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ON GROUP EXTENSIONS OF
MINIMAL HOMEOMORPHISMS II

Young-KEY KiMm

ABSTRACT. We define a group extension and characterized some prop-
erties of the group extension. In particular, we show that the quotient
map v is a continuous group isomorphism and subgroup H;(H3) is nor-
mal in Gl(Gz)

Let X be a compact monothetic group. Assume, that T : X — X is
defined by the formula
T(z)=a+z,

where a is an element of X such that the set of all powers na, n integers,
is dense in X. Then T is a minimal homeomorphism of X. Denote by
C(T) the centralizator of T i.e. the set of all continuous transformations
of X commuting with T. Then

(A)

S € C(T) iff there exists b€ X such that S(z) =b+z for all z € X.

Let G be a compact metric group (not necessarily abelian). For a
continuous ¢ : X — G we define a homeomorphism T, : X xG —» X xG
setting

Ts;‘(l"g) = (T(T),(P(.T)(J)

Such homeomorphism is not necessarily minimal. We will call T, a group
extension, or, indicating the group, a G-eztension of T. If F is a closed
subgroup of G then we can consider the action of T, on X x F and
will denote it by T, r. We will call T, r a natural factor of T, and
an isometric ertension of T. If F is normal in G, then we call T, F,

Received August 10, 1994. Revised February 21, 1995.
AMS Classification: 54H.
Key words: group extension, minimal.



394 Young-Key Kim

a normal natural factor of T,. There is a natural right action of G on
X x G given by
(x,9)h = (z,gh).
Let M be a T,-minimal subset of X x G. Let 7 : X x G — X be the
natural projection.

LEMMA 1. n(M)=X.
PRrOOF. We have T(n(M)) = n(T,(M)) = n(M). Hence n((M)) =
X. O

Put
H={9eG: Mg=M}={g€G:V(z,h) e M, (z,hg) € M}.
Observe that if ¢ € G, then either Mg = M or MgnM = ¢. Therefore
(B) heH iff 3(x,g) € M such that (z,gh) € M.

LEMMA 2.
i) H is a closed subgroup of G.
i) If (x,9),(z,h) € M then hH = gH.

PROOF. i) Because H is obviuosly a group, it is enough to show that
H is a closed set. To do this assume that h, € H, n > land h, — h € G.
Take (z,9) € M. Then (z,9)hn = (2,9hs) — (x,g9h) € M since M 1s
closed. Thus (z,g9)h € M and h € H.

ii) Let (z,9),(z,h) € M. Then (z,9)¢"'h = (z,h) € M. This (see
(B)) implies that ¢~'h € H which finishes the proof of ii). [

For z € X let
M,={geG:(x,9) € M}.

As an immediate consequence of Lemma 2 ii) we have

LEMMA 3. For each 2 € X there exists a ¢ = g € G such that
M, =gH.
Let us define a function 7 : X — G/H by
m(z) = g.H = M;.
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LEMMA 4.
i) 7 is a continuous map.

ii) Forallz € X, 7(T(z)) = p(z)7(z).

PROOF. i) Takez, € X, n > 1, z,, » 2. We may assume (choosing
a subsequence) that there are g, € G such that g, € M, i.e. (zn,gn) €
M and g, — g € G. Then (zn,g9n) — (2,9) € M since M is a closed
set. Thus ¢ € M, which implies A{,, — M, in G/H. Hence 7 is a
continuous map.

ii) Letz € X,g € M,. Then M, = gH. By T,-invariance of M,
M 3 Ty(z,9) = (T(z),p(x)g) which implies Mr) = ¢(z)gH. Thus
7(T(x)) = p(z)r(z). O

We intend to describe minimal subsets of (X x G1) x (X x G2) for given
minimal homeomorphisms T},, and T}, acting on X x G; and X x G
respectively. First we recall a description of T x T-minimal subsets of
X xX. Fix b€ X. Then the set

(C) Ay={(z,b+2):x € X}.
is T x T-minimal because T is minimal. Moreover.
J 4 =X x X
be X

Thus all T' x T-minimal subsets of X x X are of the form A4;,b € X.
In view of (A), each T x T-minimal subset of X x X is a graph of some
S e C(T).

