1. Introduction

Understanding language is hard. It requires
not only language-specific knowledge, but
also knowledge about the surrounding envi-
ronment. There are a lot of research efforts
directed to recognizing raw speech data In
the name of speech recognition. Much of nat-
ural language processing (NLP) research has
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A Study of Morphophonemic Processes of
Korean using Neural Networks

Chan-Do Lee?’

ABSTRSCT

Despite their importance in language, there have been relatively few computational studies in
understanding words. This paper describes how neural networks can learn to perceive and pro-
duce words. Most traditional linguistic theories presuppose abstract underlying representations
(UR) and a set of explicit rules to obtain the surface realization. There are, however, a number
of questions that can be raised regarding this approach: (1) assumption of URs, (2) formation
of rules, and (3) interaction of rules. In this paper, it is hypothesized that rules would emerge
as the generalizations the network abstracts in the process of leaming to associate forms with
meanings of the words. Employing a simple recurrent network, a series of simulations on differ-
ent types of morphophonemic processes was run. The results of the simulations show that this
network is capable of learning to perceive whether words are in basic form or in inflected form,
given only forms, and to produce words in the right form, given arbitrary meanings, thus elimi-
nating the need for presupposing abstract URs and rules
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been dedicated to understanding written text.

Yet there have not been encugh studies in

understanding words themselves, a major part
of language. How do we know how to say a
word when we Intend to utter something?
What makes us understand the meaning of a
word when we hear it? What is it that facili-
tates associating a word with its meaning?
There certainly is linguistic knowledg_e in our

brains that makes these processes possible.

- This paper was supported(in part) by NON DIRECTED
RESEARCH FUND, Korea Research Foundation, 1993.
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Some involve phonology, some morphology,
and some require morphophonemics, an inter-
action between the two to explain the phe-
nomena. We should be able to develop a com-
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putational device that can accommodate
them. Without this middle ground our efforts
to build a computer system that can under-
stand human languages will be futile. We
must develop a system that fills the gap be-
tween speech recognition and higher-level
NLP in order to produce a reasonable speech
understanding system. This paper is a small,
but hopefully a right step in this direction.

Most computational approaches to NLP to
date have come from the traditional symbolic
perspective. In this view, the basic building
blocks of the language and thought are dis-
crete symbolic entities that are manipulated
by a set of rules interpreted by a central
control mechanism. Despite some success, es-
pecially concerning knowledge representation,
inference and syntactic parsing, symbolic
NLP has not fulfilled its promise, even after
30 years of study.

The weaknesses of the symbolic approach
io NLP can be remedied by employing a
connectionist approach. First, connectionist
models are much more robust with regard to
noise. Second, connectionist networks work as
parallel constraint satisfaction; processing in
connectionist models involves attempts to sat-
isfy as many constraints as possible. This is
what 1s required for language comprehension.
Third, learning is fundamental to conne-
ctionist models. They can learn from expo-
sures to examples, thus eliminating the need
for the use of a priorl rules. Fourth, it can
handle the temporal nature of language more
easily.

This paper describes how neural networks
can learn to perceive and produce words.
The next section raises the problem of words
and computation. Relevant literature is re-
viewed, similarities with the approaches that
are taken in this paper are pointed out, and
drawhacks are singled out. The new approach

called “performance grammar” employed in
this paper is introduced. Section 3 describes
the model in detail, including the network ar-
chitecture used, and why this particular archi-
tecture was chosen. Section 4 describes the
experiments performed. It shows the stimuli
used, explains how the system was trained,
and summarizes the results. Section 5 discuss-
es the results of the experiments. Also the
limitations of the current study are criticized
and are related to directions for future
research. Finally, Section 6 discusses the
achievement made by this research and out-
line of future research problems suggested by
this study.

2. The Problem
2.1 Raising the Problem

Studying computational accounts of phonol-
ogy and morphology has not attracted many
Al researchers, largely due to the fact that
the apparent rule-like patterns exhibited by
phonology and morphology did not appeal to
the practitioners in traditional symbolic Al as
an interesting problem. Since most work has
been on English, which does not have much
in the way of interesting morphology (unlike
Korean), most problems seem too easy to im-
plement.

