SPANNING COLUMN RANK 1 SPACES OF NONNEGATIVE MATRICES

SEOK-ZUN SONG, GI-SANG CHEON AND GWANG-YEON LEE

1. Introduction

There are some papers on structure theorems for the spaces of matrices over certain semirings. Beasley, Gregory and Pullman [1] obtained characterizations of semiring rank 1 matrices over certain semirings of the nonnegative reals. Beasley and Pullman [2] also obtained the structure theorems of Boolean rank 1 spaces. Since the semiring rank of a matrix differs from the column rank of it in general, we consider a structure theorem for semiring rank in [1] in view of column rank.

In this paper, we obtain a characterization of column rank 1 matrices and a structure theorem for the vector space of matrices whose nonzero members all have spanning column rank 1 over nonnegative part of a unique factorization domain that is not a field in the reals.

2. Definitions and preliminaries

Let \mathbf{R} denote the field of reals and \mathbf{S} denote an arbitrary semiring of nonnegative reals. Let \mathbf{U}_+ be the nonnegative part of a unique factorization domain which is not a field in \mathbf{R}. Such examples are $\mathbb{Z}_+, (\mathbb{Q}[\pi])_+$ etc., where \mathbb{Z}, \mathbb{Q} denote the rings of integers and rationals, respectively, and π is a transcendental number over \mathbb{Q}.

Let \mathbf{A} be an $m \times n$ matrix over \mathbf{S}. If \mathbf{A} is a nonzero matrix, then the semiring rank [3] of \mathbf{A}, $r(\mathbf{A})$, is the least k for which there exist $m \times k$ and $k \times n$ matrices \mathbf{F} and \mathbf{G} over \mathbf{S} such that $\mathbf{A} = \mathbf{F}\mathbf{G}$. The zero matrix is assigned the semiring rank 0. The set of $m \times n$ matrices
with entries in S is denoted by $M_{m,n}(S)$. Addition, multiplication by scalars, and the product of matrices are defined as if S were a field.

If V is a nonempty subset of $S^k \equiv M_{k,1}(S)$ that is closed under addition and multiplication by scalars, then V is called a vector space over S. The notions of subspace and of spanning sets are the same as if S were a field. As with fields, a basis for a vector space V is a spanning subset of least cardinality. That cardinality is the dimension, $\dim(V)$, of V.

For an $m \times n$ matrix A over S, the column rank $[5], c(A)$, is the dimension of the vector space spanned by its columns, and the spanning column rank $[4], sc(A)$, is the minimum number of the columns of A which span its column space.

It follows that

\[(2.1) \quad 0 \leq r(A) \leq c(A) \leq sc(A) \leq n\]

for all $m \times n$ matrices A over S. But these rank functions may differ over certain semirings as shown in the following example.

Example 2.1. Consider a matrix $A = [3, 6 - 2\sqrt{7}, 2\sqrt{7} - 4]$ over a semiring $S = (\mathbb{Z}[\sqrt{7}])_+$. Then it is trivially that $r(A) = 1$. Since $(6 - 2\sqrt{7}) + (2\sqrt{7} - 4) = 2$, 2 is spanned by the last two columns of A. Then we have $(6 - 2\sqrt{7}) = 2(3 - \sqrt{7})$ and $2\sqrt{7} - 4 = 2(\sqrt{7} - 2)$ with $3 - \sqrt{7}, \sqrt{7} - 2 \in S$, which means that $\{2, 3\}$ is a basis of the column space of A. So $c(A) = 2$. But, any column of A cannot be spanned by the other two columns. That is, $sc(A) = 3$. ■

Let Γ be a nonempty subset of S^k and let $g \in S^k$. We'll say that g is a common factor of Γ if $\Gamma \subseteq \{\sigma g \mid \sigma \in S\}$.

