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UNIQUENESS OF SQUARE
CONVERGENT TRIGONOMETRIC SERIES

YOUNG-Hwa HA* AND JIN LEE

§1. Introduction and the main theorem

It is well known that every periodic function feLr0,2n]), p > 1,
can be represented by a convergent trigonometric series called the
Fourier series of f. Uniqueness of the representing series is very im-
portant, and we know that the Fourier series of a periodic function
f € LP([0,27]) is unique.

More general functions and even distributions can be represented
by trigonometric series. The uniqueness problem in this case was first
answered by Georg Cantor. He proved thar if a trigonometric series
converges to 0 everywhere, then all the coeffcients are 0. But, the
uniqueness problem for multiple trogonometric series has rather differ-
ent aspects. For multiple series there are more than one summation or-
dering. Examples of usually considered summations for 2-dimensional
series Z::_Oo ff:ﬂ)o O are

1) iterated : Z:Z_%(E:’:A%am,n),

2) circular : lim,_ o, Zm?+n?gr2 Qmn,

3) rectangular : lim, , o Z'THISP 2in <qQm,ns
4) square : lim,_ ZIW!ST nj<r Gm,u-

H f is a periodic function of n variables in LP(T"), p > 1, then
the Fourier series of f is square convergent to f a.e.. But, rectangular
convergence and circular convergence are not guaranteed. So square
convergence seems to be a more natural convergence mode (cf. (FI. [S],

and [T]).
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For the uniqueness of multiple trigonometric series the following
results have been proved :

i) Uniqueness for iterated convergence is an immediate conse-
quence of the Cantor’s theorem.

ii) If a double trigonometric series converges circularly to 0 ev-
erywhere. then all the coefficients are 0 (cf. [C]).

i) If a multiple trigonometric series converges rectangularly to 0
everywhere, then all the coefficients are 0 (cf. [AW1], [AW2],
and [AFR)).

But. there are no known results about the uniqueness for square con-
vergence. In this paper we give a partial answer to the unigqueness
problem for square convergence.

A d-dimensional multiple trigonometric series is a series of the form

k-
2 axe’ x

kez4
with x € R%. For every nonnegative integer n we let

= el S e N - d . . . < :
L, {k (ky, Jkg) e Z |1x%1;1%<d|l\]l_r},

Eg, fn=0
Bn = .
L,—L,_(. ifn>1

and

Then

1) LoCTLiTLyCT--n,

2) L, = Up_ By, for every n > 0.
A subset E of Z is called a (d-dimensional) squarelike indexing set if
L._1 C E C L, for some positive integer n. If L,_1 Z E C L, and
E # L£,_,. then the number n is called the order of E and denoted by
|E|. We also consider £ as a squarelike indexing set of order (. Given
multiple series § = )} c7q ak. a squarclike partial sum of S is defined
to be Sp = Zkel«? ay for some squarelike indexing set £. We say that
Zkezd ax converges squarelikely to a provided that for every € > 0
there exists N such that if E is a squarelike indexing set and |E| > N,
then [Sg — a] < €. A partial answer to the uniqueness problem for
square convergence is now given by the following theorem, which is the
main theorem in this paper.
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THEOREM. Suppose that a 2-dimensional trigonometric series

S(x,y) = ) amne™ie

mnez

converges squarelikely to () everywhere and its squarelike partial sums
Se(z,y) satisfy Sp(x,y) = o(|[E|™!) as |E| — oo. Then all the coefB-
cients an, , are 0.

In fact, we can prove a similar result for higher dimensional trigono-
metric series. For that we need the condition that the squarelike partial
sums Sg(x) are of o |[E[~%*!) as |E| = oo, where d is the dimension.
The proof for this case is quite complicated; while the result is not
more satisfactory. So we consider just the 2-dimensional case.

§2. Second formal integral and Schwarz connectors

The second formal integral of a double trigonometric series

. in
§ am'nezmzcz v

m,nez

1s a 2-dimensional series

5 ot

m.n&Z
where
1 1 .
am,n(”n)2 )2 if m#0andn #0,
1 )
(1) o (ry) = A n(k%ﬂl‘z)(m)2 if m=0andn #0,
’n’ 11 ,
, W(;yQ), if m# 0and n=0,
am,n(ltrz)( %yz), fm=n=0.
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PROPOSITION 1. Let S(z,y) = Y., nez @mne ™ ™Y,
IfS = ), nez @m,n converges squarelikely, then the second formal
integral of S(x,y) converges absolutely and uniformly to a continuous
function.

