CLASS FUNCTION TABLE
MATRIX OF FINITE GROUPS

Won-Sun Park

1. Introduction

Let \(G \) be a finite group with \(k \) distinct conjugacy classes \(C_1, C_2, \cdots, C_k \) and \(F \) an algebraically closed field such that \(\text{char}(F) \nmid |G| \). We denote by \(\text{Irr}_F(G) \) the set of all irreducible \(F \)-characters of \(G \) and \(\text{Cf}_F(G) \) the set of all class functions of \(G \) into \(F \). Then \(\text{Cf}_F(G) \) is a commutative \(F \)-algebra with an \(F \)-basis \(\text{Irr}_F(G) = \{ \chi_1, \chi_2, \cdots, \chi_k \} \). Thus the map

\[
(\ , \) : \text{Cf}_F(G) \times \text{Cf}_F(G) \to F
\]
defined by

\[
(\theta, \eta) = \frac{1}{|G|} \sum_{x \in G} \theta(x) \eta(x^{-1})
\]
is a nondegenerate symmetric bilinear form. For \(\theta \in \text{Cf}_F(G) \), define \(\overline{\theta} : G \to F \) by \(\overline{\theta}(x) = \theta(x^{-1}) \). Then \(\overline{\theta} \in \text{Cf}_F(G) \) and \(\overline{\theta} = \theta \), \(\overline{\theta + \eta} = \overline{\theta} + \overline{\eta}, \overline{\theta \eta} = \overline{\theta} \overline{\eta}, \overline{1_G} = 1_G \) where \(\theta, \eta \in \text{Cf}_F(G) \) and \(1_G \) is the principal character.

Define \(T : \text{Cf}_F(G) \to \text{End}_F(\text{Cf}_F(G)) \) by

\[
T(\theta)(\eta) = \overline{\theta} \eta
\]
for \(\theta, \eta \in \text{Cf}_F(G) \). Then \(T \) is a faithful representation of \(F \)-algebra \(\text{Cf}_F(G) \).

Let \(M : \text{Cf}_F(G) \to M_k(F) \) be a matrix representation of \(\text{Cf}_F(G) \) afforded by \(T \) relative to the ordered \(F \)-basis \(\text{Irr}_F(G) = \{ \chi_1, \chi_2, \cdots, \chi_k \} \).

1991 AMS Subject Classification: 20Cxx.
Key words: Class function table matrix.
Since \(T(\theta)(\chi_i) = \bar{\theta}_i \chi_i = \sum_{t=1}^{k} (\bar{\theta}_i, \chi_t) \chi_t = \sum_{t=1}^{k} (\theta \chi_t, \chi_i) \chi_t \), we have

\[
M(\theta) = (m_{ij}),
\]

where \(m_{ij} = (\theta \chi_i, \chi_j) \).

For a linear transformation \(f \) of an \(F \)-vector space \(V \), let \([f]_\alpha^\beta \) be a matrix of \(f \) relative to the ordered \(F \)-basis \(\alpha \) and \(\beta \) of \(V \). Then \([g]_\alpha^\beta [f]_\beta^\gamma = [g \circ f]_\gamma^\gamma \). Of course, \(M(\theta) = \left[T(\theta) \right]_{Irr_F(G)}^{Irr_F(G)} \).

Define \(T^* : Cf_F(G) \to \text{End}_F(Cf_F(G)) \) by

\[
T^*(\theta)(\eta) = \theta \eta.
\]

Then \(T^* \) is a faithful representation of \(Cf_F(G) \). Let \(M^* \) be a matrix representation afforded by \(T^* \) relative to the ordered \(F \)-basis \(Irr_F(G) = \{\chi_1, \chi_2, \cdots, \chi_k\} \). Then since \(T^*(\theta)(\chi_i) = \theta \chi_i = \sum_{t=1}^{k} (\theta \chi_i, \chi_t) \chi_t \), we have

\[
M^*(\theta) = \left[T^*(\theta) \right]_{Irr_F(G)}^{Irr_F(G)} = M(\theta)^t = M(\bar{\theta}) = \left[T(\bar{\theta}) \right]_{Irr_F(G)}^{Irr_F(G)}.
\]

Since \(M \) is a monomorphism of \(F \)-algebras, we obtain the following.

