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ON THE BROWDER-HARTMAN-STAMPACCHIA
VARIATIONAL INEQUALITY

S. S. CHANG, K. S. HA, Y. J. CHo AND C. J. ZHANG

1. Introduction and Preliminaries

The Hartman-Stampacchia variational inequality was first suggested
and studied by Hartman and Stampacchia [8] in finite dimensional
spaces during the time establishing the base of variational inequal-
ity theory in 1960s [4]. Then it was generalized by Lions et al. [6],
[9], [10], Browder {3] and others to the case of infinite dimensional
spaces and was called the Browder-Hartman-Stampacchia variational
inequality [3], [9], [10], and the results concerning this variational in-
equality have been applied to many important problems, i.e., mechan-
ics, control theory, game theory, differential equations, optimizations,
mathematical economics [1], [2], [6], (9], [10'. Recently, the Browder-
Hartman-Stampaccnia variational inequality was extended to the case
of set-valued monotone mappings in reflexive Banach sapces by Shih-
Tan [11] and Chang [5], and under different conditions, they proved
some existence theorems of solutions of this variational inequality.

The purpose of this paper is, under more weaker hypotheses and
in a more general setting, to study the existence problem of solutions
of the Browder-Hartman-Stampacchia variational inequality for set-
valued mappings. The results presented in this paper generalize and
improve some important results in [5] and [11].

Throughout this paper, ® denotes either the real or the complex
field. For a nonempty set X, 2% will denote the family of all nonempty
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subsets of X. Let E and F be vector spaces over &, < -, >: FxE — @
be a bilinear functional. For each o € E and € > 0, let

W(zo,e)={y € F:| <y, z0 >| <€}

Let o(F, E) be the topology on F generated by the family {W(z,e) :
r € E, € > 0} as a subbase for the neignborhood system at 0. It is
easy to prove that the space F' equipped with the topology o(F, E) is
a locally convex topological vector space. Similarly, we can define the
topology o(F,E) on E. Let E be a topological vector space. Then
a subset X of E is said to be o(E, F)-compact if X is compact with
respect to o(E, F')-topology.

Let X,Y be topological spaces and T : X — 2¥ be a set-valued
mapping. The set {(z,y) € X xY :y € T(2)} is called the graph of
T, which is denoted by graph (7). If the graph (T') is a closed subset
of X x Y, then we say that the mapping T has a closed graph.

Let E,F be vector spaces and X be a nonempty subset of E. A
mapping T : X — 2% is said to be monotone with respect to the
bilinear functional < -,- >: F x E — @ if for any z,y € X,u € T(z)
and w € T(y), Re < w —u,y —z >> 0.

Let X,Y be subsets of E, F, respectively. A functional ¢ : X —
(—00,+00] is said to be quasi-convex (resp., quasi-concave) if for any
A € (—00,400], the set {a € X : p(x) < A} (resp., {z € X : p(z) >
A} is convex. A functional ¢ : X x X — (—o0,+0cc] is said to be
diagonally quasi-convex (resp., diagonally quasi-concave) in y if for
any finite subset {y1,y2,-- ,yn} of X and yo € co{yi1, 2, --- ,Yn}, we
have

< X (1 ; esp. yo) > mi ).
P, v0) < max ¢(yo, vl (resp-, o(yo,90) 2 min o(yo.vi)

Let v € (—o0, 40| be a given number. A functional ¢ : X x X —
(—00,4+00] is said to be y-diagonally quasi-convex (resp., ~-diagonally
quasi-concave) in y if for any finite subset {y1,y2, -+ .yn} of X and
Yo € co{y1,--- ,Yn}, we have

< ax ¢ i resp., Y > 1 i)
v < 1?%\;1*’(“”’9 ) (resp.,y > @‘Qn‘?(y”’” )
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It is easy to see that ¢ : X x X — (—o0, +00] is convex (resp., concave)
in y = @ is quasi-convex (resp., quasi-concave) in y = ¢ 1s diagonally
quasi-convex (resp., diagonally quasi-concave) in y => for some v €
(—00, +<), ¢ is y-diagonally quasi-convex (resp., y-diagonally quasi-
concave) in y. But the converses do not hold.

