such that t;(f) # t2(f). Choose a # 0 so that
-7 < aty(s) < 7 and —7 < aty(s) < 7. Then e'*f(t;) = etetr(f) «£
e'*t2tf) = ¢iaf(4,). This shows that ¥ separates points in B(F).

REMARK 4. See Theorem 4.1 in Andersen and Dobric (1987) for
the uniform continuity of G.

We observe that the assumption (a) in the theorem implies the total
boundedness of the metric space (F,d) and the assumption (b) is an
asymptotic Lipschitz condition in the average sense with a Lipschitz
constant D,

Theorem 1 can be considered as a generalization of Theorem 3.1
of Ossiander (1987). To specialize our work to their framework we
assume that P = (P)Z for some Py, a probability measure on S (in
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other words the X; are 1.i.d) and that all the functions in F depend
on X; coordinate only and E(f(X;)) = 0. In that case the condition
(b) in Theorem 1 boils down to the Lipschitz condition (2.3) in that

paper.

Theorem 1 can be also considered as a generalization of Theorem
2 of Levental (1989) in the following sense. We remove the uniform
boundedness requirement of underlying martingale difference sequence.
We note that the condition (b)(i) in that paper is weaker than our
condition (b). The other two conditions (a) and (b)(ii) together are
similar to our condition (a) about the integrability of metric entropy
with bracketing. We also note that we use stationarity in one place in
the proof of our Theorem 1 while it was not used in Levental (1989).

2. Proof of Theorem 1

For a > 0, let

a fa<z
Y(a,z)=( z f—a<z<a

—a ifz < -—a.
Foreach @ >0, n>1and f € F, let

FVROL) = (Vb £())

and
1 [ (V0o n
SN =L {{Y™W) - B (0w}

PROPOSITION 1. Assume that
(a) J(1) < o0 and
(b) there exists a constant D > 0 such that

. ~ Ei_y[f(Vi) — (V)
P su >D) —0.
{fpz BT }

Then for every 5 > 0, for every § > 0, and for each
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< 3 (srmstnEm)'
p* {ns,‘:’)ua > KVD(J(6) + na)} <55 exp{-n’Lk} + o(1)
k=0

where K is a universal constant and Lz = In(z V ¢).

Proof of Theorem 1. Fix n > 0. The family {f(): f € F} is uni-
formly bounded by an envelope F(') := supser |f(-)] € L*(Q) because

vB(1) < 00 and F(-) < S| SO+ 140 € L3(R). Note that

{f(Vi)} is a martingale difference sequence. So we have
\Bi-1(F (VL sviis vme)| = [Eici(F(VO15vi)1< ymoy -
Note also that for 8 > 0, f € F, we have
sup S (f) - S57(f)|
feF

= sup % (Z {rov) - 10w + Ei_l(f<\/"“’>(v,->)}’

feF
< sup == Z |r(ve) = s 0w + sup ~Z | (s YO vy
<—ﬁ ;F("fﬂmv.-»ﬁa}

1 n
+ sup ﬁz ,Ei—l(f(vi)l{lf(va)lsﬁﬂ}),
+ sup —Z 'E; 1(\/_0)1{|f(V)[>\/—0})l
TgF(V)l{F(v.»\/‘a}*s”p\/“ZE’ IFOD g viy1> viioy)

———ZF(V {F(Vi)>/n6} + \/;I-ZE!—l(F(‘/l)l{F(V,)>\/TZ9})
i=1

i=1

S

1 - ;
TZF (V)lrviy>vmey + lei—lpz(Vi)l{F(v.-):»ﬁo}-
i=1

=1
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The last two terms converges in L?(£2) to zero because the stationarity
and Dominated Convergence Theorem together imply

1 n
—~ > E(FHV)lpwysyaey) = E(FX(V)1irwys ymey) = o(1).
i=1
Therefore we have P{||S, _57(19)” > £} = o(1). Since |[S,]|s = HSY(,O)Ha
+2||S, — 5,(19)H, it remains to show
(6) s