The other reason might be the position of

‘phonology and morphology as in between

NLP and speech recognition. NLP researchers
have used words as their tools and did not
bother to go down a step further. Phonology
is not relevant in writien Ianguag.e, the focus
of NLP. On the other hand, researchers in
speech recognition have concentrated only on
real low-level signals. Yet, it should he noted
that an NLP system that deals with a lan-
guage like Korean must pay attention to



morphology; it is simply teco expensive to
store all the variant forms in the lexicon. As
for phonology, if the language in addition in-
volves complex morphophonemic processes at
the boundaries between morphemes (as in
Korean, which has very extensive inflections),
then the system also needs to handle these
Processes.

Studying phonology and morphology is also
interesting because of the parallel between
syntax and sentence semantics and morpholo-
gy and word semantics. Both involve
compositionality and the problem of segment-
ing the input. But morphophonemics is per-
haps simpler to study; for one thing, it
seems not to involve recursion.

In this paper | study morphophonemic pro-
cesses with the aid of a neural network, hop-
ing to bring forward enough convincing
results to shed some new lights on the lan-
guage processing research community.

2.1.1 Words and Computation

Studying words is important and also very
interesting, since the word is the central unit
in language where the phonological and se-
mantic poles come together. Words are the
smallest unit in the language hierarchy that
embrace both meaning (semantic pole) and
speech sounds (phonological pole) and can
stand alone. Words are also the dividing line
between low-level linguistic studies in phonol-
ogy and morphology and higher-level studies
in syntax, semantics, and pragmatics.

For my purposes, a word is not just a
written piece of text such as ssal (&) ‘rice’,
or segwa (AtT}) ‘an apple’, but a series of
phonetic segments associated with a meaning,
for example, the word with the meaning of

rice is represented as

(1) /s/ RICE
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(2) /a/ RICE
3) // RICE

where the items in uppercase represent mean-
ing and the expressions with phonstic charac-
ters surrounded by slashes refer to the word.
My stimuli in the experiments were
presegmented signals labeled with phonetic
features. This was necessary to bridge the
gap between two related, yet firmly divided
fields of study: speech recognition with raw
speech signals and high-level NLP with writ-
ten text. The level of words In my study is
higher than the raw speech signal, yet lower
than the written text, thus taking advantage
of the ease of processing associated with
written language understanding and not fall-
ing into the trap of ignoring real speech sig-
nals. Even though I am not using real speech
data, what I am dealing with here is spoken
language; written language does not reflect
the phonology that is one of my concerns.

2.1.2 Phonology, Morphology, and Mor-
phophonemics

Phonology is the study of the systems un-
derlying the selection and use of sounds in
the languages of the world. It focuses on the
internal representation of sound units and
tries to explain the nature of phonological
phenomena. It deals with the sequential and
phonetically conditioned patterning of sounds
in language. Phonology plays a very impor-
tant role in the perception and production of
a word. For example, in order to recognize a
nominative suffix as such, a Korean listener
presumably needs to “know” the consonant
deletion rule as well as the nominative case.
The same applies to speech production. With-
out knowing the consonant deletion rule a
speaker could not possibly add the right suf-
fix to a novel noun, and would fail to pro-
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duce the right nominative form.

Morphology is the study of word struc-
tures, Even though the processes of word for-
mation may vary from one language to an-
other, all languages have the means to create
new words by combining morphemes and
therefore exhibit the rule-governed creativity
that seems to be typical of human languages.

The interaction between the phonological
and the morphological components of gram-
reflected by the
allomorphs. One example of allomorphic varia-

mar is presence of
tion is the Korean nominative suffix. The Ko-
rean nominative morpheme has two variants:
/in/ (&) and /nin/ (&), depending on

the final segment in the noun stem. For ex-
ample, the nominative case of pa () ‘green
onion’ is pronounced /panin/ (FHE) and
that of kal () ‘a knife’ is /kalin/ (ZB2).
To account for these variants in traditional
phonology, one must posit an underlying
abstract representation', and one or maore
_rules have to be invoked which transform the
UR into either /+n/ (&) or /nin/ (=)

given the correct environment. The derivation
of a form like kaliin (Z2) ‘knife + nomina-
tive’ begins with the UR of the morphemes

kal (Z) and nominative, and the rules turn '

these into the surface form /kalin/ (Z-2).

