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Abstract

Flaw classification(determination of the flaw type) and flaw sizing(prediction of the flaw shape,
orientation and sizing parameters) are very important issues in ultrasonic nondestructive evaluation
of weldments. In this work, new techniques for both classification and sizing of flaws in weldments
are described together with extensive review of previous works on both topics. In the area of flaw
classification, a methodology is developed which can solve classification problems using probabilistic
neural networks, and in the area of flaw sizing, a time-of-flight equivalént(TOFE) sizing method is
presented.

geometry (location, type, shape, size, and orienta-

1. INTRODUCTION

tion). The ultrasonic nondestructive evaluation(NDE
) method is one technique that is commonly used

All kind$ of engineering materials and structures, to provide such information. Usually, the ultrasonic

especially weldments, have flaws, some of which can
cause catastropic failures. In modern high perfor-
mance engineering applications, the structural inte-
grity of these materials and structures are quite
often evaluated using fracture mechanics. This eva-
luation in turn requires information on the flaw

flaw characterization process involves two steps :
flaw classification(determination of the flaw type)
and flaw sizing(prediction of the flaw shape, orie-
ntation and size parameters). In this paper new
approaches to both classification and sizing of flaws
in weldments are described together with extensive
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review of previous works on both topics. The te-
chniques proposed here are in a form that can be
used directly in many practical applications to qua-
ntitative estimates of the flaw’s significance.

2. ULTRASONIC FLAW CLASSIFICATION

Cracks are usually considered more dangerous
than non-crack-like(volumetric) defects. Thus, it is
common to try to classify only between more severe
(crack-like) and less severe(volumetric) flaws. For
weldments, however, it is desirable to introduce more
flaw classification categories(such as cracks, porosity
and slag inclusions) not only for the evaluation of
the structural integrity of the weld but also for the
improvement of the weld process performance.

In conventional ultrasonic NDE, flaw classification
is usually done by a human operator based on
heuristic experience-based echodynamic pattern ide-
ntification techniques" ”. Unfortunately, these me-
thods are highly operator dependent and often do
not perform well in practice.

Recently, there have been developed model-based
quantitative classification techniques which extensi-
vely use amplitude information of the ultrasonic si-
gnals received from flaws. Shcherbinskii and Belyi”,
for example, proposed the use of “form factors”
of flaws which are features that can be measured
with a tandem transducer method. Expanding this
concept, Volpinkin® developed a modified method
which can be applied to classifying flaws in weld-
ment. The satellite-pulse technique developed by
Gruber” also falls into this category. Very recently,
Chiou and Schmerr” developed a new scheme which
can distinguish smooth vs. sharp-edged flaws by use
of the time-separation and amplitude difference of
mode-converted diffracted signals in a quasi-pu-
Ise-echo configuration. On the other hand, there has
been work on the use of features extracted from
the frequency domain of ultrasonic signals. This
approach is known as ultrasonic spectral analysis™"”
and typically uses broadband ultrasonic pulses. Fi-
tting and Adler” have reviewed previous work in
this area in detail.
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All of the methods mentioned above need to ca-
pture very “strong” features so that the flaw type
information can then be directly decided by a human
operator. Unfortunately, in many realistic situation
the classification problems are not so simple and
the criteria fuzzy. To take care of this difficulty, new
approaches using “ultrasonic pattern recognition”
techniques, have been introduced that use a variety
of modern digital signal processing techniques, and
various decision-making algorithms. This approach
involves three steps: 1) measurement of the ult-
rasonic signals from flaws, 2) the extraction of a
set of features from those measurements which can
serve as a basis for a given classification problem,
often using digital signal processing techniques, and
3) solving the given classification problem using
these features and a specific decision-making crite-
rion.

Some of the earlist work related to ultrasonic
pattern recognition was done by Rose and his co-
workers" ™. They extracted physically based featu-
res from the ultrasonic time domain signals and
adopted the Fisher linear discriminant function as
a classifier. Burch and Bealing® used a similar ap-
proach to classify relatively large buried flaws in
ferritic steel welds into four different groups. In
their work, they used more general features ext-
racted from the time domain and a weighted mi-
nimum distance pattern recognition algorithm as a
classification rule. In a following study, Burch" ex-
panded this idea to classification problem of vertical
and near vertical planar defects using a combination
of pulse-echo and tandem techniques.