Let G1,G, be compact metric groups. Assume, that ¢; : X — G;
is a continuous map such that T,, : X x G; — X x G; is a minimal
homeomorphism, i = 1,2. Let M be a T,, x T,,-minimal subset of
(X x G1) x (X x G2). Then the projection of M into X x G; is a T,-
minimal set, « = 1,2. By the minimality of T.,, and T,,, the projections
are equal to X x Gy and X x G, respectively.

Denote by 7 the map 7 : (X xG1)x (X xGq) = X x X, n(2,g,y,h) =
(z,y). Then by the above remarks,

n(M) = Ay for some b e X

where A; is defined by (C) for G = G; x G».
Let m; : G1 X G2 — Gi,mi(g1,92) = gi,t = 1,2.
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LEMMA 5. Let H = {9 € G : My, = M} = {g € G : ¥Y(z,h) €
M,(z,hg) € M}. Then

7T1(H)=G1, WQ(H)=G2.

PROOF. We will only show that n;(H) = G;. Take g1 € G1. We will
find g, € G, such that M(g;,¢92) = M. It is enough to show that there
exists a go € G such that M(g;,92) N M # ¢ (see (B)).

Fix z € X. Then there are ¢, ¢" € G such that (z,¢1,b+z,¢') € M
and (z,e,b+ z,¢9") € M. Put g2 = (¢")"'¢’. Then

M(gl,g?) 2 (xse7b+$’gll)(glag2) = (xvglab_)— -'L',g,) e M.

Thus M(g1,92) " M # ¢ which implies M(g1,92) = M and therefore
(91792) € HO

Let Hy, Hy be defined by

Hy={g1 € G1:(g1,¢) € H},
H2 = {gl € G? : (6)92)6 H}7

where e denotes the unit elements of the groups Gi, Ga.
Clearly H; is a closed subgroup of Gi,i = 1,2. As an immediate
consequence of Lemma 5 we have the following lemma:

LEMMA 6. The subgroup Hy(H2) is normal in G.(G2).

THEOREM 7.

a) If (g1,92) € H,(g1,32) € H then §; g2 € Ha.
b) If (g1,92) € H,(§1,92) € H then 37 g1 € H.
C) (91792) e H l'ffg]Hl X gQHQ C H.

PROOF.

a) Assume that (g1,92),(g1,92) € H. Then (¢7',95') € H and H >
(91—1’55—1)(91792) = (el,fz{lgg). Therefore §2_1g2 € Hs.
The proof of b)is similar to the proof of a).

c) Assume that (g1,92) € H. Take hy € Hy,he € Hy. Then (hy,e2) €
H,(e1,h2) € H and (h1,h2) = (hi1,e2)(e1,h2) € H. Therefore H 3
(91,92)(h1,h2) = (g1h1, g2h2).
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Thus we have proved that g1 H1 xg2 Hy C H.[J
We define a map v : G;/H, — G2/ H; by the following formula
v(g1H1) = I2((g1 H1 x G2) N H),

where II; : G1 x G2 — G2,I2(91,92) = 92.
THEOREM 8. The map v is a continuous group isomorphism.

PROOF. By Theorem 7, v is well defined. The continuity of v is
evident. Obviously v is bijective. We will prove that v is a group homo-
morphism.

Since Hy x Hy C H, ’L’(H]) = H,. Take ng,ng € G]/Hl. De-
note v(gH 1§H1) = §H2,v(gH1) = g1H2,v(gH) = g1 H2. Then ggH; x
gH, C H. Moreover gH, x g1Hy C H,gH: x g1H2 C H which im-
plies ngng X ngzngg C H. Thus glglﬂg = _(~]H2 ie. v(gH1§H1) =
v(gH1)v(gH1).O

As an immediate consequence of Theorem 7 and Theorem 8 we have

LEMMA 9.
H = U gHy x v(gHy).
g€G

Recall, that we consider a T,,, x T,,-minimal subset M of (X x G;) x
(X x G2), where T': X — X, T(z) = a + z is a minimal rotation on a
compact monothetic group X, ¢; is a continuous map defined on X with
values in G;, such that T, : X xG; — X xG;, Ty, (z,9) = (T(z), pi(z)g)
is minimal, z = 1,2.