Proof. By the hypothesis, the squarelike partial sums of S are boun-
ded. Choose M > 0 such that |Sg| < M/2 for every squarelike indexing
set E in Z?. Since

o Sepmior0fimm)} — Stym_ys i (m| 2 nl,
m,n — .
S£|n|_1U{(m,Tl)} - SC',”_\', lf lml < |nl‘
we have |a;, »| < M for all m,n € Z. Hence
Z |a:n7n(x’y)elmrclﬂyl —_ a* Y (x.y)‘
mnez m,n€Z
1 $2y2
< ey Lty s
m#0 n;éO n#0 m#0

< 00.

The assertion now follows. 0O

We now define a well-ordering < on Z? for which the immediate suc-
cessor and predecessor of (m,n) are denoted by (m,n)* and (m,n)",
respectively. Consider (0,0) as the smallest element, and for each

(m,n) € Z? define
(0,-1), ifm=n=0,
(m+1,n), fn<O0andn<m<—n,
(2) (m,m)t =¢ (myn+1), ifm>0and —m <n<m,
(m—-1,n), fn>0and —n<m <n,
)

(mn-1), fm<O0andm<n<-—m
We thus have an ordering on Z? so that

(0,0) < (0,-1) <(1,-1) < (1,0) < (1,1) < (0,1) < (1,1} < (~1,0)
<(=1,-1) < (=1,-2) < (0,-2) < (1,-2) < (2,=2) < (2.-1) < -

(3)
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One can imagine this sequence as an outward spiral which traces Z?
counterclockwise with starting point (0,0). Note that this sequence
fills up B,, successively. Hence, we have

1) £N:{(m,n)EZQ’(m,n)j(—N,——N)} for N >0,
(4) i) By ={(m,n)€Z*(-N+1,-N)=<(m,n) < (=N,-N))
for N >0,

and for each (p, ¢) € Z? the sum over the indexing set {(m, n)[(m n) <
(p,q)} defines a squarelike partial sum.

PROPOSITION 2. Let Apg = Z(m,n)<(p,q)a(m,n) and Ab,, =
b(p,q) - b(w;)’r for (p,q) € Z?. Then for N >0

DY ammbmm = Y. ApmmAbimn

(m,n)EBN (m,n)EBN
+ AN NN N+ — ANt Ne b NN+

and for N > 0

11) Z a(m,n)b(m,n)

(m,n)eln

YooY Al Abimm + AN mb- N+
0<k<N (m,n)€B;

Proof. From the definition of A(,, ,) we have

Z A(m,n)d(mn) = Z (Am,n) = A(mon)- )b(m.n)

(m,n)eBy (m.n)eByN

= Z A(m n)b(m n) — Z A(m,n)‘ b(m»n)'

(m,n)EBN {m,n)EBN

From By = {(m n) € ZZ!( N +1,-N) < (m,n) < (—N,“N)} for



790 Young-Hwa Ha and Jin Lee

N > 0, we have

Z A(m,n)‘b(m,n) = Z A(m,n)'b(m‘nj

(m,n)€By (= N41,=N)=(m,n)<(—N,—N)

= > A(m,n)b(m n)+

(=N4+1,=N+1)<(m,n)<(=N,~N=+1)

Z A mbimat + ANp-Nenb v N
(m,n)eBN

— An-mb—n, N+

Substituting the last expression into the above equation, we obtain 1).
Since a9 0y = A0,0). 1) then implies

Z a(m,n)b(m,n) = Z L O'sm,n)b(m,n) +A(O,(ﬁ)b(0,0)

(m,n)eln 1<k<N (m,n)eBy

Z( D Atmm Byt Ak bk okt
1<k<N (m.n)eB,

- A(-—k+1,‘k+1)b(—k+x,—k+1)+) + A¢0,00b0.0)

> > A Bbim o

1SKSN (m,n)€ By
+ [ Z (A(-k.-kjb(_k,_kﬁ - A(~k+1,-k+1)b(-k+1,_k+1)+) +A¢o,0)b(o,m:|-
1<k<N
The expression in the bracket is equal to A(_n _n)b_n,_n)+. We thus
obtain ii) and completes the proof. [l

For j = 1,2 let e; be the unit vector in R? whose j-th coordinate is
l,and for j = 1,2, h € R, and x € R?, let

Ag’hf(x) = f(x) = 2f(x + he;) + f(x + 2he;).
and
Ajpf(x) = f(x = hej) — 2f(x) + f(x + he;).