(3) P{IIsls > £} < 5.
We may choose 1 so that 53 7o, exp{-n?Lk} < 5. Now choose é small
enough so that Kv/D(J(8) + né) < 5. Then by Proposition 1 (3) is
true for 8 < g(m—ﬁ-ﬂ%-)—;’z—))]/z and n large enough. End of proof of

Theorem 1.
Proof of Proposition 1. We define a stopping time 7, for n > 1

R N (V2
T :=nAmax{k>0: sup E'_l['fﬂ,? 9(V2)] <D,.
f9€Hy ‘= nd*(f,g)

Then from (b) we get P{r, < n} — 0 as n — oo. Note that

o~ Eisi[f(Vi) = g(V)) _
) d {f,sylé};io g nd*(f,g) = D} =0
We write
I TR W7 PN Y
(5) Sif)(f)—ﬁ;{f( Vi) = Bea(FYOV)

Since P{r, < n} — 0 as n — oo, it is enough to prove that for every
n > 0, for every 6§ > 0, and for each ¢ < g(——r"'—s(zH 1()5)+n2))1/2

P*{1IS2|ls 2 KvVD(J(6) +18)} <53 exp{—n"Lk)
k=0
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In order to prove the last inequality we follow the steps in Ossiander
(1987).

Step 1 : Fixp > 0, and fix § > 0. For k > 0, let & = :—3;
and v = ELO H?B(6;). Let {ax : k > 0} be a strictly decreasing
sequence with limy_.o a;x = 0. The values of a; will be specified after
applying Freedman inequality below. We write It := [ax41,ax) and
I = [@k+1,00). Note that the intervals I; is a partition of the interval
(0, ao).

Step 2: Fix6< . We construct a nested sequence of upper and
lower §k-approximations to f(V™® in L*(Q) in the following way. For
feF, let

k k
uk(-) = A s (), and k() =\ £l 6 (),
7=0 7=0

where ; is the 7 that satisfies (a) and (b) in the Definition 1 for ¢;.
Let
tn k() = (VN0 ui(+), and I, 1(-) = (v/n8, k().

Note that I,  and un & depend on F only through filo,ég’ L 5, and

io,601" "+ Jiy 5, respectively. Observe that
sup [/ < 2o/
fer 2
ag\/1n
sup itn ()] V Jlnel)] < X2,
ferF <
and

Sup |unk(+) = ok (-)] < agv/n.
fer

Note that for each k > 0,
Lni(4) € FYO0) < wnplo),

and
0< urz,k+l(') - ln,k+1(') < un,k(') - ln,k( )
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Step 3 : We construct the sets with which we partition S,(:). Choose
k. so that

nag, +1 < (J(8) +n6)VD < nay,.

For 0 < k < ky, define the following subsets of the sample space

Ank(f) = u"'k(')\;ﬁl"’k(') € ij ,

and i )
- Un k(')_lnk(') _
A, = . : I
& (f) _ \/17 € LJ
The sets {Bn (f):0 <k <k, + 1} are partitions of the sample space
induced by the sets {4, r(f),0 <k < k,}:

Bn,()(f) - An,O(f)a

k-1
Bn,k(f) Zsz,k(f) \ U A"',j(f)
=0
-
=Aax(H\ U Anj(f), 1<k <k,
j=0

and
kn

nkn+l U n,k f))

For k > 1, let
kn+1

= U Bn,j(f)'
j=k

Since Cr 1(f) C fifl,k_l(f), we have, on the set C,, x(f),

(6) ln,k(’) - ln,k—l(') < un,k—l(') - ln,k»«l(') < ak\/ﬁ-



436 Jongsig Bae

Step 4 : In this step we stratify Sﬁﬁ)(f) using the partition { By x(f)
:0 <k <kn+ 1} constructed in Step 3. For 0 < k < k, + 1, let

Tn

Srail5) =72 S { P Vn, (V)

i=1
~Ea(fY (V15,00V}

and
1 & ;
L) = =3 {las(Vilp, n (V)
i=1

—Eio1(lnx(Vills, . n(Vi)) } .
Then, since § < 42,

kn+1

SDf) =Y Seanlf):
k=0

For 0 < k <k,
1Sr, k() = L (D)

