ON A SPECTRAL EQUIVALENCE

WOO YOUNG LEE

ABSTRACT. In this note we prove that Apostol's conjecture is true for the operators having totally disconnected spectra and also give a result related on compalance.

1. Introduction

Throughout this note suppose X is a complex Banach space and write $\mathcal{L}(X)$ for the set of all bounded linear operators on X. Also we write $\sigma(T)$ and $\sigma_e(T)$ for the spectrum and the essential spectrum, respectively, of T, and ∂K and $\text{iso} K$ for the topological boundary and the set of all isolated points, respectively, of $K \subseteq \mathbb{C}$. We recall ([1, 7, 8, 9, 10]) that if Ω is an open set in \mathbb{C}, and for each λ in Ω if $T(\lambda) \in \mathcal{L}(X)$ and $S(\lambda) \in \mathcal{L}(X)$, then the operator functions $T(\cdot)$ and $S(\cdot)$ are called (globally) equivalent on Ω if there exist operator functions $E : \Omega \to \mathcal{L}(X)$ and $F : \Omega \to \mathcal{L}(Y)$, which are analytic on Ω, such that

$$T(\lambda) = F(\lambda)S(\lambda)E(\lambda), \quad \lambda \in \Omega,$$

and, in addition, $E(\lambda)$ and $F(\lambda)$ are invertible for each $\lambda \in \Omega$. In this note we shall be concerned mainly with the case when $T(\lambda) = \lambda - T_1$ and $S(\lambda) = \lambda - T_2$ with $T_1, T_2 \in \mathcal{L}(X)$. Given an operator function $T : \Omega \to \mathcal{L}(X)$ and a Banach space Z, we call the operator function

$$\begin{bmatrix} T(\cdot) & 0 \\ 0 & I_z \end{bmatrix} : \Omega \to \mathcal{L}(X \oplus Z)$$

Received August 16, 1994.
AMS Classification: Primary 47A10.
Key words: Spectral equivalence, similarity, compalance spectral picture.
The present study was partially supported by the KOSEF Grant No. 941-0100-028-2 and Faculty Research Fund, Sung Kyun Kwan University, 1993.
the Z-extension of $T(\cdot)$.

The following lemma shows that for an operator function of the form $\lambda - T$ the procedure of linearization by extension and equivalence does not simplify further the operator T and leads to operators that are similar to T.

Lemma 1. ([13, Theorem 2]) Let $T_1, T_2 \in \mathcal{L}(X)$ and suppose for some Banach space Z the extensions $(\lambda - T_1) \oplus I_Z$ and $(\lambda - T_2) \oplus I_Z$ are equivalent on some open set Ω containing $\sigma(T_1) \cup \sigma(T_2)$. Then T_1 and T_2 are similar. In fact, if the equivalence is given by

$$
\begin{bmatrix}
\lambda - T_1 & 0 \\
0 & I_Z
\end{bmatrix} = F(\lambda)
\begin{bmatrix}
\lambda - T_2 & 0 \\
0 & I_Z
\end{bmatrix} E(\lambda),
\lambda \in \Omega,
$$

then $ST_1 = T_2 S$, where $S \in \mathcal{L}(X)$ is an invertible operator defined by

$$
S = \frac{1}{2\pi i} \int_{\Gamma} (\lambda - T_2)^{-1} \rho F(\lambda)^{-1} \tau d\lambda,
$$

where Γ is the boundary of some bounded Cauchy domain Δ such that $(\sigma(T_1) \cup \sigma(T_2)) \subset \Delta \subset \overline{\Delta} \subset \Omega$, the map $\rho : X \oplus Z \to X$ is the projection of $X \oplus Z$ onto X and the map $\tau : X \to X \oplus Z$ is the natural embedding of X into $X \oplus Z$.

For linear functions $\lambda - T_1$ and $\lambda - T_2$, global equivalence on \mathbb{C} means just that T_1 and T_2 are similar. The converse is also true because

$$
ST_1 = T_2 S \text{ for an invertible } S \in \mathcal{L}(X) \implies \lambda - T_1 = S^{-1}(\lambda - T_2) S.
$$

Thus we have

(1.1) \quad T_1 and T_2 are similar if and only if $\lambda - T_1$ and $\lambda - T_2$ are equivalent on \mathbb{C}.

We also recall that given λ_0 in Ω, we say that $T(\cdot)$ and $S(\cdot)$ are (locally) equivalent at λ_0 if there exists an open neighborhood \mathcal{U} of λ_0 in Ω such that

$$
T(\lambda) = F(\lambda) S(\lambda) E(\lambda), \quad \lambda \in \mathcal{U},
$$
where $E(\lambda)$ and $F(\lambda)$ are invertible operators which depend analytically on λ in \mathcal{U}. In other words, the operator functions $T(\cdot)$ and $S(\cdot)$ are equivalent at λ_0 if they are globally equivalent on an open neighborhood of λ_0.