The Schwarz difference A;;jvk) f(x) and difference quotient Qj,jyk) f(x)
is defined by

Al f(x)
AL (X)) = A7 AL i f(x) and  QF , f(x) = _}_h_)_k}k_Q)
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for (s,t) € {0,1}%. (h,k) € R* — {(0,0)}, and x € R?. We now define
the Schwarz connector D*' f(x) by

LN S T 3,1 r
D f(x) = hhcn—l.o Q(hyk)j(x)v
where the limit is taken over such (h, k) € R? — {(0,0)} as 1/2 <
Ih/k| < 2
PROPOSITION 3. Suppose that the second formal integral of the
double trigonometric series Zm.nez Um n€' e converges everywhere

to a function f(x,y). Then for each (s,t) € {0,1}* the Schwarz differ-

ence quotient of f(x,y) is given by

(5) Qf}:,k)f(f~y) - Z i, nFlmI(””I’\q m(h)/\t,n(k)-,
m.n€%
where o {
(Slll(kr/?))Z ik £ 0
i /) ? ?
SOES S
1, ifk=0,

and Ao (1) = A p(r)rie*r.

Proof. Since f(z,y) = vaneu(m Jriy)e Mz iy where an, (r,y)
are given by (1), we have

Q(hk Z Q :n y) imzr 1ny>
m,neEzL

But, by the definition of the Schwarz difference, we have

Q(h k)( (0 y)e )
" As h( lTIlI) k(ezny
"M Gm)2(h%)s (in)2(k2)

ifm # 0,n # 0,

Agrlzr?) At k(e'™Y)

if m = 0,n # 0,

(6) Gy ey Lm0 A0
= A,‘h((lmt) A, k(ay 1 : o

(hn’n(im)?(hz)s ) if m #0,n =0,

fm=n=0
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It is easy to check that

. eV N (), ifp=1,
(7) Aprl(ed®) ik Ap =1

(1) (r2)P g
e Ay (r), i p=0,

for j # 0, and

Molr), ifp=1,

8 AP.f(%“’?) .
AO,O(T)~ lfp:()
Jw )2 .
Replacing (U)z(r,)p) and (ri%p“ ) in (6) with (7) and (8), we now have

Q(h k)( - :I‘ J) mneiny) — am,nfimremy/\s,m(h>/\t,n(k)s
and completes the proof. O

LEMMA 4. Let (k) = sinz(mh/2)/(mh/2)2 and Apm(h) = tmi1
(h) = pm(h). Then, there are positive constants Cy and Cq such that
if 0 < |h| < 1, then

(9) > |Apm(h)| < C1N?R?,
|m|<N

for every N with 1 < N < 1/|h|, and

(10) > |Aum(h)] < Gy,

|m|<N

for every positive integer N.

Proof. Let us define 6(t) = (sin(t/2))/(t/2) if t # 0, and (0) =
It is easy to check that |#(t)] < 1 and |6(¢)] < 2/|t| for every t. We can
also find two constants Cy and Cy such that

Caltl, if 1] <2
10'(+)] <

1
3
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Since
Apm(h) = (8((m +1)R))* — (8(mh))”
= (9((m + 1)) + 6(mh)) (6((rn + 1)k) — 6(mh)),
we have

(m+1)h
|Afim(R)] < 2(6((m + 1)h) - B(mh)) = 2}/ o' (1) |

Hence, if 0 < |h| < 1 and 1 < N < 1/|h[, then

(m+1)h
> lauami<2 ¥ | [ et
Iml<N | <N
(N+1)[h]|
<2 /(1) dt
—(N+1)|h|

2N |h|
S 403/ tdt = 803]V2h2,
0

and so we obtain (9) with C; = 8C3. In particular, Elmlsr}.—[ [Apm(h)]|
< C;. Soin order to obtain (10), it suffices to show Zlml>]%[ [Apm(h)]|