Lemma 2.2. ([1]) Let Γ be any nonempty subset of $(U_+)^k$. Each pair of nonzero vectors in Γ has a common nonzero scalar multiple in $(U_+)^k$ if and only if Γ has a common factor in $(U_+)^k$. ■

Example 2.3. If $k > 1$, let

\[
A(k) = \begin{pmatrix}
1 & 1 & k - 1 \\
1 & k & 0 \\
1 & 0 & k
\end{pmatrix}.
\]
If \(0 < k < 1 \), let \(p = \lfloor \frac{1}{k} \rfloor \), \(q = p - 1 \) and

\[
A(k) = \begin{pmatrix}
1 & 1 - kq & kp - 1 \\
1 & k & 0 \\
1 & 0 & k
\end{pmatrix}.
\]

If \(k \) is a nonzero nonunit in \(S \), then \(c(A(k)) = 3 \) by definition of column rank. Multiplying the first column of \(A(k) \) by \(k \) reduces its column rank to 2. From this matrix \(A(k) \) we can obtain an \(m \times n \) matrix of column rank \(r \) such that the matrix obtained by multiplying the \(j \)th column of it by \(k \) has column rank \(r - 1 \) as follows; let \(P \) be the matrix obtained from \(I_n \) by interchanging its first and \(j \)th column, and let \(B \) be any \((m - 3) \times (n - 3) \) matrix over \(S \) of column rank \(r - 3 \). Then \(X = (A \oplus B)P \) is the required matrix of column rank \(r \).

3. Column rank 1 matrix

If \(X \) is a matrix over a semiring \(S \) and \(X = xa^t \), then the vectors \(x, a \) are called left and right factors of \(X \) respectively. In particular, \(a \) is called a basic right factor of \(X \) if \(a^t \) has column rank 1.

Theorem 3.1. For \(A \in M_{m,n}(S), c(A) = 1 \) if and only if \(A \) can be factored as \(xa^t \) for some \(a \in S^n, x \in S^m \), where \(x \neq 0 \) and \(a^t \) is a basic right factor.

Proof. Suppose that \(c(A) = 1 \) and denote the columns of \(A \) by \(a_1, \ldots, a_n \). Let \(\{x\} \) be a basis of the column space of \(A \) over \(S \), so that \(x = \sum_{j=1}^n \gamma_j a_j \) for some constants \(\gamma_1, \ldots, \gamma_n \) in \(S \). In particular, \(x \in S^m \) and \(x \neq 0 \). Now for each \(j \) between 1 and \(n \), we have \(a_j = \alpha_j x \) for some \(\alpha_j \in S \), since \(x \) spans the column space of \(A \). Letting \(a^t = [\alpha_1, \ldots, \alpha_n] \), we have \(a \in S^n \) and \(A = xa^t \). Further, \(x = \sum_{j=1}^n \gamma_j a_j = \sum_{j=1}^n \gamma_j \alpha_j x \), and hence \(1 = \sum_{j=1}^n \gamma_j \alpha_j \) since \(x \) is not zero. Thus 1 is in the column space of \(a^t \), and it follows that \(c(a^t) = 1 \). Consequently, \(a \) is a basic right factor of \(A \), as desired.

The converse is clear.

Identifying \(S^{mn} \) with \(M_{m,n}(S) \), we transfer the definitions to \(M_{m,n}(S) \). If \(V \neq \{0\} \) is a vector space in \(M_{m,n}(S) \) whose members have column rank at most 1, then \(V \) is a column rank 1 space. If \(V \) is a
vector space all of whose members have the same basic right factor b, then V is called a basic right factor space. Notice that in that case $W = \{a \in \mathbb{S}^m | ab' \in V\}$ is a vector space in \mathbb{S}^m. Conversely, if W is a vector space in \mathbb{S}^m and $c(b') = 1$ then $\{ab' | a \in W\}$ is a basic right factor space in $\mathbb{M}_{m,n}(\mathbb{S})$. Evidently basic right factor spaces are column rank 1 spaces.

Define a relation λ on the $m \times n$ column rank 1 matrices over \mathbb{S} by $A \lambda B$ if A and B have a common basic right factor.

