NOTE ON NONPATH-CONNECTED ORTHOMODULAR LATTICES

Eunsoon Park

Abstract. Some nonpath-connected orthomodular lattices are given: Every infinite direct product of orthomodular lattices containing infinitely many non-Boolean factors is a nonpath-connected orthomodular lattice. The orthomodular lattice of all closed subspaces of an infinite dimensional Hilbert space is a nonpath-connected orthomodular lattice.

1. Preliminaries

An orthomodular lattice (abbreviated by OML) is an ortholattice L which satisfies the orthomodular law: if $x \leq y$, then $y = x \lor (x' \land y)$ [5]. A Boolean algebra B is an ortholattice satisfying the distributive law: $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $\forall x, y, z \in B$.

A subalgebra of an OML L is a nonempty subset M of L which is closed under the operations \lor, \land and $'$. We write $M \leq L$ if M is a subalgebra of L. If $M \leq L$ and $a, b \in M$ with $a \leq b$, then the relative interval sublattice $M[a, b] = \{x \in M \mid a \leq x \leq b\}$ is an OML with the relative orthocomplementation \downarrow on $M[a, b]$ given by $c^\downarrow = (a \lor c') \land b = a \lor (c' \land b)$ $\forall c \in M[a, b]$. In particular, $L[a, b]$ will be denoted by $[a, b]$ if there is no ambiguity.

The commutator of a and b of an OML L is denoted by $a \ast b$, and is defined by $a \ast b = (a \lor b) \land (a \lor b') \land (a' \lor b) \land (a' \lor b')$. The set of all commutators of L is denoted by $ComL$ and L is said to be commutator-finite if $|ComL|$ is finite. For elements a, b of an OML, we say a commutes with b, in symbols $a \mathcal{C} b$, if $a \ast b = 0$. If M is a subset of an OML L, the set $C(M) = \{x \in L \mid x \mathcal{C} m \ \forall m \in M\}$ is called the commutant of M in L and the set $Cen(M) = C(M) \cap M$ is called the center of M. The

1991 AMS Classification: 06C15.
Key words: Orthomodular Lattice, Path-connected, Nonpath-connected.
set $C(L)$ is called the center of L and then $C(L) = \bigcap \{C(a) | a \in L\}$. An OML L is called irreducible if $C(L) = \{0, 1\}$, and L is called reducible if it is not irreducible.

A block of an OML L is a maximal Boolean subalgebra of L. The set of all blocks of L is denoted by \mathcal{A}_L. Note that $\bigcup \mathcal{A}_L = L$ and $\bigcap \mathcal{A}_L = C(L)$. An OML L is said to be block-finite if $|\mathcal{A}_L|$ is finite.

For any e in an OML L, the subalgebra $S_e = [0, e'] \cup [e, 1]$ is called the (principal) section generated by e. Note that for $A, B \in \mathcal{A}_L$, if $e \in (A \cap B)$ and $A \cap B = S_e \cap (A \cup B)$, then $A \cap B = S_e \cap A = S_e \cap B$.

Definition 1.1. For blocks A, B of an OML L define $A \overset{w}{\sim} B$ if and only if $A \cap B = S_e \cap (A \cup B)$ for some $e \in A \cap B$; $A \sim B$ if and only if $A \neq B$ and $A \cup B \leq L$; $A \approx B$ if and only if $A \sim B$ and $A \cap B \neq C(L)$.

A path in L is a finite sequence $B_0, B_1, ..., B_n$ ($n \geq 0$) in \mathcal{A}_L satisfying $B_i \sim B_{i+1}$ whenever $0 \leq i < n$. The path is said to join the blocks B_0 and B_n. The number n is said to be the length of the path. A path is said to be proper if and only if $n = 1$ or $B_i \approx B_{i+1}$ holds whenever $0 \leq i < n$. A path is called to be strictly proper if and only if $B_i \approx B_{i+1}$ holds whenever $0 \leq i < n$ [1].