< C for some constant C. But, if |m| > then

lhl’
2 2 6

19((m + 1)h) + 8(mh)] < |(m + 1)h| |mh| = |mh|

and

C
[6((m + 1)h) — 6(mh)| < sup  |8'(1)]- |h|<—f—f—
te€[mh,(m+1)h} m|

Hence, if 0 < |h| < 1, then

24C, 1 2ac(,, [>1
< —_— —_ < — —
O e i (h + tzdt)
|m|>ﬁ‘[ m>ﬁr TrT

= 240, (|h] + 1) <= 48C}.

The proof is now completed. [J
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LEMMA 5. For each (s,t) € {0,1}* and m,n € Z, let )\“ k) =
Ayl P Aen(k) and A/\”T:hn)(h,k) A (k)= A% n)+(h,k,), where

As,m and Xy, are defined as in Proposition 3. Then there is a constant
C > 0 such that

(11) Z oA k) <C,
N>1 (m,n)eBN
for all (h, k) € R? with 0 < |h] < 1,0 < |k| < 1, and 1/2 < |h/k| < 2.
Proof. Consider 3, \cn. |A/\ (h. k)l By the definition of the

ordering <, we can write

2 1T k)]

(m, n)

(m.n)EBy
N-—1
8.1 8,1
= Z ’)\(m,«N)(h’k) Amt1,— )(h’k”
=—~N+1
8,1 s,t
+ Z /\(’\’n)(h A /\(/\/ n+l)(h’k)l
n=-—N
+ Z Aty (oK) = ALy (B k)
m=—N+1

+ Z A g (B R) = AT (k)
n=-—N
N-—1
:( Z |/\e m+1(h sm(h)i)lf\t —A(A)l
m=--N+41
[\1-—-1
Aens1(k) = Xealk)]) Ao (h)
m=—N

w+1

(X
( Noam(h) = Aumoa(B)]) Ao n(B)
(

st )= Atn-a(B)]) Pt h)]
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Since [Ay,_n(r)| = [Ay n(r)| for u = 0,1, we have

3 ]A)\(mn)(h,k)lgz( 3 ps,m“(h)-As,m(h)u)|At,N(k)|

(m,n)EBy Im|<2N

#2007 Pemsa(6) = AenlB)]) Ao n(h)].

In|<2N

Let Fa't(ha k)= ZNZ] Z|m|§2N t/\s,m-H(h)"’\s,m(h)”)‘t,N(k)'- Then,

(12) Z Do AN (hk)| < 2(F"th k) + FY (k. h)).
’V>1 (m,n)€EBN
Now suppose 0 < |h| < 1,0 < |k] < 1, and 1/2 < |h/k| < 2. Then,
o, n(R)] < [A n(k)] = (k).

and
')\l,mﬂ(h) = Arm(h)| = kA/‘m(h)L

where pn(k) and Ap,,(h) are defined as in Lemma 4. So we have

PR <Y = 5 Au)llun(h)]

N>1 A [m|<2N

Hence, from |pn (k)| < 1 and (9) it follows that

Y o3 X el Y s-ceNm<c.

1<N<3hy  Im|<2N 1SN <fip
On the other hand, from |un(k)| < v S ',\71’!6h2 and (10) it follows
that
> 1 Yo BpalpnB) < > = Creyrg 10 9390,
N m( .V N2p2 —
N> 5ty |mi<2N N>ty

We thus have F!''(h, k) < C for some constant C. By the same argu-
ment we also have F'*(k,h) < C.
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Now consider FO'(h, k) and F%*(k,h). Since |Ag m(h)| < h? and
/\o,o(h) =0,

> Pamgr(h) = Ao m(h)| < 8NR?,

fm|<2N
and so
FOUh k) < ! 8Nh? k) < - SN h* i
£ )~ZN 'IIIN(')|_ZN' T N2k2
N>1 N>
1
=128y —<C
N>1~

for some constant C, and by a similar argument F%*(k,h) < C.
Putting these result together into (12), we can now derive (11). [

The following proposition is the main result in this section.