Proposition 3.2. (1) λ is an equivalence relation on the $m \times n$ column rank 1 matrices over \mathbb{U}_+.
(2) For any nonempty set E of $m \times n$ column rank 1 matrices over \mathbb{U}_+, the members of E have a common basic right factor if and only if $X \lambda Y$ for all X,Y in E.

Proof. (1) Evidently λ is reflexive and symmetric. Suppose A,B,C are $m \times n$ column rank 1 matrices over \mathbb{U}_+ that satisfy $A \lambda B$ and $B \lambda C$. Then A,B and C can be factored as $A = xa', ya' = B = zb'$ and $C = wb'$ by Theorem 3.1, where a' and b' have column rank 1. Now a,b have a common nonzero scalar multiple because the left factors of B are nonzero. Therefore a,b have a common factor f by Lemma 2.2, and f' has column rank 1. So A and C can be factored as $A = (\alpha x)f'$ and $C = (\beta w)f'$ for some $\alpha, \beta \in \mathbb{U}_+$. Consequently $A \lambda C$ and hence λ is transitive.

(2) Suppose $X \lambda Y$ for all X,Y in E. For each X in E, select a basic right factor g_X and put $\Gamma = \{g_X | X \in E\}$. By the proof of (1), if A,B are in E, then A and B have a common basic right factor. Thus g_A and g_B have a common nonzero scalar multiple. Therefore Γ has a common factor f by Lemma 2.2, and f' has column rank 1. Thus f is a common basic right factor of all X in E.

The converse is immediate. \[\blacksquare\]

Thus the λ-equivalence classes are the maximal basic right factor spaces in $\mathbb{M}_{m,n}(\mathbb{U}_+)$. These in turn are of the form $V(a) = \{xa' | x \in \mathbb{U}_+\}$. where $c(a') = 1$.

4. **Spanning column rank 1 spaces**

In this section, we obtain a structure theorem for the vector space
of matrices whose members have spanning column rank at most 1. For this purpose we need some definitions and lemmas.

If \(A \) is a matrix over a semiring \(S \) and \(A \) has the form \(fa' \), then \(a' \) is called a strong right factor of \(A \) if \(a' \) has spanning column rank 1. Hwang, Kim and Song [4] showed the following Lemma:

Lemma 4.1. ([4]) For \(A \in \mathbb{M}_{m,n}(S) \), \(sc(A) = 1 \) if and only if \(A \) can be factored as \(fa' \) for some \(a \in S^n \) and \(f \in S^m \), where \(f \neq 0 \) and \(a' \) is a strong right factor.

If \(V \neq \{0\} \) is a vector space in \(\mathbb{M}_{m,n}(S) \) whose members have spanning column rank at most 1, then \(V \) is called a spanning column rank 1 space. If \(V \) is a vector space all of whose members have the same strong right factor \(b \), then \(V \) is called a strong right factor space. As the case of basic right factor space, \(W = \{a \in S^m \mid ab' \in V\} \) is a vector space in \(S^m \). Conversely, if \(W \) is a vector space in \(S^m \) and \(sc(b') = 1 \) then \(\{ab' \mid a \in W\} \) is a strong right factor space in \(\mathbb{M}_{m,n}(S) \). Evidently strong right factor spaces are spanning column rank 1 spaces.

Beasley and Pullman [1] obtained a Lemma for the common factor of two matrices as follows:

Lemma 4.2. ([1]) Suppose \(A \) and \(B \) are \(m \times n \) matrices of semiring rank 1 over \(U_+ \) and \(\min(m,n) \geq 2 \). Then \(r(A+B) = 1 \) if and only if \(A \) and \(B \) have a common factor.