Note that $A \approx B$ implies $A \sim B$, and $A \sim B$ implies $A \overset{w}{\sim} B$. Some authors, for example Greechie, use the phrase “A and B meet in the section S_e” to describe $A \overset{w}{\sim} B$ [3].

Definition 1.2. Let L be an OML, and $A, B \in \mathcal{A}_L$. We will say that A and B are path-connected in L, strictly path-connected in L if A and B are joined by a proper path, a strictly proper path, respectively. We will say A and B are nonpath-connected if there is no proper path joining A and B, and L is called nonpath-connected if there exist two blocks which are nonpath-connected. An OML L is called path-connected in L, strictly path-connected in L if any two blocks in L are joined by a proper path, a strictly proper path, respectively. An OML L is called relatively path-connected iff each $[0, x]$ is path-connected for all $x \in L$.

The following two lemmas are well known.

Lemma 1.3. If L is an OML with two blocks A, B and $a \in A \setminus B$ and $b \in B \setminus A$, then $A \cap B = S_{a \ast b}$. If $A \cap B = S_e$, then $c = a \ast b$ [1].
Let A, B be two blocks of an OML L. If $A \sim B$ holds, then there exists a unique element $e \in A \cap B$ satisfying $A \cap B = (A \cup B) \cap S_e$ by lemma 2.2. Therefore we say that A and B are linked at e (strongly linked at e) if $A \sim B$ ($A \approx B$) and use the notation $A \sim_e B$ ($A \approx_e B$).

Lemma 1.4. [Bruns] If L_1, L_2 are OMLs, $L = L_1 \times L_2$, $A, B \in A_{L_1}$ and $C, D \in A_{L_2}$, then $A \times C \sim B \times D$ holds in L if and only if either $A = B$ and $C \sim D$ or $A \sim B$ and $C = D$. If A and B are linked at a then $A \times C$ and $B \times C$ are linked at $(a, 0)$. If C and D are linked at c then $A \times C$ and $A \times D$ are linked at $(0, c)$ [1].

An OML L is called the horizontal sum of a family $(L_i)_{i \in I}$ (denoted by $\sigma(L_i)_{i \in I}$) of at least two subalgebras, if $\bigcup L_i = L$, and $L_i \cap L_j = \{0, 1\}$ whenever $i \neq j$, and one of the following equivalent conditions is satisfied:

1. if $x \in L_i \setminus L_j$ and $y \in L_j \setminus L_i$, then $x \lor y = 1$;
2. every block of L belongs to some L_i;
3. if S_i is a subalgebra of L_i, then $\bigcup S_i$ is a subalgebra of L [2].

Note that the horizontal sum of a family $(L_i)_{i \in I}$ of path-connected OML $L_i (i \in I)$ is a path-connected OML.

Bruns introduced a construction which is more general than the horizontal sum, and proved the following lemma 1.5 [1].

An OML L is said to be the weak horizontal sum of a family $(L_i)_{i \in I}$ of subalgebras if and only if there exists an isomorphism f of L onto a product of $L_0 \times L'$ of a Boolean algebra L_0 and an OML L' such that the subalgebra L_i of L correspond via f to subalgebras of the form $L_0 \times L'_i$ and L' is the the horizontal sum of the family $(L'_i)_{i \in I}$.

Lemma 1.5. Every OML L with only two blocks is isomorphic with an OML of the form $B \times (A \circ C)$ where A, B, C are Boolean algebras and $A \circ C$ is the horizontal sum of A and C. In other words, every OML with only two blocks is the weak horizontal sum of its blocks [1].

2. Non path-connected orthomodular lattices

We know that every finite direct product of path-connected OMLs is path-connected [8], and we have the following class of nonpath-connected OMLs. We can find some examples and properties of path-connected OMLs in [1, 2, 7, 8].
PROPOSITION 2.1. Every infinite direct product of OMLs containing infinitely many non-Boolean factors is a nonpath-connected OML.