PROPOSITION 6. Suppose that a 2-dimensional trigonomeric series

S(I,y) — Z am'netm:reiny

m,n€z

converges squarelikely to 0 everywhere, and that all of its squarelike
partial sums Sg(z,y) satisfy Sg(z,y) = o(|E|™?) as |[E| — oco. Let
f(x,y) be the second formal integral of S(x,y). Then, for each (s.t) €
{0,1}? the Schwarz connector D*' f(x.y) is identically 0.

Proof. Since 5(0,0) = 3 .z
proposition 1 it follows that the series for f(z,y) converges abso-
lutely. Hence, for nonzero reals h and k the series for the Schwarz
difference quotient Q(s;:'k)f(.r,y) converges absolutely. But, as in (5),

Q(sl,zt,k)f(fv y) is given by

am n converges squarelikely, from

Qi o flT )= D amne™ €™ A m(R)Ara(k).
m,neZ

By the absolute convergence. we can rewrite

Qi fley) = R Py(z.y),
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$,t 3 ]
where Py'(z,y) = Z(m,n)EﬂN A "IN (h) A (k). Put

/\91‘

(m,n)

(h k) = Ay m(R)Ae (k).

Then, by the summation by parts formula proved in Proposition 2, we
have

Pilry)= 3 D Apmm(@ AN (hk)

0<p<N (m,n)€EB,

+ A(—N,-—;V)(‘I"ﬂ y))‘(s'_tNy_ ’V)+(h~, k'~

where
Amm(z0) = Y amue ™ e,
(p.q)=(m,n)
and
AN ) = X b ) = N0

Note that each A(,, ,)(z,y) is a squarelike partial sum of S(z,y), and
SO

lim A_n_n(z,y)=0

N—oc

by the hypothesis. Since Af;:l.n)(h, k) are bounded for small & and &k,
we thus have ’

13)  Qhnfley)=)" D Amaw(ey)ANT | (hk).

N2>0(m,n)EBN

Now fix (s,t) € {0,1}* and (r,y) € R?, and let € > 0 be given arbi-
trarily. By the hypothesis about the squarelike partial sums, we can
choose M > 0 such that

€
(14) ‘A(m,n)(xay” <=

4

whenever (m,n) € By and N > M. Since limp ko A/\(m n)(h, k) =0,

hm Z Z Aim,my(2,y) A/\,”tl (k) =0.
0KN<M (m,n)EBA
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Hence we can choose a positive number i with 5 < 1/M such that

(15) \ S Y Apmaley)aN )h,k»I<e

0<N<KM (m,n)eBN

for all ~ and k with |h| < 1 and |k| < n. On the other hand, by (14)
we have

IZ > A(m,m(x,y)mfnin)(h,k)l

N>M (m,n)eEBN

S Z Z ’ (m ") € y)HAA(m n) (h‘k)’

N>M (m n)EBN

Se€ Z Z IA)\(m n) h’k)’
7\/>M (m,n)EBN
<e Z > A (k)| < Ce

1 (mn )EBN

The last inequality follows from lemma 5. This result together with
(15) implies
| Qi flx.v)] < Ce

provided 0 < || < n, 0 < |k|] < 7n, and 1/2 < |h/k| < 2. Since € was
arbitrary, we therefore conclude D*' f(x,y) = limp 4. Q(s,’:k)f(z, y) =
0. O

§3. Proof of the main theorem

We first quote the following result from [AFR]. For the original
version of the following proposition and the detailed proof the readers

are referred to [AFR].

ProproSITION 7 [AFR]. Let f(z,y) be a continuous function. If all
the Schwarz connectors of f(x,y) are identically 0, then all the Schwarz
differences of f(x,y) are identically 0.

Suppose that S(z,y) = 3, Lz am ne'™%e!™ converges squarelikely
to 0 everywhere and the squarelike partial sums A(, ) = 2 (1 n)<(p.0)
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Am €™, (p,q) € By, are equal to of N 1) as N — oo. Then,
proposition 1 implies that the second formal integral f(z,y) of S(z,y)
is continuous, and proposition 6 implies that all Schwarz connectors
of f(;r y) are identically 0. From proposition 7 it now follows that

(hk)f(r y) = 0 for all (s,t) € {0,1}? and (h, k) € R? - {(0,0)}. In

particular, A(Zm%)f(x,y) =0. But, A!!