The rapid advance in the field of artificial inte-
lligence(AD) has stimulated the development of some
approaches which extensively use Al concepts. For
example, Mucciadi and his co-workers™" developed
an ultrasonic inversion procedure which discrimi-
nated and sized flaws by the use of adaptive learning
networks, using features extracted from the power
spectrum. Recently, Koo™ presented a flaw classi-
fication system using modeling, signal processing and
adaptive learning networks. In his work, he used
more “fundamental” (model-based) features extrac-
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ted from the time domain. A rule-based expert sy-
stem approach has also been used to solve ultrasonic
flaw classification problems by Schmerr and his co-

18, 19)

workers™ ™. In this case, nine “fundamental” features
extracted from the time and frequency domains
were used. More recently, artificial neural networks
have seen applications in this area.

Artificial neural networks™®’ loosely model the
structure and operation of the human brain. They
are composed of richly interconnected simple pro-
cessing elements which can operate simultaneously
to achieve high speed data processing. They have
the ability to approximate arbitrary mappings from
sets of input-output patterns presentations. Furthe-
rmore, once trained, they can produce outputs “in-
stantaneously.” The recent discovery of new training
algorithms such as back-propagation™ has brought
widespread interest in the application of neural ne-
tworks to various fields. In the field of NDE, neural
networks trained by the back-propagation algorithm
have been used to solve a variety of sizing and

23~26)

classification problem”*. However, “back-propaga-
tion” neural networks have been criticized because
of some important disadvantages. These disadvan-
tages include the need for a trial-and-error based
determination of the optimal network structure, le-
ngthy training times, and opaqueness of the way in
which neural net reaches its “conclusions.” Rece-
ntly, a probabilistic neural network(PNN)""* model
has been developed that has all the advantages of
neural networks mentioned above but without the
typical disadvantages. In the first topic of this work,
we present an ultrasonic flaw classification problem
in weldments that can be solved by use of the PNN.

3. ULTRASONIC FLAW SIZING

Obtaining flaw size, shape and orientation infor-
mation from ultrasonic measurements is one example
of having to solve an inverse problem of elastic
wave scattering. Conventional ultrasonic NDE tech-
niques have not been particularly effective in solving
such problems even though a wide variety of ult-
rasonic flaw sizing approaches”™ have been deve-
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loped including amplitude-based and time-of-flight
methods, detailed imaging methods, and equivalent
sizing methods.

Conventional field inspections have used only the
amplitude information of ultrasonic signals for flaw
sizing. For small flaws they have often simply relied
on the comparison of the amplitude of flaw signals
with those of standard references, like flat bottom
holes, of known size. This method has been known
as the use of Distance-Gain-Size(DGS) curves and
was first formulated and experimentally determined
by Krautkramer™.

Even though this method has a wide variety of
applications”, very few following studies have con-
sidered the DGS approach after Krautkramer’ s
original work. Recently, however, Schmerr and Sedov
® and Sedov, Schmerr and Song® have described
new ultrasonic scattering models for the pulse-echo
response of a flat-bottom hole in contact and im-
mersion testing, respectively. An important feature
of these models is their ability to predict both the
near-field and far-field response of a flat-bottom hole,
whose axis is aligned with the axis of a piston tra-
nsducer. These predictions were shown to be
in good agreement with experiments when single
frequency DGS-like curves were considered” .

More recently Song, Schmerr and Sedov” show
that “true” DGS curves(obtained from the time-
domain amplitude measurements as in Krautkra-
mer’s original approach) can be developed easily
from these models through deconvolution procedures
and Fourier analysis. These theoretical DGS curves
are shown to be in good agreement with experiments
even in the very near-field. Finally we also use the
models to predict frequency response curves that
compare favorably with experimental results in both
the near and far-fields.