Let ¢ : X x Y — (—o00,+00] and v € (—o0,+0]. A functional ¢
is said to be y-generalized quasi-convex (resp., y-generalized quasi-
concave) in y if for any {y1,yz.--- ,yn} C Y, there exists a finite
set {z1,22, -+ ,Tn} C X such that for any subset {z;,, -+ .z} C
{z1,---,7n} and xo € co{zi, -, % },

< max w(zo,y; ) (resp., v > min o(zo,y;; )
¥ ‘199*9( 0,¥i;) (resp., vy 2> IS]SL}P( 0, Yi; )

It is obvious that if E = F,X =Y and ¢ : & x X — (—o0, +00] is -
diagonally quasi-convex (resp., y-diagonally quasi-concave) in y, then
o is y-generalized quasi-convex (resp., 7-generalized quasi-concave) in
Y.

Let X be a nonempty subset of E. A set-valued mapping T : X —
2F is called a KKM mapping if for any finite subset {21, - ,za} of
X, co{zy, -+ yxn} C Uy Tlay).

LEMMA 1. ([9]) Let E be a Hausdorff topological vector space, X be
a nonempty convex subset of E and T : X — 2% be a KKM mapping
with nonempty closed values. If there exists a o € X such that T(zo)
is a compact set in E, then

) T(x) # 0.

1€XN

LEMMA 2. ([2]) Let E,F be Hausdorff topological vector spaces
and X,Y be two nonempty convex subsets of E, F, respectively. Sup-
pose further that functionals ¢, ¢ : X x Y -— (—o0, +00] satisfy the
following conditions:

(a) for each y €Y, p(x,y) is lower semi-continuous in ,

(b) for some y € (—o0, +o0], (2, y) is ~-generalized quasi-concave
iny,

(c) forall (z,y) € X x Y, p(z,y) < ¥(z,y),

(d) there exists a yo € Y such that {z € X : ¢(z,y0) < v} is a
compact subset in X.
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Then there exists a & € X such that supyey ¢(Z,y) < 7.

REMARK 1. It follows from the proof in [2] that the closedness con-
dition of X and Y can be removed.

LEMMA 3. Let E be a topological vector space over ®, X be a
nonempty convex subset of E, F be a vector space over ® with o(F,E)-
topology and < -, >: F x E — & be a bilinear functional. Suppose
further that

(a) T : X — 2F is upper semi-continuous on each line segment
of X,

(b) h:X — R is a convex functional.

Then for each § € X, it follows from

(1) sup Re <u,y—a ><h(z)-h(y), 2¢€X,
ucT(x)

that

2 inf Re<w,j—z><h(z)—-h(g), zelX.

(2) o y (z) — h(y)

Proof. For each @ € X and for any ¢ € [0,1], let 24 = ¢, +(1-ty =
§—t(§ —z). Since X is convex, x; € X. Hence for all t € [0, 1], we have

sup Re <wu,y— ) < h(z,) — h(y)
ueT(z,)

and so

t[ sup Re < u,j— >J < Atz + (1 - 8)7) — h(5)
ve€T(z,)
Sthiz)+ (1 —H)h(y) — h(y)

= t[h(z) - h(g)].
Consequently, we have

(3) sup Re <u,y—a >< h(z) - h(g), te€n1].
u€T(z,)
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For any f € T(y) and for any € > 0, letting
Ufy={weF:|<w—fg—z>|<e},

then it follows that U(f) is a o( F, E)-open neighborhood of f and hence
G = Userg U(Sf) is a o(F, E)-open neighborhood of T(y). Since T
is upper semi-continuous on line segment L = {z; : t € [0,1]}, for
the set G, there exists an open neighborhood N of § in L such that
T(y) C G for all y € N. Besides, since ; — § as t — 0%, there exists a
6 € (0,1) such that 2, € N for all t € (0,6) and so T(z¢) C G. Taking
ty € (0,8) with ug € T(ay,) C G, then there exists a fo € T(g) such
that uo € U(fo). Therefore, we have

| <uo— fo,y—a>|<e€

and so |Re < fo —up, 7 — 2 > | < e. Combining (3) and this inequality,
we have

Re < fo,7— 2 >< Re < wp,j— 2 > +e < h(z) — h(y) + €.
This implies that

inf Re<w,j—2a><h(z)—h(g)+e
weT(3)

By the arbitrariness of € > 0 and z € X, we have

inf Re<w,j—a><h(z)-A(y), z€X.
ouf Re y < h(z) — A(y)

This completes the proof.

REMARK 2. Lemma 3 extends and improves Lemma 2.5.3 in [1].