PROOF. Let \(L \cong \prod_{\alpha \in \mathcal{I}} L_{\alpha} \) where \(|\mathcal{I}| \geq \omega \) and each \(L_{\alpha} \) is OML. Let \(J = \{ j \in \mathcal{I} \mid L_j \text{ is a Boolean algebra} \} \). Then \(B = \prod_{j \in J} L_j \) is a Boolean factor of \(L \). Thus \(L \cong B \times \prod_{i \in I \setminus J} L_i \) such that \(|I \setminus J| \geq \omega \) and each \(L_i \ (i \in I \setminus J) \) is non Boolean path-connected OML. Therefore it is sufficient to show that \(\prod_{i \in I \setminus J} L_i \) is not path-connected by lemma 1.4. Since each \(L_i \ (i \in I \setminus J) \) is a path-connected OML containing at least two distinct blocks, there exist distinct \(A_i, B_i \in A_{L_i}, \forall i \in I \setminus J \) such that \(A_i \cup B_i \leq L_i \). Let \(A = \prod_{i \in (I \setminus J)} A_i \) and \(B = \prod_{i \in (I \setminus J)} B_i \). Then \(A \) and \(B \) are not path-connected since there is no path of finite length from \(A \) to \(B \) by lemma 1.4.

For the remainder of this paper, let \(H \) be an infinite dimensional Hilbert space over the real or complex numbers. A linear manifold is a nonempty subset \(M \) of \(H \) such that if \(x \) and \(y \) are in \(M \), then \(ax + by \in M \) for every pair of complex numbers \(a \) and \(b \). A closed subspace is a closed linear manifold. The closed subspace spanned by an arbitrary subset \(M \) of \(H \) is defined to be the intersection of all closed subspaces containing \(M \). The vector sum of two closed subspaces \(M \) and \(N \) in symbols \(M + N \), is defined to be the set of all vectors of the form \(x + y \) with \(x \in M \) and \(y \in N \). If \(M \) and \(N \) are closed subspaces, we use the symbol \(M \vee N \) for the closed subspace spanned by \(M \) and \(N \). It follows by this definition that \(M \vee N \) is the smallest closed subspace containing both \(M \) and \(N \).

We need the following lemmas to prove that the OML \(C(H) \) of all closed subspaces of an infinite dimensional Hilbert space \(H \) is a nonpath-connected OML.

LEMMA 2.2. Let \(A, B \) be distinct atomic blocks of \(C(H) \) with \(A \cup B \leq L \). Then there exists \(\alpha \in \text{Com} \ C(H) \) such that \(A \cup B = (A \cup B)[0, \alpha'] \oplus (A \cup B)[0, \alpha] \) where \((A \cup B)[0, \alpha] \cong MO2 \) and \((A \cup B)[0, \alpha'] \) is a Boolean algebra. In particular, \(h(\alpha) = 2 \) in \(C(H) \).

PROOF. We know that \(A \cup B = (A \cup B)[0, \alpha'] \oplus (A \cup B)[0, \alpha] \) for some \(\alpha \in \text{Com} \ C(H) \) by lemma 1.3 where \((A \cup B)[0, \alpha] \) is a horizontal sum of \(A[0, \alpha] \) and \(B[0, \alpha] \), and \((A \cup B)[0, \alpha'] \) is a Boolean algebra by lemma 1.5. Therefore it is sufficient to show that \(h(\alpha) = 2 \). Let \(a, b \) be
two distinct atoms of $C(H)$ such that $a \in A \setminus B$ and $b \in B \setminus A$. Then $\alpha = a \lor b$ since $(A \cup B)[0, \alpha]$ is a horizontal sum of $A[0, \alpha]$ and $B[0, \alpha]$. Thus $h(\alpha) = h(a \lor b) = 2$ since a, b are atoms. We are done. ■

Lemma 2.3. If F is a finite dimensional linear manifold in a Hilbert space H, and if S is a closed subspace in H, then the vector sum $F + S$ is necessarily closed (and hence is therefore equal to the span $F \lor S$) [p9, 6].