The use of DGS curves is restricted to flaws
smaller than the beam size of a transducer. For
sizing relatively large flaws, echodynamic patterns"”
have been extensively used, based on mapping the
amplitude variation as a function of position of a
transducer scanning over a flaw. These conventional
approaches, however, are often not quantitative
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enough to produce the size information needed for
modern fracture mechanics calculations™.

Some advanced techniques attempt to avoid li-
mitations of conventional amplitude-only approaches
by use of time-of-flight information or a combination
of time-of-flight and amplitude information. There
are, for example, the Time-of-Flight Diffraction(
TOFD) method™™ and the Satellite-Pulse techni-
ques® ”. Even though these
achieved successes in some applications, they still

techniques have

have some important limitations in the information
they can extract about flaw geometry.

To get more complete information about flaw
geometry, various detailed imaging method have
been developed” including the Synthetic Aperture
Focussing Technique(SAFT)**, and the amplitude
and transit time locus curves(ALOK)*, acoustical
holography”, and ultrasonic tomography”. These
techniques require detailed scanning and conside-
rable data processing. Even after this time consu-
ming process, the results sometimes cannot be di-
rectly used for fracture mechanics calculations.

In between the two extremes of conventional
methods and detailed scanning methods, there is a
model-based approach called equivalent flaw sizing
“Y In this approach, flaws are reconstructed in
terms of “best-fit” equivalent ellipsoids(for volume-
tric flaws) or ellipses(for cracks) obtained from a
relatively small number of ultrasonic measurements
at different transducer orientations and locations.
This approach has been developed based on ultra-
sonic scattering models such as the Born approxi-
mation for volumetric flaws™* or the Kirchhoff
approximation for cracks™. Recently, a unified al-
gorithm that can be applied to both volumetric flaws
and cracks was developed by Schmerr and et al™.

For the successful implementation of this app-
roach, there are two major issues which one has
to consider : 1) accuracy of experimental measure-
ment of the equivalent radius, which is defined as
the distance from the flaw centroid to the front
surface tangent plane, and 2) the efficiency of the
optimization algorithm used to determine the best-
fit flaw parameters from the measured equivalent
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radius data.

The equivalent radius, which is the one of the
basic parameters on which most current equivalent
flaw sizing methods rely, is normally obtained, for
small flaws directly from the ultrasonic waveform
itself by use of signal processing. Unfortunately,
most current methods to determine this quantity
suffer from the so-called “zero-of-time” problem™ *
*. Even though efforts still continue to be un-
dertaken to solve this problem™, no entirely sati-
sfactory and general solution is currently available.

The efficiency of the optimization scheme(the se-
cond issue mentioned above) in the past was an
important issue because of the very complicated

)

nonlinear nature of the problem™. Fortunately,

57)

Chiou and Schmerr™ have recently eliminated this
issue by developing a new approach where they
reformulated the optimization problem into a two-
step problem involving a simple linear least squares
optimization step and the solution of a straightfor-
ward eigenvalue problem. In this study, we take
advantage of this two-step algorithm in the deve-
lopment of our new equivalent flaw sizing techniques.

In the second topic of this paper, we show how
the equivalent flaw sizing concept can be combined
with simple time-of-flight measurements to produce
a new time-of-flight equivalent(TOFE) sizing me-
thod.

4. NEURAL NETWORK APPROACH
TO ULTRASONIC FLAW CLASSI-
FICATION IN WELDMENTS

Here, we will briefly describe a neural network
approach to ultrasonic flaw classification in weld-
ments using probabilistic neural networks. We will
describe the structure of probabilistic neural network
and illustrate its use in distinguishing cracks, po-
rosity, and slag inclusions in weldments based on
an ultrasonic data set provided by Westinghouse
Corporation.
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4.1 THE PROBABILISTIC NETWORK

The basic architecture of the probabilistic neural
network is shown in Fig. 1. The network contains
four layers whose structures consist of 1) an input
layer, where the features to be used by the network
are presented, 2) a set of pattern units where each
of these units accepts a weighted sum of the inputs
and applies a gaussian activation function to that
sum at its output. and 3) a set of third layer
units(which are connected to each pattern unit
of the appropriate class) that sum the outputs
of the attached pattern units, weights that sum
by a user-defined “cost factor” and presents the
resulting output to the fourth and final output

layer.