1 = n s, s
sﬁi}:;{ﬂ”)(m—ln,k(v,->}13,,,k<,)(\r,~)
1 - n /.
+ 72 2 B ({FY0V) = 1k (Vid B, 405)(V0))
1 &
S\/—Riil{un,k(vi)_In,k(vi)}l"in,k(f)(v‘)

+ % gEs’-—l({un,k(Vi) — b x (Vi Ha, «(nH(Vi)

=R (N + R ().
Likewise, we have

Sratati (N = LU0 100

1 & ,
S_ Z {un,kn+1(Vi) - 1n,k,.+1(‘/l)} lB,, kn_,_l(f)(vi’
(8) \/H i=1 ’

Tn

] .
Z E;_4 ({un,k,.+1(vi) - 1n,k,;+1(Vi)}lB,,'k"_H(f)(vi))
i=1

+ ﬁ
::Rs'lrl)|kn+1(f) + R(r(.)q),k.wrl(f)'
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Note that, on the set By k,+1(f), we have

Un k,+1{Vi) = In g, +1(Vi) Capar < (J(8) + n§)v'D
\/7—1 — n+1 - n "

So we have

RY (£ < (J(8) +16)VD,

and

RO\ 1 (F) < (J(8) +n6)WVD.

Step 5 : Now, on the individual B, x(f)'s, we compare each lower
6x— approximation, In , to the lower 6y —approximation, I, 0. For each

feF, let
L) == ;Z"l{zn,(,(x/z) ~ Eiallno(Vi)}
For 0 < k < kn + 1, let
L w(f) = f Z {tn0(Vi)1B, ,(n(Vi) = Bicallno(Vi)lp, o) (Vi)
so that L) (f) = 428" I (£). Note that L o(f) L“’O( f) =0,

and for 1 <k < ku+ 1, k() = baol-) = 55, (s () — b yoa().

Therefore we have

tad
-

n+

Z (Lit,{k(f) -2 (h)
1

= T Z Z{uw(v b1 (Vg (5 (Vi)

k= i=1;7=1
= Eia(Ua (Vi) ~ 1y 1(Vi)le, (n(Vi))}

ntl
= Z \/—Z{ i (Vi) = o j -1 (V)le, (Vi)

- Ez-—l (ln,J(‘/z) - In,]—l(‘/i))lc,,,j (f)(vi)))}
kn41

= Z R(ri),j (.
1=1

?.
+

—

(9)
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Step 6 : We now compare S,-,,) to L(r?,) defined above. Combining
(7),(8) and (9), we have for each f € F, and for 8§ < 4,

knp+1
3 {Se, () = L k(f)}l
k=0

-] =

En+t1

S uh - rﬁ‘j}k(m]
k=0

kn+1

IS (Sri(H) = L) (D} +
k=0

kn+1 kn+1 kn+1
4] a2
<3RDN+ Y BN+ Y IR DL
k=0 k=0 k=1

Therefore we have
NS5 < 1LO1s + 21150 — L9
kn kn kn+1
0 1 2)
<NZDYs +2 3 IR+ 2 ST IRY i +2 3 IR
k=0 k=0

k==1

Whenng,{n 0<k<k}{77(1) nggkn}and{nf}):lgkg
k. + 1} are constants which satisfy

knt1

ky
(10) 2n0+2217§f” +2Zn Vg Z n\® < K(J(8) +né)VD
k=

for a positive constant K, we have
P{IIS$lls > (K +4)(J(6) +16)VD)
<P {nLﬁf”ua > 20}

+ ZP{ |R(U)k|| > 17(0)}
+ ZP{ IR 1> i}

kn+1

(11) +ZP{|R > 2 }
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The values of the constants np, nfc ), 17§~ ) , and 7722) will be specified later.