2. The Main Results

THEOREM 1. Let E be a locally convex Hausdorff topological vector
space over ®, X be a nonempty convex subset of E, F be a vector space
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over & with o(F, E)-topology and < -,- >: F x E —» & be a bilinear
functional. Suppose further that
(a) T : X — 2F is monotone with compact values and is upper
semi-continuous on each line segement of X,
(b) h: X — R is lower semi-continuous in the o(E, F)-topology
and convex functional,
(¢) there exist a o(E, F)-compact set K and a yo € X such that
for any x € X\K,

sup Re < u,x —yo >> h(yo) — h(z).
2€T(yo)

Then there exists a ¥ € X such that

sup [ sup Re < u,T —y>+h(Z)~ h(y)}
yEX "ueT(y)

< sup[ inf Re<w,z—y>+h(z) - h(y)]
yeX tweT(z)
< 0.

Proof. For z,y € X, let
e(z,y) = sup Re <u,z—y > +h(z)— A(y),
u€T(y)

¥y)= inf Re <w,z—y>+h(z) - h(y),
¥(z,y) v, Re <w,x —y > +h(z) = h(y)

Gly) ={z € X : p(a,y) <0},
F(y)={x € X : y(a,y) <0}.

(I) First, we verify that ¢, ¢ : X x X — (—oo, +00] satisfy the
conditions in Lemma 2.
In fact, since T is monotone, for all 2,y € X, w € T(2)and u € T(y),
we have

Re<w,z —y><Re<u,z—y>
and hence we have

inf Re<w,z—y>+h(z)-1}
wenT(z) e<w,r—y>+h(z)— h(y)

2 sup Re <wu,z—y > +h(zx) - h(y),
uGT(y)
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ie., p(z,y) < ¢Y(z,y) for all z,y € X. This implies that for any
y € X, F(y) C G(y). Hence we have

4) (M Fly)c () G).

yeX yeX

Next we prove that for each u € F, x —< u,z > is continuous in
the o(E, F)-topology. In fact, for any 2 € E and € > 0, W(u,¢) =
{z € E:| <wu,z >| <€} is an open neighborhood of 0 and hence the
set

N(z)) =20+ W(u,e)={z € E:|<u,x—10>|<e¢}

is an open neighborhood of . For any z € N(z¢), we have
l<u,a>—<u,ap>|=|<u,x—20>|<e

This shows that the function 2 — Re < u, z—1 > is continuous on X in
the o(E, F)-topology. By the assumption, h is lower semi-continuous
on X in o(E, F)-topology, and by Proposition 1.4.6 [4], we know that
the function

z— @(z,y) = sup Re<u,z—y>+h(z)-— hiy)
u€T(y)

is lower semi-continuous in the topology o(E, F'). Thus for each y €
X,Gly) = {2 € X : p(a,y) <0} is a o(E, F)-closed set in X. Since
Y(x,y) is concave in y, ¥(z,y) is 0-diagonally quasi-concave in y (y =
supyex ¥(2,y) = 0). Hence *(z,y) is O-generalized quasi-concave in
Y.

Next, by the condition (¢), for each 2 € X \ ', we have

sup Re < w,z —yo >> h{ys) — h(z)
u€T(yo)

and so ¢ ¢ G(yo) = {z € X : ¢(z,y0) < 0}, which means that
G(yo) C K. Since K is o( E, F')-compact and G(yo) is o( E, F')-closed,
G(yo) 1s also o( E, F')-compact.

Summing up the above discussion, from Lemma 2, there exists a
Z € X such that

sup @(&,y) <0, ie, ﬂ Gily)=0.
yeX yEX



500 S. 8. Chang, K. S. Ha, Y. J. Cho and C. J. Zhang

(IT) Next we verify (), x G(y) = Nyex Fy).
In view of (4), it is sufficient to prove (), x G(y) C N,ex F(y). Sup-
pose that this is not the case. Then there exists a zo € X such
that a zo € (),cx G(y) but zo ¢ Nyex F(y). For any y € X, let
ry=(1—t)zg +ty € X,t € [0,1]. Since we have

0> sup Re<wu,z9—x¢>+h(z0)— F(z¢)
weT(x,)

> [ sup Re<u,z9—y > +h(xo) - }’»(y)Ja
ueT(z,)

it follows that

(5) sup Re < u,29 —y > +h(zg) - h(y) <0.
u€T(z¢)

On the other hand, since z¢ ¢ Nyex F(y), there exists a § € X such
that zo € F(y), and so we have (zg,4) > 0, i.e.,

(6) Jdof Re <w,zo—§ > +h(zo) - h(y) > 0.