2.1.3 The Challenge

In this paper I concenirate on the issue of
learning to perceive and produce words in
terms of morphophonemic processes which in-
volve both phonology and morphology-

Morphophonemic processes are generally re-
garded as symbolic, and rule-governed. Ac-
counting for such processes using neural net-
works presents many challenges that have
been noted by researchers who subscribe to
¢lassical symbolic tenets, including Pinker and

Prince [1] and Fodor and Pylyshyn [2]. Ac-
cording to their arguments, connectionist mod-
els cannot command the compositional seman-
tics that is supposedly essential to NLP. My
study is an attempt to show that neural net-
works are indeed capable of dealing with
compositionality. The networks were taught
to map combinations of meanings onto combi-
nations of forms, and then decide which part
goes with which. They had to discover how
to map constituents of form onto constituents
of meaning and to use this knowledge to in-
terpret and generate novel forms.

In classical symbolic systems the acquisition
of URs has been difficult to account for, and
this fact has in part motivated the idea of in-
nate predispositions for certain linguistic
structures. The very existence of URs that
can be manipulated by rules was one of the
points Pinker and Prince [1] and Fodor and
Pylyshyn [2] made against the adequacy of
connectionist systems in explaining morpholog-
ical processes. If we can overcome these diffi-
culties hy explaining some morphophonemic
rules without the benefit of any explicit rules,
or URs, it will strongly support the appropri-
ateness of neural networks to the task of
language processing.

2.2 Related Work

Computational accounts of phonology and

morphology were mostly ignored by
researchers in Al until the early 1980,
when Koskenniemi [3] noticed the usefulness
of the state transducers and developed a
two-level morphology model. His work influ-
enced later research in computational mor-
phology. Since 1988, when George Lakoff [4]
.called the attention of the connectionist com-
munity to phonology as a challenging prob-

lem, there has been some fruitful research di-



recled towards the problem of phonology. In
this section a brief overview of some of relat-
ed work both in phonology and morphology
will be presented.

2.2.1 Models of Past-tense Morphology

Rumelhart and McClelland [5] (hereafter
referred to as "RM") showed that a simple
two-layer pattern associator can acquire the
marking of the past tense in English. Their
model maps representations of present tense
forms of English verbs onto their past tense
versions without any involvement of semantic
characterization. The RM model has been
throughly scrutinized and ecriticized by [1]
and it was the beginning of many heated dis-
cussions among Al researchers that followed.
RM does not model actual language process-
ing as it occurs in human beings:their models
merely map representations of present tense
forms of English verbs onto their past tense
versions without any involvement of semantic
characterization at all, whereas human beings
accomplish the task of turning a form to
meaning and meamng to form.

2.2.2 Cognitive Phonology

Cognitive phonology [4], a development of
the ideas of [6], is an effort to eliminate the
need for rule orderings. Ordered-rule interac-
tion is a necessary foundation In the stan-
dard versions of conventional generative pho-
nology. It uses a multilevel representation for
the utterance, to which multiple rules may
apply in parallel.
~ There are no explicit rule orderings; all
constructions at a given level apply
simultaneously. However, by allowing bath
inter-and intra-level constructions, the theory
achieves the effect of extrinsic rule orderings.
Touretzky and Wheeler have developed a

connectionist Implementation of Lakoff’s ide-
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as, making some modifications along the way
[7]. Despite its powerful mechanisms that
can deal with complex rule interactions,
Touretzky and Wheeler's model still shares
several points with standard models: (1) -the
assumption of abstract levels and underlying
forms, (2) the presence of hard wired rules,
and {3) the nature of the model as a compe-
tence model.