Step 7 : The individual terms of the equation (11) above are
bounded usmg Freedman inequality and the upper bound of the car-

dinality of U o F(6;) where
]:(5) = {fé,éa (;t,67 e af,I,B(5),67f:B(5),6}'
Fix f € F. Take 77250) = D;f—i"—]. Then we have

P{RY () 20"y
_P{ak+1RT k(f) > D&} it

=P {aw —\}: Z Eio1({un i (Vi) = Lo s (Vi)}La, o (VD)) 2 Dsi}

ZEt ][un L(‘ )_IHL(V] >D‘SA}

(12)
SP{ IERIUACE fékm)]?zm%}
<P{ l l[f‘sk(") fék(‘/i)]g ZD}
: nd? (7L 75,)
B (V) ~ (V)
P{fie%o, Tl C D}

where we used (4) in the last equality.
Since RS,S),,c depends on F only through the (at most) exp{2yz}

members of Uf—_—o F(6;), we have

kn kn

PLIRD >0} <3 exp2nliP {RY () > bl =0.

k=0 k=0

Step 8 : The proof of the following Lemma 1 appears in Freedman
(1975).
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LEMMA 1. (Freedman Inequality) Let (d;)1<i<n be a martingale dif-
ference with respect to an increasing o-fields (Fido<i<n, i.e. E(di|F;-1)
=0,2=1,--- ,n. Suppose that ||d;||cc < M for a constant M < oco,i =
1,---,n. Let 7 < n be a stopping time relative to the (F;) that satisfies
31 E(d?|Fi—1)lleo < L for a constant L. Then for each € > 0

T 2
P{,Zdi' > e} SQexp{—m}.
i=1 -

For 0 <k <k,, R(Ti)k( f) is a sum of nonnegative random variables
each bounded by aj, and note that R(Tln)yk(f) < nfco) a.s.. Note that
(1 3 0)
R (H-ROUH

Tn

1 ‘
=;§§}hmuwy—muwnuMUNW)
=1

— Bio1({uns(Vi) = Lok (Vi) a, o (n(Vi))}

Tn

= g «;, say,
=1

where E;_1(ai) = 0. Note also that |a;| < 2ax a.s.. Using the algebraic

inequality (a — b)* < 2(a® + b?) and noting the calculation of (12) we
see that

Tn

- 2 :
> Eica(ad) < = 3 Eicaf(ua s(Vi) — lux(Vi)? < 2D6E.
, n 4
t=1 1=1
Take nfcl) = 27]20). Note that D& = ak+1n£0) < akng.o). Then by
Lemma 1 with L = 2D62, for each f € F,
PRY 0> )

<P{RY) ()= RO () > 0 - 0"}

1y

Tn (0) n(0)2
0 k
=P E a; >y } <expg — -
{_1 2(2D8] + 2a1”)

(02 (0}
<exp{ — (;’)‘“ 0 Sexp{—y—’-’"——}.
2(2army’ + 2axn; ) 8ay
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Hence, since R( ) .k depends on F only through the (at most) exp{2vyx}
members of szo F(é;),

ky
Z PR 11> 0"} < S exp{2m HIP{RY, () > ni |

k=0
k,. (o) kn 2
Dé;
< Qyp — -4 < Dy
S £ exp { <Yk Sak } Z exp { Yk Sakak+1 }
k oo
i Dé?
<) exp {2’71: - —-—2-‘-} <Y exp{-nLk}
— 8aj —
k=0 k=0
where
D 1/2
13 = [ —2 )
(13) o (8(27k +n2Lk)>

Note that the strictly decreasing sequence {a;} in (13) is chosen so
that

Step 9 : Note thatfor 1 <k <k, +1, fe F, Rs.i)’k(f) 1s a sum of
martingale difference sequence. So we may write

Tn

S—i),k(f) - Z/B‘H say,

where E;_;(3;) = 0. By (6), we have |3;| < 2a; a.s., and by the similar
argument as in Step 8, we get

Tn 2 Tn
D Eia(8) < =3 Eica[(unp1 (Vi) = b (Vo)) < 2D},
i=1 =1

Take 17(2) —=~=L  Note that 77( ) = 7720)1, and 67 < 62 _,.
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Again by Lemma 1 with L = 2Dé%_,, for each f € F, we have

n(1)
P{Rs'i],k(f) > 1,552)} { Z Bi > T’k }

n®’ ()
<2exp ¢ — =2exp{ —
2(2D62_ + 2axn ) 2(2axn{? + 2ax7{?)