THEOREM 10. Let M be a T,, x T,,-minnmnal subset of (X x G1) X
(X x Gg). There exist closed normal subgroups H, C G1,Hs C Ga,
a continuous group isomorphism v : G1/H; -» Gy/Ha,a,b € X and a
continuous map f : X — Gy/H, such that

M= U {z} x gHy x {b+z} x f(z)v(gH1).

z2eX
g€G,
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PROOF. First we will show the following formula :
(D) If (hy,hy) € H then hyv(hT'Hy) = H,.

Indeed, by Lemma 7, h1 H; x hoHy C H. Therefore v(h1Hy) = ha H; or,
which is the same, hov(h] ' H,) = Ha.
Let o : (G1 x G2)/H — G2/ H, be given by the formula
a((g1,92)H) = g2v(g7 " Ha).

By virtue of (D), « is well-defined. Let

f(z) = al(r(z,b + 7)),

where 7 satisfies Lemma 4 i1) for ¢ : X — G1 x G2, ¢(2) = (¢1(z), p2(b+
z)). Clearly, f is continuous. Moreover it satisfies

(E) f(Tz) = @2(b+z) f(z)v((x) " Hu),
because, denoting (¢1,92)H = 7(x,b + ), we have
f(Tz) = a(r(T2))

= al(p(2), palb+2))

= a((p1(a)g1, p2(b+ v)g2)H)
p2(b+ 2)g2v(g7 M1 (z) " Hy)
2(b+ @)g2v(gy hi)v(pa(z) T Hy)
2(b+ 2)a(r(z,b+ 2))o(py(x) " Hy)
b+ 2)f(@)lor(2) " H).

Using (E) we can describe the set 7(2, b0+ &) = M(z p-42)-

p
@
@

(F) Foreach z € X, M 445 = U gHy x f(a)v(gH)).
9€G,

Now we are in the position to prove our theorem. Denote by M’ the
set on the right hand side of the equality in this theorem. First we will
show that

(@) (Tp, x Ty, (M') C M.
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Indeed, take (z,9,b+ z,¢') € M'. Then
(Tor % Ty )(@,9: 0+ 2,9") = (T(2), 01(2)g, (b + 7), 02(b + 2)g")
= (T(z), ¢1(x)g, b+ T(z), p1(b+ )g")

All we have to prove i1s

wa(b+z)g" € f(T(x))v(pi(a)gHi).
By virtue of (E),

F(T(x)) = p2(b+ @) f(z)v(p1(2) 7" Ha).
Because ¢' € f(z)v(gHy1),
p2(b+z)g' € pa(b+2)f(a)v(gHy)
= a(b+ 2)f(2)v(pr(2) " Hi Yol (2) Hi)v(gHn)
= (992(b+$)f Jo(pr(z) ™ Hi)v(pr(2)gH1)
= (T ))U(%ﬁ )gH1).
Thus (T, X Tp,)(z,9,b+2,¢') € M'. We have proved (G).

Now we will show that the following inclusion :
(H) M c M.

Take (z,9,b+ z,9') € M'. Then ¢' € f(z)v(gH1). By virtue of (F),
9,9 € Mz p+s). Therefore (x,9,b+ z,¢') € M and (H) is proved.
The last formula we need to prove theorem is the following

(D M' is a closed set.
To show (I) we define a map S : X x G1/H; — X x G2/ H2 setting
S(z,gHy) = (T(2), f(z)v(yH1)).

Then S is a homeomorphism, that implies that its graph is a closed set.
Clearly the graph of S is just M’ which gives {I).

By virtue of (G),(H), (I), M = M'. The proof of Theorem 1 is com-
plete. 0O
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