Letting x; = (1 — t)zg + ty € X,t € [0, 1], we have

i . Fo—§ > +h(7) - h(F
wél’;'l{h)Re<w’lt ¥ > +h(zy) (y)

<(1-1) [wei’}}{i )Re <w,eg — Y > +h(xe) — h(g)J-

Since T is compact-valued and upper semi-continuous on each line
segment of X,

inf Re<w,z9—7y>
weT(z,)

is lower semi-continuous. By (6), there exists a § € (0, 1) such that

inf Re <w,z0—9>+h(zo) —h(g)>0, te(0,96),
weT(z,)

which contradicts (5). The assertion (II) is proved.
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(IIT) Combining (I) and (II), we know that

G = ) Fw) #0.

yeX yeEX
Taking # € (,ex G(y) = Nyex F(y), we have

inf Re<u,z—-y>+h(z)~-h(y)<0, yeJX,
u€T(y) '

njlj(' )Re <w, ¥ —y>+h(Z)-h(y) <0, yeX.
wel(r

Therefore, noting @(z,y) < ¥(z,y) for all 2,y € X, we have
sup [ sup Re < wu, —y > +h(z) - h(y)]
yEX fueT(y)
(7) < sup [ inf Re<w,z—y>-+h(z)—- h(y)]
yeX lweT(z)
< 0.
This completes the proof.
COROLLARY 1. Under the conditions of Theorem 1, in addition, if
T(Z) is convex, then there exists a w € T(zx) such that

Re<w,z -y >< h(y)— h(z), yeX.

Proof. First we prove that the function f +— Re < f,z > is contin-
uous on F' in o(F, E)-topology. In fact, for any fo € F and for any
e > 0, since

W(z,e)y={ye F:|<y,z>]|<¢}

is an open neighborhood of 0 in F, the set
V=fo+W(,e)={feF:|<f-fo,z>]|<¢€}
is an open neighborhood of fy. For f € V, we have

[Re < f,z > —Re < fy, o > | < |Re < f — fo,z > |
Sl<f-fox>|<e
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By the arbitrariness of fy, the assertion is proved.
Now we define a function ¢ : X x T'(2) — R as follows:

e(y,w) =Re <w,z —y > +h(Z) - h(y), (y,w) € X xT(x).

Then for any y € X, w — ¢(y,w) is a continuous affine function
in o(F, E)-topology on T(Z), and for each w € T(Z), the function
y — ¢(y,w) is concave on X. Since X is nonempty convex and T(Z)
is o(F, E)-compact convex subset, by Ky Fan’s minimax theorem (see,
for example, Theorem 3.7.4 [4]), we have

min sup o(y,w) = sup min oy, w).
X yeX weT(z)

weT(z) ye

It follows from (7) that

min sup[Re < w,Z —y > +h(z) — h(y)] < 0.
weT(2) yeX

Since T(Z) is compact, there exists a @ € T(Z) such that

sup[Re < w,& —y > +h(Z) — h(y))
vEX

= min sup[Re < w,z —y > +h(Z) — A(y)],
weT(z) yEX
which shows that

Re<w,z —y>< h(y) - h(z), yeX.

This completes the proof.

REMARK 3. When E is a reflexive Banach space, F = E* and
< +,- > 1s the pairing between E and E*, it is obvious that the o(F, E)-
topology on F' is just the weak topology on E* (since E is reflexive,
the weak topology on E just coincides with the weak” topology on E).
Taking h = 0, by the condition that there exists a yo € X such that

lm  sup Re<u,z—yy>>0, € X
Izl =20 ueT(yo)
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there exists a number > 0 such that for any z € X with |z]| > r, we
have

(8) sup Re < u,z—yy >> 0.
veT(yo)

Let K = {zx € X : |jz|| < r} . then K is a weak compact subset of X.
For any « € X\K, it satisfies (8). Hence by Theorem 1 and Corollary
1, we can obtain the conclusion of Theorem 4.1 [5] as a special case.
Moreover, in Theorem 1 and Corollary 1, X does not require to be
closed and hence Theorem 1 and Corollary 1 also improve the results
of [2].