As a consequence of lemma 2.3 every finite dimensional linear manifold is closed, since $S = \{0\}$ is a closed subspace of H.

Lemma 2.4. If F is a finite dimensional closed subspace of a Hilbert space H and S is a closed subspace of H such that S^\perp is an infinite dimensional closed subspace of H. Then the closed subspace $F \lor S$ in $C(H)$ spanned by F and S is a proper closed subspace of H.

Proof. The closed subspace $F \lor S$ of H spanned by F and S is equal to $F + S$ by lemma 2.3. Thus the quotient space $(F \lor S)/S = (F + S)/S$ is a proper closed subspace in S^\perp since F is finite dimensional and S^\perp is infinite dimensional. Hence $S \lor F$ is a proper closed subspace of H. ■

Lemma 2.5. If B is a block of $A(C(H))$, then there exists a unique element $x \in C(H)$ such that $B = B[0, x] \oplus B[0, x']$ where $B[0, x]$ is atomic and $B[0, x']$ totally nonatomic. Moreover, B is atomic iff $x = 1$; and B is totally nonatomic iff $x = 0$.

Proof. Let $\{a_i\}_{i \in I}$ be the set of all atoms in a block B of the OML $C(H)$. Then $\bigvee_{i \in I} a_i$ exists since $C(H)$ is complete [p65, 5]. Let $x = \bigvee_{i \in I} a_i$. Then $x \in B$ since B is subcomplete, $B[0, x]$ is atomic and $B[0, x']$ is totally nonatomic. ■

Lemma 2.6. Let A be an atomic block of $C(H)$, and B be a nonatomic block of $C(H)$. Then $A \cup B \not\subseteq C(H)$.

Proof. Suppose $A \cup B \subseteq C(H)$. Then $A \cup B = (A \cup B)[0, \alpha] \oplus (A \cup B)[0, \alpha']$ for some $\alpha \in Com C(H)$ by lemma 1.3 where $(A \cup B)[0, \alpha]$ is a horizontal sum of $A[0, \alpha]$ and $B[0, \alpha]$, and $(A \cup B)[0, \alpha']$ is a Boolean algebra by lemma (1.5). Moreover, $(A \cup B)[0, \alpha']$ is atomic since $A[0, \alpha']$
is atomic and \((A \cup B)[0, \alpha'] = A[0, \alpha']\). By lemma 2.5, there exists \(x \in B\) such that \(B[0, x]\) is totally nonatomic. Since \(A[0, \alpha']\) is atomic, \(B[0, x \wedge \alpha']\) is totally nonatomic and \(x \wedge \alpha' \in B[0, \alpha'] = A[0, \alpha']\) it follows that \(x \wedge \alpha' = 0\). Thus \(x = (x \wedge \alpha) \lor (x \wedge \alpha') = x \wedge \alpha\) so that \(x \leq \alpha\).

We may assume that \(0 < x < \alpha\). Moreover \(h(x) = \infty\) since \([0, x]\) is nonatomic. Let \(a\) be an atom of \(A[0, \alpha]\). Then \(a \lor x = a \lor (x' \wedge \alpha) = \alpha\), since \((A \cup B)[0, \alpha]\) is a horizontal sum of \(A[0, \alpha]\) and \(B[0, \alpha]\) and \(x' \wedge \alpha\) is the relative orthocomplement of \(X\) in \((A \cup B)[0, x]\). This contradicts \(a \lor (x' \wedge \alpha) < \alpha\) by applying lemma 2.4 to the Hilbert space \(\alpha\) since \(h(a) = 1\), \(h(\alpha) = \infty\), \(x\) is the orthocomplement of \(x' \wedge \alpha\) in \(B[0, \alpha]\), and \(h(x) = \infty\). We are done.