'3(x) 'z(x) '1 (x)

output
) = Cx- 2,9

summation

z,=2x.-w.|

Fig. 1. Probabilistic neural network architecture.
Unlike other neural networks, the probabilistic
neural network architecture is strictly determined
by the number and choice of training examples
(every pattern unit corresponds to a particular
training example). The weights, W,(Fig. 1) are
also determined completely by the training set
since they are obtained directly from the input
features of each training example. In fact, the
only adjustable parameters in the network are the
cost factors, C, and the smoothing constant, ¢ in
the activation functions(Fig. 1), whose determi-
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42 INPUT FEATURES

The success of any neural network often de-
pends crucially on the choice of the input features.
Ideally, these features should be distinguishing
characteristics of the different flaw classes and
“fundamental” in the sense that they are based
on the physics of the scattering process. Since
the data set provided to us by Westinghouse was
not taken specifically to extract any particular set
of such features, we used a variety of more
heuristic features as inputs. As shown in Table
1, these features consisted of ten time domain
features and four frequency domain features.

Table 1. Input features to the PNN

Time Domain Features
1) number of signal groups
2) pulse duration of the 1st group signal
3) pulse duration of the 2nd group signal
4) pulse duration of the 3rd group signal
5) energy of the ‘1st group signal
6) energy of the group signal
7) energy of the 3rd group signal
8) interval between the 1st and the 2nd groups
9) interval between the 2nd and the 3rd groups
10) antisymmetry of signal

Frequency Domain Features
11) number of maxima of the magnitude spectrum
12) number of minima of the magnitude spectrum
13) number of deep minima of the magnitude spectrum
14) number of shallow minima of the magnitude spectrum

4.3 NETWORK TRAINING

In the probabilistic neural network, the training
method is a very simple three stage process(Fig.
D:

1. Given the choice of inputs, a second layer
output node, N,(j=1,2--N) is chosen for each
of the N training examples.

2. If we let X(i=12M, j=1,2-- N) denote
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the M features corresponding to each training
example, then the weights, W, between the jth
second layer node and the ith input feature, X,
are obtained by simply setting W,=X,.

3. Finally, each second layer pattern unit is
connected to the summation unit which corres-
ponds to the class of that training example.

4.4 CHOICE OF NETWORK PARAME-
TERS

Once the network is trained, as described above,
the only remaining parameter choices are the cost
factors C, (i=1,2,3) and the “smoothing” parameter
o(Fig. 1). The cost factors can be simply set equal
to one, in which case all output flaw classes{cracks,
porosity, slag) are weighted equally. However, if the
user wishes to place a stronger weight on a par-
ticular class, say cracks, the C, can be used to adjust
the decision-making process. The smoothing para-
meter, o, in contrast, is used to adjust the collective
importance of each of the individual patterns in the
second layer pattern units” ™. A small value of
o tends to emphasize the individual patterns while
a large value of o instead smoothes out the behavior
over many patterns. The choice of ¢ is normally
made on a trial and error basis with the optimal
o being one which both produces “good” classifi-
cation results as well as a stable behavior of the
network over a wide range of o-values

4.5 PERFORMANCE OF PNN

The data provided to us by Westinghouse Corp.
consisted of 239 digitized ultrasonic waveforms that
were taken from contact transducers on mild steel
blocks. The blocks had a stainless steel cladding
and contained manufactured defects to simulate
cracks(104 waveforms), porosity(53 waveforms) and
slag(82 waveforms) in weldments. The input fea-
tures listed in Table 1 were extracted from these
waveforms and approximately half of these wave-
forms were used to train the network. The remai-
ning waveforms served as a testing set to evaluate
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the network performance. The two performance
evaluation criteria that were used in this study were
the correct accept rate, (CA), and the false reject
rate, (FR), for each of the three classes(i=123)
where(CA), and (FR), are defined as :

(m),% (=1, 2, 3 (1

m;=number of testing examples from class i
classified correctly
n,=total number of testing examples from class
i
Zm