Lemma 1.1. For \(\theta, \eta \in Cf_F(G) \),

1. \(M(\theta + \eta) = M(\theta) + M(\eta) \), and so \(M(n\theta) = nM(\theta) \) for positive integer \(n \)
2. \(M(\theta \eta) = M(\theta)M(\eta) \), and so \(M(\theta^n) = M(\eta^n) \) for positive integer \(n \)
3. \(M(a\theta) = aM(\theta) \) for \(a \in F \)
4. \(M(1_G) = 1 \) where \(1_G \) is a principal character and 1 is an identity matrix
5. \(\text{Im} M = \{ M(\theta) \mid \theta \in Cf_F(G) \} \) is a commutative \(F \)-algebra with an \(F \)-basis \(\{ M(\chi_1), M(\chi_2), \cdots, M(\chi_k) \} \).

Remark. In the case that \(F \) is the complex field \(\mathbb{C} \), for each \(\mathbb{C} \)-character \(\theta \) we have \(\bar{\theta}(x) = \theta(x^{-1}) = \bar{\theta}(\overline{x}) \). Hence \(M^*(\theta) = \overline{M(\theta)^*} \).
2. The class function table matrix

Let F be an algebraically closed field with $\text{char}(F) = 0$. The class function table of the ordered F-basis $\alpha = \{\alpha_1, \alpha_2, \cdots, \alpha_k\}$ of $Cf_F(G)$ is given by the following form

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>\cdots</th>
<th>C_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>$\alpha_1(C_1)$</td>
<td>$\alpha_1(C_2)$</td>
<td>\cdots</td>
<td>$\alpha_1(C_k)$</td>
</tr>
<tr>
<td>α_2</td>
<td>$\alpha_2(C_1)$</td>
<td>$\alpha_2(C_2)$</td>
<td>\cdots</td>
<td>$\alpha_2(C_k)$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
</tr>
<tr>
<td>α_k</td>
<td>$\alpha_k(C_1)$</td>
<td>$\alpha_k(C_2)$</td>
<td>\cdots</td>
<td>$\alpha_k(C_k)$</td>
</tr>
</tbody>
</table>

Definition. The class function table matrix X_α of G with respect to the ordered F-basis $\alpha = \{\alpha_1, \alpha_2, \cdots, \alpha_k\}$ of $Cf_F(G)$ is the form

$$X_\alpha = (\alpha_i(C_j))_{k \times k}.$$

The character table matrix $X = (\chi_i(C_j))_{k \times k}$ of G is the class function table matrix with respect to the ordered F-basis $\text{Irr}_F(G) = \{\chi_1, \chi_2, \cdots, \chi_k\}$.

Let $$\overline{X} = (\overline{\chi}_i(C_j))_{k \times k}.$$ Then X and \overline{X} are invertible. Define $f_i : G \to F$ by

$$f_i(x_j) = \begin{cases} 1 & (x_j \in C_i) \\ 0 & (x_j \notin C_i). \end{cases}$$

Then $\alpha = \{f_1, f_2, \cdots, f_k\}$ is an F-basis of $Cf_F(G)$ and $\theta = \sum_{i=1}^{k} \theta(C_i)f_i$ for $\theta \in Cf_F(G)$.

Define $h_i : G \to F$ by

$$h_i(x_j) = \delta_{ij} \frac{|G|}{|C_i|} (x_j \in C_j).$$

Then $\beta = \{h_1, h_2, \cdots, h_k\}$ is an F-basis of $Cf_F(G)$ and $h_i = \sum_{t=1}^{k} \overline{X}_i(C_t)\chi_t$ and $f_i = \frac{|C_i|}{|G|} h_i$.

Since \(T(\theta)(\chi_i) = \overline{\theta}\chi_i = \sum_{t=1}^{k} (\overline{\theta}\chi_i, \chi_t)\chi_t = \sum_{t=1}^{k} (\theta\chi_t, \chi_i)\chi_t \), we have

\[
M(\theta) = (m_{ij}),
\]

where \(m_{ij} = (\theta\chi_i, \chi_j) \).