For the common strong right factor of two matrices, we obtain the following Lemma:

Lemma 4.3. Suppose \(A, B \in \mathbb{M}_{m,n}(U_+) \) with \(sc(A) = sc(B) = 1 \) and \(\min(m,n) \geq 2 \). Then \(A \) and \(B \) have a common strong right factor if and only if \(sc(\alpha A + \beta B) = 1 \) for any \(\alpha, \beta \in U_+ \), not both zero.

Proof. By Lemma 4.1, we can write \(A = fa' \), and \(B = gb' \) for some \(f, g \in (U_+)^m \) and \(a, b \in (U_+)^n \) with \(sc(a') = sc(b') = 1 \). Assume that \(A \) and \(B \) have a common strong right factor \(r \). Then, for any \(\alpha, \beta \in U_+ \), \(\alpha A + \beta B = (\alpha \sigma f + \beta \tau g)r' \) for some \(\sigma, \tau \in U_+ \). Since \(sc(r') = sc(\sigma r') = sc(a') = 1 \), \(sc(\alpha A + \beta B) = 1 \) for any \(\alpha, \beta \), not both zero.

Conversely, assume that \(sc(\alpha A + \beta B) = 1 \) for any \(\alpha, \beta \in U_+ \), not both zero. Then we have \(r(\alpha A + \beta B) = 1 \) by (2.1). In particular, \(A \) and \(B \) have a common factor by Lemma 4.2.
Case 1) A and B have a common right factor r. Then we can write $A + B = (\sigma f + \tau g)r^t$ for some $\sigma, \tau \in \mathbf{U}$. Since $sc(r^t) = sc(\sigma r^t) = sc(a^t) = 1$, A and B have a common strong right factor r.

Case 2) A and B have a common left factor d. Then we may write $A = d\alpha a^t$ and $B = d\beta b^t$, where $\alpha a = (a_1, \cdots, a_n)^t$, and $\beta b = (b_1, \cdots, b_n)^t$ are strong right factors of A and B, respectively. Since there are infinitely many primes in \mathbf{U} (for the existence of infinite primes, see Lemma 2.2 in [4]), we can choose a prime π such that π does not divide all nonzero $b_i, i = 1, \cdots, n$. Consider

$$\pi^p A + B = d[\pi^p a_1 + b_1, \pi^p a_2 + b_2, \cdots, \pi^p a_n + b_n]$$

which has spanning column rank 1 for any positive integer p. Since the columns of $\pi^p A + B$ are finite in number, there exists a column j and a sequence of p's with the properties that i) the jth columns of $\pi^p A + B$ spans the column space for each term p in the sequence, and ii) the difference between two successive terms in the sequence is at most n. Therefore for infinitely many p.

(4.1)

$$\pi^p a_k + b_k = \mu_{pk}(\pi^p a_j + b_j)$$

for some $\mu_{hk} \in \mathbf{U}, k = 1, \cdots, n$. In (4.1), if $b_j = 0$, then b_k must be divided by nonunit π^p. But it is impossible since π does not divide b_k for at least one nonzero b_k. Thus $b_j \neq 0$. If the column space of $\pi^q A + B$ is spanned by its jth column, then we get

(4.2)

$$\pi^q a_k + b_k = \mu_{qk}(\pi^q a_j + b_j)$$

for some $\mu_{qk} \in \mathbf{U}, k = 1, \cdots, n$. From (4.1) and (4.2), we get $| \mu_{qk} - \mu_{pk} | \in \mathbf{U}$ for $q > p$. Since there are only n columns in $\pi^p A + B$ for each p, we can choose infinitely many pairs p and q such that they satisfy $p < q \leq p + n$ and the column spaces of $\pi^p A + B$ and $\pi^q A + B$ are spanned by their jth column respectively. For such pairs p and q, consider