2.2.3 Production Models

Hare’s work ([8], Chauvin [9], and
Dorffner [10] are very similar to my work
reported in this paper. Hare's view is that
prosodic structure, such as vowel harmony, 1s
the sum of the generalizations a speaker
abstracts in the process of learning, without
the benefit of the rules. My work is similar
to Hare's work, but it differs in two ways.
First, I investigate the power of a somewhat
different type of network. Second, I am con-
cerned with both production and perception
as achieved by a single network that can ac-
commodate both processes. ‘

Chauvin examines empirical results related
to first-word acquisition In infants and ex-
plores how and why similar phenomena occur
in a PDP model. The basic architecture of
the network allows encoding of labels and
“images” in a common level of representation
and subsequent extraction of labels from im-
ages and images from labels. This task of
comprehension and production applied to a
neural network is very similar to my ap-
proach presented in this paper. The difference
lies in the representation of linguistic forms.
Chauvin concentrates on semantics _ignoring
phonology, and so does not need a dynamic
representation of words, while the particular
problem domain I have been exploring, re-
quires a dynamic network.

Dorffrer shows how the interpretation and
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generation of words can be modeled in a
connectionist model. His model has an archi-
tecture that learns words by categorizing sen-
sory input from two channels, “phonetic” and
“visual,” into concepts, and then asscciates
co-occurring concepts from the two realms
symbols. Like
Chauvin, he also is not concerned with pho-

into arbitrary words or

nology-
2.24 Parametric Stress Model

Chomsky [11] argues that a child is
equipped with hiologically programmed innate
capacity to acquire and utilize a linguistic
system. The task of language acquisition is
thus simply to finetune the particular aspects
of the linguistic system to which the child is
exposed. Based on this theory, Dresher and
Kaye [12] constructed a parameterized, sym-
bolic model for the acquisition of stress
systems. This model assumes the existence of
11 preset parameters as a part of universal
grammar, the task of the model is to fix the
value of each parameter. So much given in-
formation makes us wonder whether a child
really learns a stress system this way. Gupta
and Touretzky [13] approached the same
problem using neural networks without
having “built-in” constructs of metrical the-
ory, thus concluding that the Chomskyan
view of language acquisition may be unwar-

ranted.
2.25 Two-level Morphology

Koskenniemi[3] puts forward a morphology
in which all rules apply simultaneously, and
in which each rule can be compiled into a fi-
nite state transducer. The name “two-level
morphology” reflects the setup where only
the underlying lexical and the surface levels
ever “exist,” thus avoiding complicated and
often troublesome rule interactions.

Two-level morphology avoids rule intevac-
tions, since rules (the automata) work togeth-
er In parallel; a configuration is accepted if
all rules pass. One contradicting rule is
enough to ruin the correspondence.

Although two-level morphology succeeds in
avoiding rule Interactioms, it still lacks two
fundamental elements of a realistic model:
(1) rules have to be hand-coded and supplied
by a designer and thus (2) no learning takes
place in the model

2.2.6 Summary

So far, some of the models that deal with
phonology and morphology

have been surveyed. Some of the models lack

computational

learning, while others are not psychologically
plausible.

My model is an attempt to overcome many
of the problems raised by the models men-
tioned above by having both segmental and
semantic inputs and outputs in the network,
thus performing the more psychologically
plausible process of the production of a se-
quence of segments given a meaning or the
selection of a meaning given a sequence of
segments. My model is a dyramic model. The
model is given one segment at a time as
input. Furthermore, my model does not pre-
suppose any linguistic parameters, URs, or

rules.
2.3 “Performance” Grammar

There are various theories about how and
why some observed pﬁonological phenomena
occur in the way they do. However, most tra-
ditional theories presuppose abstract URs and
a set of explicit rules to obtain their surface
realizations. Modern generative grammar is
based on the notion of “deriving” forms
through the application of a series of rules,
each of which takes a linguistic representa-



tion as input and yields one which is in some
sense closer to the “surface.” The idea is
that  behind are URs,
abstractions within which each morpheme has

surface forms
an invariant form. Most classical symbolists
believe that surface forms are really derived
from URs with the application of rules. Pink-
er and Prince’s [1] eritical analysis of the
RM past tense model is crucially based on
the claim that the linguistic and developmen-
tal facts provide good evidence for rules and
URs.