(FR) =-+— j#i (2)
Zn,

J

m; =number of testing examples from class j cla-
ssified as class i

n,=total number of testing examples from class
j

Figures 2ab show plots of the correct accept rate
and of the false reject rate, respectively, for each
of the three flaw classes for C=1(i=1, 2, 3) and
the parameter o varied over a range of 0—0.3.
This range of c-values we found produced the hi-
ghest correct accept rates, and, as Figures 2a,b show,

1o

e
%o

o
o

S
a

Correct Accept Rate

e
»

00 v * v
0.0 0.1 0.2 0.3

Smoothing Parameter
Fig. 2a. Correct accept rates of welding defects by
the PNN for different choices of the smoo-
thing parameter ¢ and with C=1 for all.
Cases . cracks(solid line), porosity(small
dashes), and slag inclusion(large dashes)
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081

0.6

0.4

False Reject Rate

0.2

0.0 0.1 0.2 03
Smoothing Parameter

Fig. 2b. False reject rates of welding defects by the
PNN for different choices of the smoothing
parameter o and with C=1 for all
Cases . cracks(solid line), porosity(small
dashes), and slag inclusion(large dashes)

the network performance did not vary substantially
with the choice of o in this range. Although the
correct accept rates are lower here than what we
would like to see in a production classification sy-
stem, our extensive experience with this data set
suggests that this performance is the best that can
be expected for this set of experiments. Since the
particular choice of o was not crucial here, we ar-
bitrarily picked o=0.1 for all subsequent testing.

Figures 3ab,c show the behavior of the network
when different cost factors C. were used for each
class. By making the cost factor for cracks higher
than those for slag or porosity, the correct accept
rate for cracks can be significantly improved but
only at the price of increased false rejects for cracks
also.

Theoretically, for small ¢ the PNN should behave
similar to a K-nearest neighbor(KNN) classifier,
which is a very simple and popular classical classifier
“=* Song and Schmerr have shown that there is
no practical difference between the performance of
the PNN and that of the KNN*. However, the PNN
does have the advantage over the KNN classifier
of being able to complete classifications very rapidly
and to produce estimates of the actual probability
distributions of the flaw classes at the outputs. Fu-
rthermore, It is worthwhile to point out that the
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Fig. 3. Influence of the choice of the Ci parameter

on PNN performance.

PNN itself has ability to identify good input features

3

for classification”. Very recently the author has
shown the use of PNNs for robust feature deter-

mination™

5. TIME-OF-FLIGHT EQUIVALENT
FLAW SIZING METHOD

In this section, a new approach to the equivalent
flaw sizing, a time-of-flight equivalent(TOFE) sizing
method will be described. It will be shown that
TOFE sizing is indeed a viable method provided
that the flaw is relatively large.

5.1 THE TOFE SIZING ALGORITHM
Figure 4 shows a typical immersion ultrasonic
set-up and an “equivalent” flaw, assumed ellipsoidal

in shape, whose centroid is located at X. From
that figure we see that

X=X - n, =H,+7, ®))
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where X is the location of the entrance point for
the center of the beam of sound into the second
material for the jth measurement. The umt vector
o, is parallel to the wave propagaticn direction in
the second medium for the jth measurement and
H, is the distance from the entrance point to the
tangent plane of the flaw for the jth measurement.
Finally, r, is the equivalent radius of the flaw (di-
stance from the centroid to the tangent plane) for
the jth measurement.

position
Xt

beam
entrance

; H;
point X

Medium 1

Ho

tangent
flaw fe - plane
Medium 2

Fig. 4. The measurement geometry of the TOFE sizing
method for a flaw embedded in a second me-
dium.