D&t Dé?
=2expq — <Z2expyq — .
8a? 8a?

Note that R( ) k also depends on F only through the (at most) exp{27y« }

members of UJ___O F(6;). So we have

kn+41 )
2 2
S P{IR® 1>}
k=1
Fatl Dé?
< Z exp{Zyk—— —8———-} ZZexp{ 2Lk}
k=1 ak =0

Step 10 : Finally, for f,g € F, note that
L) - L(9)

=% 5 {1 o(V0) = 18, 0(V2) = Buca (0 0(V) = 13,0(Vi)) }
=1

where 1J o and lf, ; are [, , corresponding to f and g respectively. We

write, as before,
LO(F) = L) = G, say,
=1

where E;_;((;) = 0. Note that |(i| < 2a¢ a.s.. When d(f,g) < 6, we

have
3 Ba (V) — B, (V)* < = Y HE(F(Vi) — (V)12
=1 =1

+ {Bica(uf (Vi) = 1 (Vi) 12 + {Eica (uf, (Vi) = 18 ,(Vi))P 1 /2]
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;3

3—2 (B (F(Vi) = g(Vi)PY 7 + (Baca(FE (Vi) — L (V)P )2

+{Ei_1(g3,(Vi) — g5, (Vi) Y /212

%ZE F(Vi) = g(Vi))? + ZE (Vi) — fo, (Vo))
+= ZEz g2 (Vi) — g (V)2 < 3(Dd(f, g) + D62 + D8?) a.
<9D§? a.s..

In the third inequality above we used the algebraic inequality (a + b+
c)? < 3(a? + b% + ¢?). So we have

Tn Tn

ZE, () < ZE, (1 (Vi) = 12 o(Vi))* < 18Dé%,
L = 18Ds?,

P{LO(f) - 19(9) > 1o}
=P {Z i > 170}

i=1
o

<2 - .
- exp{ 2(18Dé&? + 2(107]0)}

Therefore we have
P{ILD|s > no)

Take ng =

o
<2 4y —
=< exXp { o 2(18D62 + 2agnq) }

2
7]0
<2 479 —
- exp{ " 2 2a0m +200770)}
=2Zexp {—1470 - 97)2}

<2exp{-7"}

<2 Z exp{—-n*Lk}.
k=0
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By (11), it remains to show that (10) holds for some fixed constant K.
Note that

kn "g
D =Dy —t
k=0

3 638(2ve41 + n° L(k + 1))*/?
5k+1D1/2

=32D*/? Z 61(2vk + P Lk)Y/?
k=1

<82D'* 3" 82, + L' %k)

k=1
=322D)2 " 6y * + 32DV Y ok LM%k

k=1 k=1

We write S re, 6k L1/ 2k := &6, where ¢ = .00, £k Lm . By definition of
Yk

me < Zék Z [H P8,
< f; HEEI Y 6 =23 661

J= k=j J=0

<4 i /M [HB(u))Y 2du = 4.J(6).

Therefore we have

kll
3ol <4-32(2D)2J(6) + 32DV/*nes
k=0

=(128V/2 + 328)(J (&) + né)V'D.
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Recall that 17(1) = nﬁo), and n(Z) 77£0)1 Then we have
no =9vV8vD§(20 + %)/

<36V D (6~ /% + 36)
=36V D(6[HB(w))'/? + né)

<36(J(6) + né)VD.
Therefore we have
k. kn,+1
210 + 2 Z Ny Z +4 Z ](2)
= k=0 k=1

kn+1

=200+ 2 Z 7710) +4 Z n,(co) +4 Z 77£0)
k=0 k=1

<K(J(6)+78)VD

where K = 72 + 128+/2 + 320¢. We have shown that (10) holds. This
completes the proof of Proposition 1.
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