There are, however, a number of questions
that have been raised regarding this ap-
proach. That is, given only surface input
forms together with meanmgs inferable from
context, how is a learner to figure out how
the form-meaning relation gets mediated by
URs? Where do assumptions of URs come
from? How are rules found and how are
they related to each other?

It is customary to assume that a language
learner is helped by having certain predisposi-
tions about language wired in; however, I
begin with an approach which is far more
constrained. | assume that the basic building
blocks of language acquisition and processing
are the simple, neuron-like processing units
that connectionist models start out with.
What gives such a system its intelligence is
its architecture. First, we need some means
of representing patterns that take place in
time, that 15, we need my meodel to have the
capacity to develop a kind of short-term
memory that preserves past history.

Second, we need a means of handling both
meanings and forms. Throughout this paper,
by “form” I mean a series of phonemes,
while by “meaning” 1 mean the lexical entry
of the word in question, together with rele-
vant grammatical features. For example, the
phrase pronounced /pan+n/ (=) has the
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meaning GREEN ONION + NOMINATIVE.
What we need is a mechanism that can in-
corporate both form and meaning in such a
way that the knowledge that is learned is po-
tentially usable in both perception and pro-
duction tasks.

What I am describing in this section is a

" rudimentary sort of “performance” grammar;

its goals are different from the goals of gene-
rative grammar, which is “competence” gram-

mar. I am arguing not @egainst rules and URs

per se, bui ggainst generative/transformational
explicit competence rules and URs; I argue
Jor the implicit performance rules and URs
modeled in a connectionist architecture. For
example, the fact that the nominative of kal
is pronounced as /kaltn/ (Z£) can be ex-
plained in competence grammar as:

/kaln+ n/ Underlying Representation
/kalin/ Consonant (“n”) deletion
[kalin] Surface Form

In contrast, performance grammar does not
require any explicit rules and URs. These are
to be learned in the process of generalizing
over a set of iraining instances that exhibit
the alternations between stem and stem plus

nominative case, for example,

KNIFE+ZERO-CASE— /kal/
KNIFE+NOMINATIVE— /kaltn/.

I think my approach is more psychological-
ly plausible; and if such an approach can
handle perception, production, and acquisition,
then generative grammar would become su-
perflucus. 1 do not believe that each underly-
ing segment goes through a derivation em-
ploying explicit rules to produce a “surface”
segment. More important is the fact thai for
speakers meanings trigger the correct phono-
logical/phonetic productions, while for listen-
ers phonetic/phonological material directly e-
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vokes the correct word meanings.

3. The Model

When designing the model, I considered the
capability to accommodate temporal process-
ing to be one of its most important features.
Since the morphophonemic processes that I
am studying in this paper are temporal, I
need some form of short-term memory in
which to store the previous events.

I used a relatively constrained three-layer
network, one in which feed-forward connec-
tions are supplemented by limited feedback
commections. (Fig. 1) shows the network ar-
chitecture used.

(FRg. 1) Architecture of the network used

The input layer consists of three cliques of
units:the Form cligue, the Meaning clique,
and the Context clique. The Form clique in
the input and output layers each consists of
13 units representing a phonological segment.
Fach Meaning clique consists of seven units,
six of which represent a stem meaning (here-
after referred to as s-meaning) and one of
which represents the grammatical feature
(hereafter g-feature; by meaning, 1 refer to
s-meaning and g-feature together) of the
word. The network has a variable number of
hidden units and an equal number of Context
units. Fach of the first two cliques receives
input from the outside, while the Context

units receive a copy of the activations on the
hidden layer from the previous time step.
Given the current form and meaning, the net-
work is trained to replicate them on one part
of the output layer (autoassociation) and to
predict what comes next in the sequence
(prediction). Backpropagation [14] is used to
irain the network.