Lemma 2.7. Let \(A\) and \(B\) be atomic path-connected blocks of a \(C(H)\) with a path \(A = C_0 \sim C_1 \sim C_2 \sim \ldots \sim C_{(n-1)} \sim C_n = B\). Then \(A \cap B \supseteq S_x \cap (A \cup B)\) for some \(x \in (A \cap B)\) with \(h(x) \leq 2n\).

Proof. We will prove the conclusion by induction on the length \(k\) of the path joining atomic blocks \(A\) and \(B\) of a \(C(H)\). If \(k = 1\), then \(A = C_0 \sim C_1 = B\). Thus \(A \cap B = S_x \cap (A \cup B)\) for some \(x \in (A \cap B)\) where \(h(x) = 2\) by lemma 2.2. Assume that the conclusion of the lemma is true for each path joining two blocks of \(C(H)\) with the length less than or equal to \(n - 1\). Let \(A = C_0 \sim C_1 \sim \ldots \sim C_{n-1} \sim C_n = B\) be a path from \(A\) to \(B\) of length \(n\). We may assume that \(C_{n-1} \neq A\) otherwise, \(A = C_{n-1} \sim B\) we are done by the case \(k = 1\). By induction hypothesis, \((A \cap C_{n-1}) \supseteq S_x \cap (A \cup C_{n-1})\) for some \(x \in (A \cap C_{n-1})\) with \(h(x) \leq 2(n - 1)\), and \((C_{n-1} \cap B) \supseteq S_y \cap (C_{n-1} \cup B)\) for some \(y \in (C_{n-1} \cap B)\) with \(h(y) \leq 2\). Thus \((A \cap B) \supseteq (A \cap C_{n-1}) \cap (C_{n-1} \cap B) \supseteq (S_x \cap (A \cup C_{n-1})) \cap (S_y \cap (C_{n-1} \cup B))\), and \((S_x \cap (A \cup C_{n-1})) \cap (S_y \cap (C_{n-1} \cup B)) \supseteq S_{(x \lor y)} \cap (A \cup B)\) since \(S_x \cap (A \cup C_{n-1}) = S_x \cap A = S_x \cap C_{n-1},\)

\(S_y \cap (C_{n-1} \cup B) = S_y \cap C_{n-1} = S_y \cap B\) and \(S_x \cap S_y \supseteq S_{(x \lor y)}\). Moreover, \(x \lor y \in (A \cap B)\) and \(h(x \lor y) \leq h(x) + h(y) \leq 2(n - 1) + 2 = 2n\). We are done.

Lemma 2.8. [Greechie] Let \(L\) be an OML, let \(\{e_\alpha \mid \alpha \in I\}\) be a maximal orthogonal family of nonzero elements of \(L\), let \(\{B_\alpha \mid \alpha \in I\}\) be a collection of atomic blocks of \(L\) such that \(e_\alpha \in B_\alpha\) for all \(\alpha \in I\), let \(M = \bigcup \{B_\alpha[0, e_\alpha] \mid \alpha \in I\}\), and let \(B = C(M)\). Then \(B\) is an atomic block of \(L\) [3].
Now, we are ready to prove one of our main theorems.

Theorem 2.9. The OML $\mathcal{C}(H)$ of all closed subspaces of an infinite dimensional Hilbert space H is a nonpath-connected OML.