From an A-scan response, a time-of-flight mea-
surement to the interface(AT,=2H,/C,) can be
made for each transducer position and orientation
and the corresponding time-of-flight to the flaw in
the second medium(AT,=2H,/C,) also measured.
Then, since the transducer position, X, and orie-
ntation, 1, are both known, X in eq. (1) can be
calculated by

X=X,+H, u, (4
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and 1, can be determined through Snell’s law.
Thus, all the quantities in eq. (3) are known except
the flaw centroid, X,, and the equivalent radius, r.,
at each measurement. However, Chiou and Sch-
merr”’ have shown that r. can be written in terms
of a symmetric matrix C and the unit vector n, as

(#)=n, - Cn, (5

Placing equation (5) into equation (3), we can
then show that

F=X, u)—2X, n,—H)X -u,)
-, C w,+ (X, w,—H,)’=0 (6)

where F, is a linear function of the six matrix
elements of C and a quadratic function of the flaw
centroid coordinates, X.. Thus, a non-linear least
squares procedure can be used to estimate these
nine unknowns by performing N measurements and
then minimizing the quantity

X, 0= ‘:z’[F,(X,, C X, uy H)Y "

Once the C parameters are obtained in this ma-
nner, the solution of the eigenvalue problem

C—M =0 (8)

then yields the best-fit ellipsoid and its orientation
since, as Chiou and Schmerr™ have shown, the
eigenvalues of C are just the squares of the three
principal ellipsoidal axes(a’, b’, ¢’) and the corres-
ponding eigenvectors are the three unit vectors along
these axes. Although minimizing 1 in eq. (7) is a
non-linear optimization problem, since the non-li-
nearity in F, is at most quadratic in form this op-
timization problem should not be difficult to solve,
a feature of this method that has been verified in
practice.

Note that the method also yields an estimate for
the flaw centroid location, X.. Thus, the TOFE sizing
method does not require an apriori estimate of this
location and hence does not suffer from the zero-
of-time problem™. However since the TOFE si-
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zing method uses time-of-flight measurements to
estimate the distance parameters appearing in egs.
(4), (6), it is essential that the wavespeed in all
the materials be determined accurately of the TOFE
sizing method will produce unacceptably large errors.
For example, if there is an error AC in the mea-
surement of the wavespeed over a path length H
(H=H, or H,) then there will be an error in the
estimation of the flaw surface location given by

AH=(AC/OH )

If the wavespeed were only known to within, say,
2% over a 2 inch(25.4 mm) path in steel, AH would
be approximately 1mn. Because of this fact, we can
say that TOFE will typically work only for “relatively
large” flaws. The precise meaning of “relatively la-
rge”, of course, is a function of how accurately the
wavespeeds are known and the path length involved
in a particular problem.

5.2 INITIAL TESTING WITH SYNTHETIC
DATA

For the initial test of the TOFE method, “exact”
synthetic data was generated for known flaws im-
mersed in a single medium using 19 simulated
time-of-flight measurements over a one-sided scan-
ning aperture angle of 120 degrees. In this case the
algorithm simplifies considerably since we can take
x=x,(Fig. 4). Four different flaw shapes were co-
nsidered - a round ellipsoid, a pancake-like flat el
lipsoid, a circular crack, and an elliptical crack, all
which have the same location and the same orie-
ntation but different sizes. For all flaws the best-fit
flaw parameters were determined by the TOFE si-
zing algorithm using the same set of initial guesses
of the flaw centroid location(x,=00, x,=00, x,=
0.0) and the C parameters(C,=10.0, C,=100, C,
=100, C,=100, C,=100, C.=100). As shown in
Table 2, the TOFE method gave the “exact” results
(flaw centroid location, size, and orientation) with
only 7—16 iterations. Using different sets of initial
guesses produced the same results with only slight
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variations in the number of iterations. Thus, the
TOFE sizing method is essentially insensitive to
the choice of initial guesses, as expected from the
quadratic nonlinearity of Eq. (6).

Table 2. TOFE sizing results for error free synthetic

data (unit : mm)
shape a b c # of iterations
Ellipsoid

round 20 25 30 16

pancake 10 5 0.5 9
Crack

circular 10 10 0 7

elliptical 10 5 0 8

As mentioned previously, one of the important
parameters in equivalent sizing using the TOFE si-
zing scheme is the ultrasonic velocity in the ma-
terial, since this is an essential factor for converting
the time-of-flight from the transducer to the tangent
plane to the corresponding distance, H. Thus the
wave velocity in the material should be known a
priori for application of the TOFE sizing method.
This information is usually available from other in-
dependent experiments.