This network has the capacity to associate
form with meaning and meaning with form,
as well as form with form and meaning with
meaning. Thus it is hypothesized that the
model can perform the task of production of
a sequence of segments given a meaning, or
of a meaning given a sequence of segments.
1t has the potential to make generalizations
across morphologically related words.

There are many reasons why the particular
architecture was chosen. The model is a
slightly modified version of the simple recur-
reni network (SRN) developed by Elman
[15]. It has the ability to learn the kind of
temporal processing that is a prerequisite to
the perception and production of words, by
storing the past history on context units. The
model was trained on autocassociation as well
as prediction. Autoassociation was used to
force the network to distinguish the different
input patterns on the hidden layer. The task
of prediction exactly matches that of produc-
tion, since the system is trying to decide
which phonological forms to produce following
the current one. By incorporating both Form
and Meaning units, the model has the ability
to associate form with meaning as well as
meaning with form, making it possible for it
to learn to perceive and produce words.

4. Experiments

In a series of experiments, networks with
the architecture described above were trained



on various morphophonemic forms.

The results indicate that the network used
is capable of learning morphophonemic rules
by encoding them on the connection weights
and using them in perception and production
tasks. That is, given training on the stem
form, but not the nominative case of kal (Z)
‘a knife’, the network was later able to gen-
erate the appropriate nominative suffix fol-
lowing the stem or to determine the gram-
matical case of /kalin/ (Z2), a form i
had never seen.

For example, the network was trained on
pairs like the following:

(4) KNIFE+ZERO-CASE—/kal/
(5) KNIFE+NOMINATIVE—/kal+n/
(6) NECK+ZERO-CASE—/mog/

and then it was tested on pairs like the fol-
lowing to see if it then yielded correct mor-

phophonemic forms:
(7} NECK+NOMINATIVE—/mog/+77-

However, this solves the problem in only
the production direction. The model should
also be able to predict meanings, given
forms. The model was trained on (8), (9),
and (10) and tested on (11) to see if it was
able to get the correct grammatical ending.

(8) /kal/—KNIFE+ZERO-CASE

(9) /kalin/—~KNIFE+NOMINATIVE
(10) /mog/—NECK+ZERO-CASE
(11) /mogin/—>NECK+?7.

4.1 Stimuli

Input words were composed of sequences of
segments. Since morphophenemic processes do
not treat phonemes as atomic, unanalyzable
wholes but refer instead to their constituent
phonetic properties like voicing, tenseness for
vowels, and tongue position, it was fecessary
that such fine-grained information be present
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in the network. To meet this end, each seg-
ment was represented as a binary vector en-
coding modified Chomsky-Halle phonetic fea-
tures [16, 17]:1 for the presence of a par-
ticular feature and 0 for its absence.

Twenty words were selected for each simu-
lation. Twelve words from each set were des-
ignated “training” words; the remaining eight
were “test” words. For each of these basic
words, there was an associated inflected
form. The network was trained on both the
basic and inflected forms of the training
words and only on the basic forms of the
test words. Therefore there were 32 different
input patterns for each simulation. Words
were presented one segment at a time. Each
word ended with a word boundary pattern
consisting of all zeroes.

Each “meaning” consisted of an arbitrary

. pattern, composed of three activated units on

out of a set of six “stem” units, representing
the meaning of the “stem™ of one of the 20
input words plus a single unit representing
the grammatical feature of the input word (0
for basic, 1 for inflected).

4.2 Training Regimen

Two separate simulations were performed
for each of the morphophonemic rules. Pilot
studies were performed to estimate the opti-
mum size-of the hidden layer.

The meaning inputs and the target mean-
ing outputs were constant throughout the pre-
sentation of a word. The network was
trained on autoassociation for both forms of
inputs, that is, both segments and meanings,
as well as on prediction for the next seg-
ment.

To accelerate the training time adaptive
training [18, 19] was used. The learning rate
began at 0.25 and was decreased by a factor
of 0.75 when there was no improvement over
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a period of five epochs. A fixed momentum
of 0.9 was used.