If two operator functions $T(\cdot)$ and $S(\cdot)$ are globally equivalent on an open set Ω, then, obviously, $T(\cdot)$ and $S(\cdot)$ are locally equivalent at each point of Ω. For certain special classes of operator functions the converse statement is also true, however, in general, local equivalence at each point of Ω does not imply global equivalence on Ω (see [9, 14, 15]). But the question whether or not local equivalence implies global equivalence in case when $T(\lambda) = \lambda - T_1$ and $S(\lambda) = \lambda - T_2$ with $T_1, T_2 \in \mathcal{L}(X)$ is an unsolved problem (see [8]). Apostol ([1]) conjectured that the answer is affirmative. In view of (1.1), the conjecture can be rephrased as follows:

Apostol's Conjecture. If $\lambda - T_1$ and $\lambda - T_2$ are equivalent at every point of \mathbb{C} then T_1 and T_2 are similar.

The above conjecture was proved for certain special classes of operators: for example, for normal operators ([1]), the unilateral shifts of finite multiplicity ([1]), and the compact operators ([7]).

In this note we prove that Apostol's conjecture is true for the operators having totally disconnected spectra and also give a result related on compalance.

2. Equivalence and similarity

Our main result is the following:

Theorem 2. Let $T_1, T_2 \in \mathcal{L}(X)$ and suppose T_1 and T_2 have totally disconnected spectra. If $\lambda - T_1$ and $\lambda - T_2$ are equivalent at every point of \mathbb{C} then T_1 and T_2 are similar.

Proof. Suppose for some open neighborhood $\mathcal{U}(\mu)$ of each $\mu \in \mathbb{C}$,

\[(2.1) \quad \lambda - T_1 = F(\lambda)(\lambda - T_2)E(\lambda), \quad \lambda \in \mathcal{U}(\mu), \]

where $E(\lambda)$ and $F(\lambda)$ are invertible and analytic on $\mathcal{U}(\mu)$. Let $\sigma(T_1)$ be totally disconnected. Since $\sigma(T_1)$ is compact it follows that if $\mu \in \sigma(T_1)$
and \(\mathcal{U}(\mu) \) is an open neighborhood of \(\mu \) which satisfies (2.1), then there is a subset \(\mathcal{V} \) of \(\sigma(T_1) \) that is both open and closed and such that \(\mu \in \mathcal{V} \subseteq \mathcal{U}(\mu) \). Thus both \(\mathcal{V} \) and \(\sigma(T_1) \setminus \mathcal{V} \) are closed subsets of \(\sigma(T_1) \), that is, \(\mathcal{V} \) is an isolated part of \(\sigma(T_1) \). Further, by (2.1), \(\mathcal{V} \) is also an isolated part of \(\sigma(T_2) \). Thus we can find the Riesz projections \(P_1 \) and \(P_2 \) of, respectively, \(T_1 \) and \(T_2 \), corresponding to \(\mathcal{V} \). Write \(T_1 \) and \(T_2 \) as \(2 \times 2 \) operator matrices relative to the decomposition \(X = \text{Im} P_i \oplus \text{Ker} P_i \) \((i = 1, 2) \):

\[
T_1 = \begin{bmatrix} T_{11} & 0 \\ 0 & T_{12} \end{bmatrix} \quad \text{and} \quad T_2 = \begin{bmatrix} T_{21} & 0 \\ 0 & T_{22} \end{bmatrix}.
\]

Then \(\sigma(T_{11}) = \sigma(T_{21}) = \mathcal{V} \) and \(\lambda - T_{12} \) and \(\lambda - T_{22} \) are invertible for all \(\lambda \in \mathcal{V} \). Define

\[
E_0(\lambda) = \begin{bmatrix} I & 0 \\ 0 & \lambda - T_{22} \end{bmatrix} E(\lambda), \quad \lambda \in \mathcal{V}
\]

and

\[
F_0(\lambda) = \begin{bmatrix} I & 0 \\ 0 & (\lambda - T_{12})^{-1} \end{bmatrix} F(\lambda), \quad \lambda \in \mathcal{V}.
\]

Then \(E_0(\lambda) \) and \(F_0(\lambda) \) are invertible and analytic on \(\mathcal{V} \). Furthermore,

\[
\begin{bmatrix} \lambda - T_{11} & 0 \\ 0 & I \end{bmatrix} = F_0(\lambda) \begin{bmatrix} \lambda - T_{21} & 0 \\ 0 & I \end{bmatrix} E_0(\lambda), \quad \lambda \in \mathcal{V}.
\]

Since \(\sigma(T_{11}) = \sigma(T_{21}) = \mathcal{V} \), it follows from Lemma 1 that \(T_{11} \) and \(T_{21} \) are similar. This process with \(\sigma(T_i) \cap \mathcal{V}^c \) must stop after a finite number of steps since \(\sigma(T_1) \) is compact. Thus we can construct piecewise the needed similarity.

Note that in Theorem 2 it is not necessary to assume that both \(T_1 \) and \(T_2 \) have totally disconnected spectra. In fact it suffices to assume that one of the operators has a totally disconnected spectrum, and then the similarity implies that the other also has a totally disconnected spectrum.