For a linear transformation \(f \) of an \(F \)-vector space \(V \), let \([f]_\alpha^\beta \) be a matrix of \(f \) relative to the ordered \(F \)-basis \(\alpha \) and \(\beta \) of \(V \). Then \([g]_\alpha^\gamma \cdot [f]_\gamma^\beta = [g \circ f]_\alpha^\beta \). Of course, \(M(\theta) = [T(\theta)]_{\text{Irr}_F(G)}^{\text{Irr}_F(G)} \).

Define \(T^* : C\text{f}_F(G) \to \text{End}_F(C_f F(G)) \) by

\[
T^*(\theta)(\eta) = \theta\eta.
\]

Then \(T^* \) is a faithful representation of \(C\text{f}_F(G) \). Let \(M^* \) be a matrix representation afforded by \(T^* \) relative to the ordered \(F \)-basis \(\text{Irr}_F(G) = \{\chi_1, \chi_2, \cdots, \chi_k\} \). Then since \(T^*(\theta)(\chi_i) = \theta\chi_i = \sum_{t=1}^{k} (\theta\chi_i, \chi_t)\chi_t \), we have

\[
M^*(\theta) = [T^*(\theta)]_{\text{Irr}_F(G)}^{\text{Irr}_F(G)} = M(\theta)^t = M(\overline{\theta}) = [T(\overline{\theta})]_{\text{Irr}_F(G)}^{\text{Irr}_F(G)}.
\]

Since \(M \) is a monomorphism of \(F \)-algebras, we obtain the following.

Lemma 1.1. For \(\theta, \eta \in C\text{f}_F(G) \),

1. \(M(\theta + \eta) = M(\theta) + M(\eta) \), and so \(M(n\theta) = nM(\theta) \) for positive integer \(n \)
2. \(M(\theta\eta) = M(\theta)M(\eta) \), and so \(M(\theta^n) = M(\eta)^n \) for positive integer \(n \)
3. \(M(a\theta) = aM(\theta) \) for \(a \in F \)
4. \(M(1_G) = 1 \) where \(1_G \) is a principal character and \(1 \) is an identity matrix
5. \(\text{Im}M = \{M(\theta) \mid \theta \in C\text{f}_F(G)\} \) is a commutative \(F \)-algebra with an \(F \)-basis \(\{M(\chi_1), M(\chi_2), \cdots, M(\chi_k)\} \).

Remark. In the case that \(F \) is the complex field \(\mathbb{C} \), for each \(\mathbb{C} \)-character \(\theta \) we have \(\overline{\theta}(x) = \theta(x^{-1}) = \overline{\theta(x)} \). Hence \(M^*(\theta) = \overline{M(\theta)^*} \).
it follows that
\[\overline{X}^{-1}M(\overline{\theta})\overline{X} = \text{diag}(\theta(C_1), \theta(C_2), \cdots, \theta(C_k)) \] and
\[\overline{X}^{-1}M(\theta)\overline{X} = \text{diag}(\overline{\theta}(C_1), \overline{\theta}(C_2), \cdots, \overline{\theta}(C_k)). \]

Thus we have the following theorem.

Theorem 2.1. Let \(M \) be a matrix representation of \(\text{Cf}_F(G) \) afforded by the representation \(T : \text{Cf}_F(G) \to \text{End}_F(\text{Cf}_F(G)) \) defined by \(T(\theta)(\eta) = \overline{\theta}\eta \) for \(\theta, \eta \in \text{Cf}_F(G) \). Then
\[X^{-1}M(\theta)X = \overline{X}^{-1}M(\overline{\theta})\overline{X} = \text{diag}(\theta(C_1), \theta(C_2), \cdots, \theta(C_k)) \]
and
\[X^{-1}M(\overline{\theta})X = \overline{X}^{-1}M(\theta)\overline{X} = \text{diag}(\overline{\theta}(C_1), \overline{\theta}(C_2), \cdots, \overline{\theta}(C_k)). \]

Corollary 2.2. Let \(M \) be a matrix representation of \(\text{Cf}_F(G) \) afforded by the representation \(T : \text{Cf}_F(G) \to \text{End}_F(\text{Cf}_F(G)) \) defined by \(T(\theta)(\eta) = \overline{\theta}\eta \) for \(\theta, \eta \in \text{Cf}_F(G) \). Let \(D = \frac{1}{|G|}\text{diag}(|C_1|, |C_2|, \cdots, |C_k|) \). Then \(XD\overline{X}^t = I \).