To test the network’s performance on the
production task, the network was given the
appropriate segments for the stem successive-
ly, along with the meaning of that stem and
the g-feature unit on indicating inflection.
Then the prediction output units were exam-
ined at the point where the inflected mor-
pheme should appear. Using FEuclidean dis-
tances, each output pattern was converted to
the nearest phoneme. This phoneme was then
compared to the desired phoneme. )

To test perception performance, the net-
work was given the sequence of input seg-
ments for a word, the stem meaning units
were set to the appropriate pattern, and the
g-feature unit was given the initial value of
0.5. At the presentation of each new seg-
ment, the g-feature unit was copied from the
output on the previous time step. The output
g-feature unit was examined after the ap-
pearance of either the appropriate inflected
form or the word boundary.

4.3 Experiment 1. nominative case in/nin (F3&
=AL /=)

" 4.3.1 Method

The “suffix” rule attaches a /nin/ to the
noun stem for the nominative case and “n-
deletion™ rule deletes /n/ from the suffix
when the noun ends with a consonant io
avoid consonant clash; In summary, this
process adds a /n4n/ or an /+n/ to the
noun and the suffix agrees on the -consonan-
tal feature with the previous segment.

The mmput corpus for this simulation consist-
ed of a set of 20 Korean nouns. Twelve of
these were designated “training words”, while
the other eight were “test” words. The net-
work had 27 hidden units and also 27 Con-

text units. Training continued until the net-
work performed correctly on the training set,
that is, until the error for every output was
less than 0.05: 696 epochs for the first run;
6250 for the second.

4.3.2 Results

The results of this experiment are summa-
rized in {Table 1).

(Table 1) Results of nominative case experiment

[ Broduction Perveption n

zero—case ]ﬂinative zero-case [nominative
Training 100% 100% 100% 100% 24
Testing | 100 |  B7.5% 100% 100x 16

When the network was tested on the nomi-
native case task, the network predicted the
correct segments for 14 of the 16 suffixes in
the two runs. The two suffix errors involved
substituting /b/ for /n/ in /hyontn/ (E).
When the nominative morpheme appeared in
the perception task, the output number unit
behaved appropriately for all of the 16 test
iems.

4.4 Experiment 2: L-deletion {2 g2})
44.1 Method

In this rule type the consonant /1/ is delet-
ed from the end of a verb stem when it is
followed by a /ni/, /si/ etc. The input corpus
consisted of a set of 20 Korean verbs, all of
which ended with /ldz/. The first twelve
words were “training” words and the remain-
ing eight, “test”. :

The network performed best with 17 hid-
den units and the same number of Context
units. The network was trained 751 epochs
for one run and 2357 epochs fof' the second
run.

4.4.2 Results

The network was able to learn the l-dele-



tion task very well. It produced /lda/ when
the g-feature unit was off and /ni/ when the
unit was on for the training words. The
results for the test words are shown in
{Table 2). It correctly produced /ni/ for the
test words when it was given only /lda/ dur-
ing training. It was very good at perceiving
a novel word with /ni/ as an inflected word.

{Table 2) Results of deletion experiment

Production Perception n
* S ts correct | ¥ Feature correct

1-deletion 100 100 16

45 Experiment 3. b-irregular ( H-E771%)
4.5.1 Method

This rule changes a /b/ in a verb stem to
a /w/ when il precedes a /a/, /a/ etc. The
input corpus consisted of a set of 20 Korean
verbs. Each verb ended with /bda/, which
was changed into /wa / or /ws / depending
on the preceding vowel.

As the previous experiments, after the pilot
run the size of hidden layer was decided
upon: the network performed best with 27
units in the hidden layer. The network was
stopped after 501 training epochs for one run
and 232 epochs for another.

4.5.2 Results

The network learned the set of training
words quite successfully In less time than
those for other two experiments. Segments
were produced correctly and the network cor-
rectly predicted grammatical feature.