To investigate the effect of error in velocity in-
formation on the TOFE sizing result, a systematic
error was introduced into the synthetic data by in-
creasing the wavespeed in the y-direction by 2%.
Then the TOFE method was applied to the resu-
lting synthetic data for the round ellipsoid in Table
2 using the same initial guesses as the those used
previously. The sizing results are shown in Table
3. In the case of one-sided scanning(where we
used the same measurement points and the tran-
sducer look-angles as those used in the case of
error free synthetic data), the best-fit ellipsoid tu-
rned out to be an ellipsoid greatly expanded along
both the y and z coordinates as shown in the first
diagram of Figure 5. Clearly, this result is not ac-
ceptable and comes from the fact that the TOFE
algorithm has a relatively large number(9) of de-
grees of freedom. Thus, while the expanded ellip-
soid matches the data points very nicely within the
aperture angle of the scanning plan, its overall shape
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is grossly in error(Figure 5a).

One - Side Scan
Ellipsoid

Two - Side Scan
Ellipsoid

Sphere

/N

Fig. 5. Schematic diagrams of the TOFE sizing re-
sults for synthetic data with a systematic
error (“x” denotes the data points). actual
shape ' shaded figure, reconstructed shape
. open figure.

Table 3. TOFE sizing results for synthetic data with
systematic error. (unit © mm)

Two-side Scan One-side Scan

Actual  (ellipsoid) (ellipsoid) _ (sphere)
X 3.0 30 2.9 30
v 50 50 47 50
z - 6.0 —6.8 —459 —19
a 20.0 193 289
b 25.0 313 444 256
c 30.0 30.8 70.0

To overcome this difficulty, two kinds of alter-
natives were considered. The first alternative was
to keep one-sided scanning but instead fit the data
to the best-fit equivalent sphere. Since the sphere
has only 4 independent variables(3 centroid locations
and 1 size parameter) this presumably would sta-
bilize the algorithm. As shown in Table 3 and
Figure 5b the best-fit sphere does indeed match the
original round ellipsoid quite well in this particular
case, Unfortunately, in the use of the best-fit sphere
assumption, we lose some of the detail in the shape
determination.

The second approach was to employ two-sided
scanning where some of the data is taken from the
“back” side of a flaw as shown in the last diagram
in Figure 5. For the synthetic data set mentioned
above, the two-side scanning data were simulated
by simply locating the transducer at the other side
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of the flaw and changing the transducer look-angle

properly. Only 6 data were taken from the “back”
side of the flaw with an aperture angle of 120 de-
grees, and 23 data were taken from the “front”side
of the flaw within an aperture angle of 90 degrees.
As shown in Table 3 and Figure 5¢, this resulted
in a best-fit ellipsoid expanded only along the y-
coordinate as expected. It should be pointed out
that we have found that even a single data point
from the “back” side of a flaw can stabilize the
TOFE method for sizing volumetric flaws. Another
interesting result that we discovered with the TOFE
algorithm was that for cracks, the fact that one of
the dimensions of the hest-fit ellipsoid is zero(and
the center of the flaw is thus constrained to be in
the plane of the crack) also stabilized that algorithm,
like the sphere assumption, even with only one-sided
scanning.

5.3 SIZING OF FLAWS IN WELDMENTS

In modern engineering applications, welded stru-
ctures are very important and the accurate flaw
sizing in weldments is an important element needed
to improve the reliability of the structures. Thus,
in this study, “flaws”’ in the weldments were se-
lected - flat-bottom holes placed in a welded speci-
men. Such scatterers are typically the types of de-
liberate “flaws™ used to represent real cracks in
the weldments. Figure 6 shows a schematic diagram
for immersion testing of a flat-bottom hole in a
welded specimen. The welded specimen was fabri-
cated by the submerged arc welding process with
the deposition of two weld passes, which completely
filled the 60 degree double-V weld groove prepared
on pieces of 1/2 inch(12.7 mm) thick mild steel plate.
After the welding, the weld reinforcements were
removed to get a smooth and flat specimen with
a thickness of 11.5mm. After this machining, 5mnn
diameter flat-bottom holes with a 3mm depth were
fabricated both in the weldment and in the base
metal.