Proof. Since \(\chi_j = \sum_{i=1}^k \chi_j(C_i)f_i \), we have \([T(1_G)]_{\text{Ir}_F(G)}^\alpha = X^t \).

From \(\{[T(1_G)]_{\text{Ir}_F(G)}^\alpha[T(1_G)]_{\text{Ir}_F(G)}^\beta[T(1_G)]_{\text{Ir}_F(G)}^\alpha\}^t = [T(1_G)]_{\text{Ir}_F(G)}^\alpha \), it follows that \(XD\overline{X}^t = I \).

In Theorem 2.1, we have
\[\{\theta(C_1), \theta(C_2), \cdots, \theta(C_k)\} = \{\overline{\theta}(C_1), \overline{\theta}(C_2), \cdots, \overline{\theta}(C_k)\}. \]
Hence, in Theorem 2.1, \(\theta(C_1), \theta(C_2), \cdots, \theta(C_k) \) are eigenvalues of both \(M(\theta) \) and \(M(\overline{\theta}) \), and so the polynomial \(\prod_{i=1}^m (x - \theta(C_i)) \) is the characteristic polynomial of both \(M(\theta) \) and \(M(\overline{\theta}) \).

Let \(D_k \) be the set of all \(k \times k \) diagonal matrices over \(F \) and \(XD_kX^{-1} = \{X \Delta X^{-1} | \Delta \in D_k\} \). Then \(XD_kX^{-1} \) is an \(F \)-vector space of a dimension \(k \). For \(M(\theta) \in \text{Im}M \), we have \(M(\theta) \in XD_kX^{-1} \) by Theorem 2.1. Hence \(\text{Im}M \subseteq XD_kX^{-1} \). Since \(\text{Im}M \) is an \(F \)-vector space of dimension \(k \), it follows that \(\text{Im}M = XD_kX^{-1} \).
For conjugacy classes \(C_1, C_2, \cdots, C_k \) of \(G \), there is a permutation \(\sigma \) such that \(\sigma(i) = j \) if \(C_i^{-1} = C_j \). Of course, \(\nu = \{h_{\sigma(1)}, h_{\sigma(2)}, \cdots, h_{\sigma(k)}\} \) is a basis of \(CF_F(G) \) and \(h_{\sigma(i)} = \sum_{i=1}^{k} \chi_i(C_i)\chi_i \).

Therefore,

\[
[T(1_G)]^\beta_\alpha = \frac{1}{|G|} \text{diag}(|C_1|, |C_2|, \cdots, |C_k|),
\]

\[
[T(1_G)]^{Irr_F(G)}_\nu = X^{-1} [T(1_G)]^{Irr_F(G)}_\beta = \overline{X}.
\]

Of course, \([T(1_G)]^{Irr_F(G)}_\nu = X^{-1} \) and \([T(1_G)]^{Irr_F(G)}_\nu = \overline{X}^{-1} \). And for any ordered \(F \)-basis \(\Gamma \) of \(CF_F(G) \), we have \([T(1_G)]^\Gamma_\Gamma = I = M(1_G) \).

From

\[
T(\theta)(f_i) = \overline{\theta}f_i = \overline{\theta}(C_i)f_i, \quad T(\overline{\theta})f_i = \theta(C_i)f_i,
\]

\[
T(\theta)(h_i) = \overline{\theta}(C_i)h_i, \quad T(\overline{\theta})h_i = \theta(C_i)h_i,
\]

\[
T(\theta)(h_{\sigma(i)}) = \overline{\theta}(C_{\sigma(i)})h_{\sigma(i)} = \theta(C_i)h_{\sigma(i)} \quad \text{and} \quad T(\overline{\theta})(h_i) = \theta(C_i)h_i,
\]

it follows that

\[
[T(\theta)]^\alpha_\alpha = [T(\theta)]^\beta_\beta = \text{diag}(\overline{\theta}(C_1), \overline{\theta}(C_2), \cdots, \overline{\theta}(C_k)) \quad \text{and}
\]

\[
[T(\theta)]^\nu_\nu = \text{diag}(\theta(C_1), \theta(C_2), \cdots, \theta(C_k)) = [T(\overline{\theta})]^\alpha_\alpha = [T(\theta)]^\beta_\beta.
\]