The network apparently had difficulty in
coming up with the correct morpheme for the
b-irregular task. The network predicted the
correct segments /wa/ or /we/ only 75% of
the time (only 12 cases out of the 16 words
in the two runs were correct). This is not

surprising given the task of substituting a
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segment- The network performed quite sue-
cessfully on the perception task. It was able
to perceive a word ended with /wa / or /we
/ as an inflected word. The results are sum-
marized in (Table 3}.

(Table 3) Results of mutation experiment

Production Perception n
% Segments correct | % Feature correct
|_b-irreqular 75.0 100 16

5. Discussion

The model successfully learned morphopho-
nemic rules by making generalizations from
the exemplars by changing the connection
weights during the process of learning. The
set of weights the model developed in produc-
ing the desired inflected morphemes con-
strained the model’s outputs to follow the de-
sired patterns, and what looks like a rule-
governed behavior is In fact embodied in
these weights. However, the network does not
yet achieve all that ] would like.

The experiments reported here were carried
out on only a small, and severely restricted
input corpus. Only 20 words were considered
in each simulation run. To be able to claim
the plausibility of this model as an adequate
system that can process morphophonemic phe-
nomena, I need to expand my research to a
bigger data set.

There were some unrealistic procedures em-
ployed in training. The network was given
only noiseless input data. However, in reality,
it is not possible to receive all words without
any noise at all. The network was also given
a priori word boundaries. A more . realistic
task would be to present the words in succes-
sion without any boundaries, so that the net-
work would learn to detect the word bound-
aries and process them accordingly. If the
model were given raw speech data, the two
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procedures of  filtering and segmentation of
some sort would need to play very important
roles in perception [20, 21].

One of the severe disadvantages of the cur-
rent model is that the network was hand de-
signed, especially in that the size of the hid-
den layer had to be empirically determined.
This is one of the biggest drawbacks inherent
10 most connectionist models, My distant goal
is to design a self-evolving network: given
only the problem, the model would come up
with the optimal network.

6. Conclusion

The model is capable of abstracting
generalizations from exemplars, thus eliminat-
ing the need for pre-defined abstract URs
and explicit rules, a major part of generative
phonology.

I believe my study has shed some light on
how a particular type of cognitive phenome-
non can be accounted for without the use of
explicit symbols or rules. It remains to be
seen how much my approach to the relatively
trivial processes dealt with must be modified
to deal with more complex processes and the
elaborate mechanisms for handling them posit-
ed by
connectionist descendants.

Words are composed of smaller units and

traditional phonologists and their

there is a hierarchy from more abstract units
to less abstract units. In the current study,
my main concern was with the areas of pho-
nology and morphology. I presented feature
matrices corresponding to single phonemes as
input to the network and showed that the
network could learn morphophonemic pro-
cesses, thereby perceiving and producing the
correct words given the appropriate form or
meaning. |t is safe to assume that the
activations which follow the presentation of a

feature matrix segment compromise a distrib-
uted representation of that phoneme. Follow-
ing a cluster analysis demonstrating the net-
work’s natural categorization of phonemes,
we might be able to use these internal repre-
sentations as input for another higher level
network, thus constructing representations for
syllables, an issue which I bypassed in the
current study. Even though the network is
told nothing about where syllable boundaries
occur, how many syllables there are in a
given word, or even that syllables exist, it
might be able to encode and use the syllable
structures.

A related problem is that, 1 presented
words in isolation, as presegmented signals la-
beled with phonetic features, which is not the
case for real speech data. Input should be an
uninterrupted stream of raw speech data. It
should filter out noise from the speech signal,
and segment the signal into different catego-
ries (phonemes) according 1o appropriate
(phonetic) features. It should discover for it-
self the existence of the basic units of lan-
guage, including the syllable, the morpheme,
and the  word. It should analyze distributed
representations on the hidden layer, use them
to feed the next level in the hierarchy, and
add new levels as need arises. Once it has
finished being trained In perceiving the input
signal, the resulting network should then be
able to perform production tasks. The quest
for these answers will be my ultimate goal in
the process of my research. The study pre-
sented 1n this paper is a right step in this di-
rection and hopefully will be a significant
component of a complete speech -understand-
ing system.
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