(4.3)

$$| \mu_{qk} - \mu_{pk} | = \frac{\pi^q a_k + b_k}{\pi^q a_j + b_j} - \frac{\pi^p a_k + b_k}{\pi^p a_j + b_j} = \frac{((\pi^q - \pi^p - 1)(a_kb_j - a_j b_k))\pi^p}{(\pi^q a_j + b_j)(\pi^p a_j + b_j)}$$
Assume that $\mu_{qk} \neq \mu_{pk}$ for all such pairs p and q. Since π is prime, π is not divided by $\pi^p a_j + b_j$. If $\pi^p a_j + b_j$ has π as its prime factor, then $\pi^p a_j + b_j = \beta \pi$ for some $\beta \in U_+$. Thus $\pi(\beta - \pi^{p-1} a_j) = b_j$ and hence b_j is divided by π, which is a contradiction. Then π^p does not have any factor of $(\pi^p a_j + b_j)(\pi^q a_j + b_j)$. Since $|a_k b_j - a_j b_k|$ is fixed and $|\pi^{q-p} - 1|$ takes at most n values for any pairs p and q with $1 \leq q - p \leq n$, the prime factors of $|(\pi^q - 1)(a_k b_j - a_j b_k)|$ are finite in number. Thus we can choose sufficiently large pair p and q with $1 \leq q - p \leq n$ such that $|(\pi^{q-p} - 1)(a_k b_j - a_j b_k)|$ does not contain some prime factors of $(\pi^p a_j + b_j)(\pi^q a_j + b_j)$. Then the denominator of (4.3) contains some nonunit prime factors such that the numerator of (4.3) does not contain. Since U_+ contains no element of the form y/x, where y has a prime factor which x does not, the fractional expression of (4.3) is not an element of U_+. Thus we have a contradiction such that $|\pi_{qk} - \pi_{pk}| \notin U_+$ for some pair p and q with $p < q \leq p + n$. Hence $\mu_{qk} = \mu_{pk}$ for some p and q. Subtracting (4.1) from (4.2), we have $a_k = \mu_{pk} a_j$ for all $k = 1, \ldots, n$. And we get $b_k = \mu_{pk} b_j$ for all $k = 1, \ldots, n$ from (4.1). That is, $a = a_j r$ and $b = b_j r$ where $r = [\mu_{p1}, \ldots, \mu_{pn}]$ with $\mu_{pj} = 1$.

By cases 1) and 2), A and B have a common strong right factor r. ■

Define a relation ρ on the $m \times n$ spanning column rank 1 matrices over a semiring S by $: A \rho B$ if A, B have a common strong right factor. Then we have some properties on the relation ρ that are similar to those on the relation λ in section 3.

Proposition 4.4.

1) ρ is an equivalence relation on the $m \times n$ spanning column rank 1 matrices over U_+.

2) For any nonempty set F of $m \times n$ spanning column rank 1 matrices over U_+, the members of F have a common strong right factor if and only if $X \rho Y$ for all X, Y in F.

Proof. Similar to the proof of Proposition 3.2. ■

Thus the ρ-equivalence classes are the maximal strong right factor spaces in $M_{m,n}(U_+)$. These in turn are of the form $V(a) = \{xa^t \mid x \in (U_+)^m\}$, where a^t has spanning column rank 1.
THEOREM 4.5. Suppose that V is a subspace of $\mathbb{M}_{m,n}(U_+)$ with $\min(m,n) \geq 2$. Then V is a spanning column rank 1 space if and only if V is a strong right factor space.

Proof. Suppose V is a spanning column rank 1 space. For every A and B in V, $sc(\alpha A + \beta B) = 1$ for any $\alpha, \beta \in U_+$, not both zero. Then A and B have a common strong right factor by Lemma 4.3. Therefore V is a strong right factor space by Proposition 4.4.

The converse is immediate. ■

Thus we have a structure theorem for spanning column rank 1 space in $\mathbb{M}_{m,n}(U_+)$.

References

Seok-Zun Song
Department of Mathematics
Cheju National University
Cheju 690-756, Korea

Gi-Sang Cheon
Department of Mathematics
Dae Jin University
Pocheon 487-800, Korea

Gwang-Yeon Lee
Department of Mathematics
Hanseo University
Seosan, Chung-Nam 352-820, Korea