As mentioned before, in the case of sizing flaws
embedded in a specimen immersed in water, the
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/ Flat Bottom HBTé

Welded Specimen
immersed in water

Fig. 6. Schematic diagram of the TOFE sizing
setup for 5mm diameter flat-bottom holes
fabricated in a mild steel welded speci-
men{immersion testing).

TOFE algorithm requires information on the lo-
cation of the beam entrance point into the speci-
men(X,), and the wavespeed and the propagation
direction(n,), and the time-of-flight in the specimen
(refer to Figure 4). The beam entrance point(X,)
was determined by simply identifying the reflection
from the front surface of the specimen. Even in
the case of oblique incidence, this was able to be
done because of the small tilting angle in the water.
Once this incident point was calculated, the time-
of-flight information required for the TOFE method
could be obtained directly from the oscilloscope A-
scan. Obviously, the welded joint has inhomogeneous
and anisotropic material properties in general. But
in the case of a mild steel welded joint, these
inhomogeneities and anisotropy are not expected to
be large and have been neglected. Thus, the welded
specimen was treated as a homogeneous and isot-
ropic steel plate, and its wavespeed was assumed
to be constant in all directions. For each flat-bottom
hole, a total of 19 data points were taken using
one-sided conical scanning : 1 data at normal inci-
dence, and 6 at each tilting angle of =25, 4.9°,
7.2° which corresponds to a refracted angle in the
welded specimen of 10°, 20°, 30°, respectively.
Using these data, the TOFE scheme determined the
best-fit parameters, as shown in Table 4, with only
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14 and 44 iteration for the flat-bottom holes in the
weldment and in the base metal, respectively, from
a given set of initial guesses of the flaw centroid
location(x, =00, x,=0.0, x,=0.0) and the C para-
meters(C,.=00, C,=00, C,=00 C,=00, C,=00,
C.=0.0). The final result very nicely described the
major features of the bottom of the flat-bottom
holes(which appear to the algorithm as flat cracks)
such as the crack shape, size of the semi-axes,
and orientation. The errors in the size estimates
were 0.1—02mm for the hole in the base metal,
and 04— 10mm for the hole in the weldment. Very
recently, The TOFE sizing method has also been
verified experimentally for the immersion testing of

603

composites by the author™.

Table 4. TOFE sizing results for 5mm diameter flat-
bottom holes fabricated in a mild steel welded

specimen(immersion testing). o
(unit : cm)

Parameter Actual Flat Bottom Hole
in Weldment in Base Metal

location x 0.0 0.00 0.01

y 0.0 —0.03 0.06

z —089 —0.85 -0.87
size a 0.25 0.21 0.24

b 0.25 0.15 0.27

c 0.0 0.00 0.00

6. CONCLUSIONS

In this work, we have presented some new ap-
proaches for both classifying and sizing isolated
flaws inside materials using ultrasonic measureme-
nts.

In the area of flaw classification, we have demo-
nstrated the use of probabilistic neural networks(
PNN’s) for the classification of welding flaws. The
PNN’s produced reasonable and consistent classi-
fication performances for the experimental case co-
nsidered. We showed that the PNN is indeed a
good choice as a classifier for these weld problems.

In the area of sizing, we have described a new
time-of-flight equivalent(TOFE) sizing method for
relatively large flaws in materials. We have shown
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that for volumetric flaws using time-of-flight infor-
mation in two sided scanning makes that algorithm
stable and fast. For cracks, the method is always
stable and fast, even in one-sided scanning. From
our test of the: TOFE method in a weldment we
have shown that the method is accurate provided
that the wavespeed in the material is well chara-
cterized. The excellent performance of the method
observed in this study demonstrates that it can
serve as a robust sizing tool for many practical
applications.

In this work we have developed robust methods
for both classification and sizing of flaws in mate-
rials, which can be applied to various practical
applications. Extensive use has been made of a nu-
mber of “tools” including digital signal processing
techniques, numerical optimization algorithms and
neural networks.
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