Corollary 3. Let \(T_1, T_2 \in \mathcal{L}(X) \) and suppose \(\sigma_e(T_1) \) is totally disconnected. If \(\lambda - T_1 \) and \(\lambda - T_2 \) are equivalent at every point of \(\mathbb{C} \) then \(T_1 \) and \(T_2 \) are similar.
PROOF. Since by the punctured neighborhood theorem ([7, 11, 12]),
\[\partial \sigma(T) \setminus \sigma_e(T) \subseteq \text{iso } \sigma(T), \]
it follows that if \(\sigma(T) \) has a connected part then \(\sigma_e(T) \) contains a
connected set, say the boundary of the component. Thus if \(\sigma_e(T_1) \) is totally
disconnected then so is \(\sigma(T_1) \). Therefore by Theorem 2 and the preceding
remark, \(T_1 \) and \(T_2 \) are similar.

3. Equivalence and compalence

In the section suppose \(H \) is a complex separable Hilbert space. We
recall ([17]) that if \(T_1, T_2 \in \mathcal{L}(H) \) then \(T_1 \) and \(T_2 \) are said to be compalent
if there exists an unitary operator \(W \in \mathcal{L}(H) \) and a compact operator
\(K \in \mathcal{L}(H) \) such that \(WT_1W^* + K = T_2 \) and that an operator \(T \in \mathcal{L}(H) \)
is essentially normal if \(T^*T - TT^* \) is a compact operator. The spectral
picture (cf. [3, 5, 17]) of an operator \(T \in \mathcal{L}(H) \), denoted by \(\mathcal{SP}(T) \), is
the structure consisting of \(\sigma_e(T) \), the collection of holes and pseudoholes
in \(\sigma_e(T) \), and the indices associated with these holes and pseudoholes.
Then the celebrated Brown-Douglas-Fillmore Theorem ([2]) says that if
\(T_1 \) and \(T_2 \) are essentially normal then

\[(3.1) \quad T_1 \text{ and } T_2 \text{ are compalent } \text{ if and only if } \mathcal{SP}(T_1) = \mathcal{SP}(T_2). \]

We are ready for:

THEOREM 4. Suppose \(A, B \in \mathcal{L}(H) \) such that \(\sigma_e(A) \) is an arc and \(B \)
is a Riesz operator. Let \(T_1 = A \otimes B \) and \(T_2 \) be subnormal on \(H \otimes H \). If
\(\lambda - T_1 \) and \(\lambda - T_2 \) are equivalent at every point of \(\mathbb{C} \) then \(T_1 \) and \(T_2 \) are
compalent.

PROOF. Since \(B \) is a Riesz operator, we have ([4])
\[\sigma_e(B) \subseteq \{0\} \quad \text{and} \quad \sigma(B) \text{ consists of isolated points}. \]
Thus if \(\sigma_e(A) \) is an arc then
\[\sigma_e(T_1) = \sigma_e(A) \cdot \sigma(B) \bigcup \sigma(A) \cdot \sigma_e(B), \]
which has planar Lebesgue measure zero. Observe that the local equivalence of $\lambda - T_1$ and $\lambda - T_2$ gives that

$$
\sigma(T_1) = \sigma(T_2), \quad \sigma_\epsilon(T_1) = \sigma_\epsilon(T_2), \quad \text{and}
$$

$$
\text{index} (\lambda - T_1) = \text{index} (\lambda - T_2) \quad \text{for all } \lambda \notin \sigma_\epsilon(T_1),
$$

which implies that T_1 and T_2 have the same spectral picture. If $\pi : \mathcal{L}(H) \to \mathcal{C}(H)$ ($\mathcal{C}(H)$ is the Calkin algebra) is the Calkin homomorphism then $\pi(T_1)$ and $\pi(T_2)$ are also subnormal. Thus by an argument of Stampfli ([16]), $\pi(T_1)$ and $\pi(T_2)$ are normal and hence T_1 and T_2 are essentially normal. Therefore, by (3.1), T_1 and T_2 are compalent.

Corollary 5. Let $T_1, T_2 \in \mathcal{L}(H)$ be pure quasinormal and $\dim(\text{ran } T_1) < \infty$. If $\lambda - T_1$ and $\lambda - T_2$ are equivalent at every point of \mathbb{C} then T_1 and T_2 are compalent.

Proof. If T is pure quasinormal, then by [6, Theorem III.3.2], T is unitarily equivalent to $U_\alpha \otimes |T|$, where U_α denotes the unilateral shift of multiplicity α and $|T| = (T^*T)^{1/2} |(\text{ran } T)^\perp$. Further, since α is the same as the dimension of $(\text{ran } T)^\perp$, the result follows from Theorem 4.

In view of Theorem 4 and Corollary 5, we have an interesting problem:

Problem. Under what condition, does compalence imply similarity?

We were unable to solve this problem. We however conjecture that compalence under local equivalence implies similarity.

References

Department of Mathematics
Sung Kyun Kwan University
Suwon 440-746, Korea