Since

\[
[T(1_G)]^{Irr_F(G)}_{Irr_F(G)}[T(\theta)]^{Irr_F(G)}_{Irr_F(G)}[T(1_G)]^{Irr_F(G)}_{Irr_F(G)} = [T(\theta)]^\nu_\nu \quad \text{and}
\]

\[
[T(1_G)]^{Irr_F(G)}_{Irr_F(G)}[T(\overline{\theta})]^{Irr_F(G)}_{Irr_F(G)}[T(1_G)]^{Irr_F(G)}_{Irr_F(G)} = [T(\overline{\theta})]^\nu_\nu,
\]

we have

\[
X^{-1}M(\theta)X = \text{diag}(\theta(C_1), \theta(C_2), \cdots, \theta(C_k)) \quad \text{and}
\]

\[
X^{-1}M(\overline{\theta})X = \text{diag}(\overline{\theta}(C_1), \overline{\theta}(C_2), \cdots, \overline{\theta}(C_k)).
\]

From

\[
[T(1_G)]^{Irr_F(G)}_{Irr_F(G)}[T(\overline{\theta})]^{Irr_F(G)}_{Irr_F(G)}[T(1_G)]^{Irr_F(G)}_{Irr_F(G)} = [T(\overline{\theta})]^\beta_\beta \quad \text{and}
\]

\[
[T(1_G)]^{Irr_F(G)}_{Irr_F(G)}[T(\theta)]^{Irr_F(G)}_{Irr_F(G)}[T(1_G)]^{Irr_F(G)}_{Irr_F(G)} = [T(\theta)]^\beta_\beta,
\]

\[
\text{Won-Sun Park}
\]
\[\cdots, + a_0 \text{ is the minimal polynomial of } T^*(\theta) \text{ iff } q(x) \text{ is the minimal polynomial of } \theta \in Cf_F(G). \]

Let \(q(x) = x^r + a_{r-1}x^{r-1} + \cdots, + a_0 \) be the minimal polynomial of \(\theta \in Cf_F(G). \) If \(b_01_G + b_1\theta + \cdots, + b_{r-1}\theta^{r-1} = 0, \) then \(f(x) = b_0 + b_1x + \cdots, + b_{r-1}x^{r-1} \) is a polynomial having \(\theta \) as a root. Therefore, \(q(x)|f(x). \) Since \(\deg f(x) < \deg q(x), \) this yields that \(f(x) = 0. \)

That is, \(b_0 = b_1 = \cdots, = b_{r-1} = 0. \) Hence \(\{1_G, \theta^1, \theta^2, \cdots, \theta^{r-1}\} \) is independent. For any \(b_01_G + b_1\theta + \cdots, + b_m\theta^m \in Cf_F(G), \) let \(g(x) = b_0 + b_1x + \cdots, + b_mx^m. \) Then \(g(x) = q(x)h(x) + s(x) \) with \(s(x) = c_0 + c_1x + \cdots, + c_tx^t, t \leq r - 1 \) by the division algorithm. And we have

\[
\begin{align*}
 b_01_G + b_1\theta + \cdots, + b_m\theta^m &= g(\theta) = s(\theta) \\
 &= c_01_G + c_1\theta + \cdots, + c_t\theta^t.
\end{align*}
\]

Therefore, \(Cf_F(G) \) is generated by \(\{1_G, \theta^1, \theta^2, \cdots, \theta^{r-1}\}. \)

Hence \(\{1_G, \theta^1, \theta^2, \cdots, \theta^{r-1}\} \) is an \(F \)-basis of \(Cf_F(G). \)

Since \(\dim_FCf_F(G) = k, \) we have \(r = k. \) Therefore the minimal polynomial \(q(x) = x^k + a_{k-1}x^{k-1} + \cdots, + a_0 \) of \(\theta \) is the characteristic polynomial of \(T^*(\theta). \) Hence \(\theta \) takes exactly \(k \) distinct values.