(2m,27: fle,y) = a¢.9.- Hence we

obtain the following result.

COROLLARY 8. Suppose that a 2-dimensional trigonometric series

S(z,y) = Z amyncims'emy

m,n€Z

converges squarelikely to 0 everywhere and all of its squarelike partial
sums Sg(x,y) are equal to o{|E|™") as |E| — oo. Then ag g = 0.

For each (p, q) € Z* let us define a transformnation T(p,q) Which trans-
lates a 2-dimensional trigonometric series :

tmz any | _ imzx_iny
T(p,q)( _S_: @mnt € )— _S_ Qm—pn~g € .

m,nez m,nez

PROPOSITION 9. If S(z,y) = 3. 7 @mne' ™™™ satisfies the hy-
pothesis of the main theorem, then T(p,q)9(, y) also satisfies the same
hypothesis for every (p,q) € Z?.

Proof. Once we prove the assertion for the cases of (p, q) = (£1,0),
(0,+£1), then by the repeat of the same argument we can obtain the
desired result. The treatments of the cases of (p,q) = (£1,0),(0,£1)
are similar to each other. So we shall consider only the case of (p.q) =
(1,0).

Put

T(I y) = T(1, U)S €, y Z bm n()”nJr 1ny
m,n€Z

where by n = am_1.n, and for each E C Z2 write Selz,y) = Z(m,n)EE
amne'™ '™ and Te(r,y) = Z(m,n)GE bn.net™ ™. Let € > 0 be
given arbitrarily, and choose M > 0 with M -1 > M /2 such that

(16) |SE(1r,y)|<—\7 if N>M and Ly CECCLn.
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Suppose N > M and Ly-1 C E C Ly, and let F = {(m,n) €
Z*|(m+1,n) € E}. Then

imzr _in tmz _in
Te(r,y) = E bmnemf e = E Am_1.ne e

(mn)ek (m,n)eE
- T Z am,nezmz(tmy - 61155’(.17,3,').
(m.n)eF

Clearly Lny_2 CF C Lyy-
Nowput A=FNLy_1,B=LNy1U(FNBy),and C = LyU(FN
BN+I ) Then
(17)
Tp(z.y) = e*” (5/1(1"« y)+53(1ay)+5c(l‘ay)—5£N_1(I:y)—5£N($-,y))~

But by (16),

1Salz,y) < €/(N —-1)<2¢N,
Snlz.y)| < /N, |Se(e.u)| < /(N +1) < /A,

and
Sen (@ u)l < /(N =1) S 2¢/N, [Sey(a,y)| < e/N.

It now follows from (17) that |Tg(z,y)| < Te/N. Since € > 0 was
arbitrary, we now conclude that the squarelike partial sum Tg(z,y) is
equal to o(|E|™!) as |E| — oc. This also implies that T(z,y) converges
squarelikely to 0 everywhere. We have thus proved the assertion for
the case of translation 7(; o). [

We can now complete the proof of the main theoremn.

Proof of the main theorem. Let S(x,y) =Y neZ Am,ne™Te'™ be
a 2-dimensional trigonometric series satisfying the hypothesis of the
main theorem. Then, for each (p,q) € Z2, the translate T(p,0) (T, Y),
whose constant term is a, 4, also satisfies the same hypothesis. Hence,
by Corollary 8, a, , = 0. Therefore, all the coefficients ap, , are equal
to0. O
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§4. Epilogue

The main result is stated under the restriction
(18) Selz,y) = of|E|",

where E is a squarelike indexing set. We can compare (18) with the
following condition about square partial sums :

(19) Z Z U pe' ™Y = o(1/r).

jmj<r |n|<r

These two conditions are not equivalent. In fact, it is an open problem
whether (19) can replace (18) in order to derive the main result. But,
one can easily derive the following corollary from the main result.

CoRroOLLAY 10. Suppose that a 2-dimensional trigonometric series

tme _in
S(~T’y) - § Am n€ ety
mnez

Z Z Am.ne'™Te ™Y = o(1/r)

Im|<r |n|<r

satisfies

and

> lamal = o(1/r).

max{|m|,|n|}=r

Then all the coefficients Qm,n are 0.
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