Proof. First, assume that H is a separable Hilbert space. Let (e_1, e_2, e_3, \ldots) be an orthonormal basis of the separable Hilbert space H. Let $f_{2i-1} = \frac{e_{2i-1} + e_{2i}}{\sqrt{2}}$ and $f_{2i} = \frac{e_{2i-1} - e_{2i}}{\sqrt{2}} \ \forall (1 \leq i < \infty)$. Then (f_1, f_2, f_3, \ldots) is an orthonormal basis of H. Let $[e_i] = \{ \lambda e_i \mid \lambda \in \mathbb{C} \}$ and $[f_i] = \{ \lambda f_i \mid \lambda \in \mathbb{C} \} \ \forall 1 \leq i$ where \mathbb{C} is the complex numbers, let $A = \mathbb{C}([e_i] \mid 1 \leq i)$, and let $B = \mathbb{C}([f_i] \mid 1 \leq i)$. Then A and B are atomic blocks in $\mathcal{C}(H)$ by lemma 2.8 since $\{ [e_i] \mid i \in I \}$ and $\{ [f_i] \mid i \in I \}$ are maximal orthogonal families of atoms of $\mathcal{C}(H)$. We claim that A and B are nonpath-connected in $\mathcal{C}(H)$. Suppose A and B are path-connected with a path $A = C_0 \sim C_1 \sim \ldots \sim C_{n-1} \sim C_n = B$. $A \neq B$ and $A \not\sim B$, since $A \cup B \not\subseteq \mathcal{C}(H)$ by lemma 2.2. Thus $n \geq 2$. If the path joining A and B contains only atomic blocks, then by lemma 2.7 $A \cap B \supseteq S_x \cap (A \cup B)$ for some $x \in A \cap B$ with $h(x) \leq 2n$, contradicting there is no $x \in A \cap B$ such that $A \cap B \supseteq S_x \cap (A \cup B)$ with $h(x) \leq 2n$ by our choice of A and B. Thus we may assume that one of $C_1, C_2, \ldots, C_{n-1}$ is nonatomic. Let C_i be the nonatomic block with the smallest index in the path joining A and B, and hence C_{i-1} is atomic. Thus $C_{i-1} \sim C_i$, and hence $C_{i-1} \cup C_i \subseteq \mathcal{C}(H)$ contradicting $C_{i-1} \cup C_i \not\subseteq \mathcal{C}(H)$ by lemma 2.6. Therefore A and B are nonpath-connected.

Finally, if H is nonseparable infinite dimensional Hilbert space, then there exists $x \in \mathcal{C}(H)$ such that x is a separable infinite dimensional Hilbert subspace of H. Let (g_1, g_2, g_3, \ldots) be an orthonormal basis of x. Let $h_{2i-1} = \frac{g_{2i-1} + g_{2i}}{\sqrt{2}}$ and $h_{2i} = \frac{g_{2i-1} - g_{2i}}{\sqrt{2}} \ \forall (1 \leq i < \infty)$. Then (h_1, h_2, h_3, \ldots) is an orthonormal basis of x. Let $[g_i] = \{ \lambda g_i \mid \lambda \in \mathbb{C} \}$ and $[h_i] = \{ \lambda h_i \mid \lambda \in \mathbb{C} \} \ \forall 1 \leq i$ where \mathbb{C} is the set of all complex numbers, let $D = \mathbb{C}([g_i] \mid 1 \leq i)$, and let $E = \mathbb{C}([h_i] \mid 1 \leq i))$. Then D and E are an atomic blocks in x by the above argument. Let F be an atomic block of x'. Then $D \oplus F$ and $E \oplus F$ are distinct atomic blocks of $\mathcal{C}(H)$. Now, the desired conclusion follows by applying lemmas 2.2, 2.7 and 2.6 to the blocks $D \oplus F$ and $E \oplus F$. \blacksquare
Corollary 2.10. H is a finite dimensional Hilbert space if and only if $C(H)$ is path-connected.

Proof. If H is finite dimensional, then $C(H)$ is chain-finite. Thus $C(H)$ is path-connected since every chain-finite OML is path-connected[7]. Conversely, if H is infinite dimensional, then $C(H)$ is nonpath-connected by theorem 2.9.

References

Department of Mathematics
Soongsil University
Seoul 156-743, Korea