References

Department of Mathematics
Chonnam National University
Kwangju, 500-757, Korea
Theorem 2.3. Let \(\alpha \) and \(\beta \) be any ordered \(F \)-basis of \(\text{Cf}_F(G) \). Then

\[
[T(\theta)]^\alpha_{\alpha} = ((X_{\alpha}X_{\beta}^{-1})^t)^{-1}[T(\theta)]^\beta_{\beta}(X_{\alpha}X_{\beta}^{-1})^t.
\]

Proof. Let \(\alpha = \{\alpha_1, \alpha_2, \ldots, \alpha_k\} \) and \(\beta = \{\beta_1, \beta_2, \ldots, \beta_k\} \). Let \(\alpha_i = \sum_{i=1}^{k} a_{it}\beta_t \). Then

\[
[T(1_G)]^\beta_{\alpha} = \begin{pmatrix}
a_{11} & a_{21} & \ldots & a_{k1} \\
a_{21} & a_{22} & \ldots & a_{k2} \\
\ldots & \ldots & \ldots & \ldots \\
a_{1k} & a_{2k} & \ldots & a_{kk}
\end{pmatrix}
\]

Therefore, \(X_{\alpha} = \{[T(1_G)]^\beta_{\alpha}\}^t X_{\beta} \). Of course, \(X = \{[T(1_G)]^\beta_{\alpha}\}^t X_{\alpha} \) for any ordered \(F \)-basis \(\alpha \). Since \(X \) and \([T(1_G)]^\alpha_{\alpha} \) are invertible, \(X_{\alpha} \) is invertible. Thus

\[
X^{-1}M(\theta)^tX = X_{\alpha}^{-1}\{[T(1_G)]^\beta_{\alpha}\}^t \{[T(\theta)]^\beta_{\alpha}\}^t \{[T(1_G)]^\alpha_{\alpha}\}^t X_{\alpha} = X_{\alpha}^{-1}\{[T(\theta)]^\alpha_{\alpha}\}^t X_{\alpha}.
\]

Since \(X^{-1}M(\theta)^tX = X_{\beta}^{-1}\{[T(\theta)]^\beta_{\beta}\}^t X_{\beta} \) for ordered \(F \)-basis \(\beta \),

\[
X_{\alpha}^{-1}\{[T(\theta)]^\beta_{\alpha}\}^t X_{\alpha} = X^{-1}M(\theta)^tX = X_{\beta}^{-1}\{[T(\theta)]^\beta_{\beta}\}^t X_{\beta}.
\]

Hence \([T(\theta)]^\alpha_{\alpha} = ((X_{\alpha}X_{\beta}^{-1})^t)^{-1}[T(\theta)]^\beta_{\beta}(X_{\alpha}X_{\beta}^{-1})^t \).

Theorem 2.4. Assume that \(G \) has exactly \(k \) distinct conjugacy classes. If \(\text{Cf}_F(G) \) is generated by \(\{\theta^i | i \geq 0\} \) for some \(\theta \in \text{Cf}_F(G) \), then the followings hold.

1. \(\{1_G, \theta^1, \theta^2, \ldots, \theta^{k-1}\} \) is an \(F \)-basis of \(\text{Cf}_F(G) \).
2. \(\theta \) takes exactly \(k \) distinct values.

Proof. Let \(T \) and \(T^* \) be representation defined in the introduction. Let \(q(x) = x^r + a_{r-1}x^{r-1} + \cdots + a_0 \) be the minimal polynomial of \(T^*(\theta) \). Then \(T^*(\theta^r + a_{r-1}\theta^{r-1} + \cdots + a_01_G) = 0 \) iff \(\theta^r + a_{r-1}\theta^{r-1} + \cdots + a_01_G = 0 \). Therefore, \(q(x) = x^r + a_{r-1}x^{r-1} + \cdots + a_01_G = 0 \) is a polynomial of degree \(r \) with coefficients in \(\mathbb{C} \). Since \(\theta \) is an \(F \)-basis of \(\text{Cf}_F(G) \), \(\theta \) takes exactly \(k \) distinct values.