THEOREM 2. Let E be a locally convex Hausdorff topological vector
space, X be a nonempty convex subset of E, F' be a vector space over
® with o(F,E)-topology and < -,- > F x E — & be a bilinear
functional. Suppose further that

(a) T:X — 2% is monotone and upper semi-continuous on each
line segement of X,

(b) h : X — R is convex and lower semi-continuous in the
o(E, F)-topology,

(c) there exist a o( E, F)-compact subset K and a xy € X such
that for any y € X\ I\

inf Re <w,y—xg>> h(xy) — h(y).
weT(y) )

Then there exists a y € X such that

inf Re<w,j—a><h(z)-h{y), z€lX.
L y < h(z) — h(9)

Proof. For each z € X, let

F(z)= {y € X 11’}{ )R,e <w,y—a > +h(y) — hz) < O},
weTl(y

Gzy={yeX: sup Re<u,y—z>+h(y)—h(z) < 0}.
weT(z)

(I) First we prove that ),y F(x) = N,y G(2).
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In fact, since T is monotone, for any z,y € X, we have

wél:}’f(y)Re< w,y — 2 > +h{y) — h(z)

> sup Re<u,y—z>+h(y)— h(z),
ueT(z)
which implies that for each 2 € X,
(9) F(z) C G(z).

Hence we have

(10) [} F(z) c () Glz)

r€X z€X

On the other hand, by using Lemma 3, if y € X such that

sup Re <u,y —2 > +h(y) —h(z) <0, =€X,
ueT(z)

then we can deduce that

f Re< —a > +F —h{z)<0, relX.
wél:]l’(y) w,y —a > +h(y) — h(z) !

Thus for each = € X, we have
(11) G(z) C F(z).

This implies that [,y G(2) C [, ¢y F(2). Combining (10) and (11),

the assertion is proved.

(II) Next we prove that G : X — 2% is a KKM mapping.

Suppose that the mapping G is not a KKM mapping. Then there
exist a finite set {z1,---,2,} C X and a § € co{zy, - ,xn}, ¥ =
2:’;1 Aiz;, where \; > 0,7 = 1,2,--- ,n, and E?__.l A; = 1 such that
g ¢ Ui, G(z;). By (9), we have § ¢ Ui, F(z:), which implies that

inf Re<w,y—a; > +h(y)—N(z;) >0, i=1,2,---.,n.
weT(g)
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On the other hand, since

0= f Re<w,y—9>4+Fk —h
wéI%() e<w,j—79 W(g) — h(y)

= inf Re< Aizi > +h(y) =1 Ai
wé]%'(y) e<w,§— Z z; > +h(y z(z [T

> " Mi[Re < w,§ — v > +h(§) — h(z:)]
i=1
>0,
which is a contradiction. Therefore, G is a KKM mapping,
(III) Now we prove that (], oy F(z) = \,cx G(z) # 0.
In fact, by the condition (c), there exist a o(E, F)-compact set K
and a 29 € X such that for any y € X\I¥

inf Re <w,y— 29> +h(y) - h(zg) > 0.
oo Y — Zo (y) = h(z0)

This means that y ¢ F(z¢) and so F(xy) C K. By (11), we have
(12) G(ao) C K.
Besides, in Theorem 1 we have proved that the function y —< u,y >
is continuous in the o(E, F)-topology and hence for each u € F and
z € X, the function y — Re < u,y — 2 > is continuous in o(E, F)-
topology in X. By Proposition 1.4.6 [4], we know that the func-
tion y + sup,er(;)Re < w,y — 2z > is lower semi-continuous in
o(E, F)-topology on X. By assumption % is lower semi-continuous in
the o(E, F)-topology on X. Therefore, G(z) is a o(E, F)-closed set.
By using (12) and noting that I is a ¢(E, F')-compact subset, we know
that G(z¢) i1s a o( E, F)-compact set. Thus, by Lemma 1 , we have
(] Gla) #£0
T€EXN
Thus, combining the conclusion in (I), the assertion is proved.
(IV) Finally we prove the conclusion of Theorem 2.
Taking § € [, cx F(z), then we have

f R y —a >< hiz) - k(y X.
wér%(y) e<w, g—r><hz)-Hky), z€

This completes the proof.
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REMARK 4. Theorem 2 improves the corresponding results of [3] in
some aspects, such as (a) for each * € X, T(z) does not require to be
a weak compact subset, (b) X needs not to be closed in E.

COROLLARY 2. Under the conditions of Theorem 2, in addition, if
T(y) is a compact convex subset in F, then there exists a w € T(§y)
such that

Re<w,y —z >< h(a) - h(y), z€X.

The proof of this corollary is similar to the proof of Corollary 1 and so
it is omitted here.
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