54 HRYSH2AME =2X] M2 K2 (95 3)

sho] Za}el k4l o] ASIC dlolg} AeE o
B2]4) A7 AAY FESE e RE

4

7

e

e
(=]

oy I
& o g
34

EHT

Q_r

B ERE solxchel §42) ASIC Holch HRE Aoletr] Y Tol W YalH Al HAY =

Eg8e] ¢ Ao}, 222 7](conditional branches)}g 71 dlelgligiesn

8 Fol ¥ el

#3144 7(finite state machine) LEFE $Asi: vhge 7t 228 g€ 228 9

AN A FRdels]S GHos FHUY Zeg PAAE
(state table)e] Yeh2 EWHe FAA7]S) Yool 2Hax).

o ¥4 s 240 BAg AN Ha

sl A AAEE Y A E
ol fritadel7lE od27hal shE uwpay

QAL 71 SERAT} GAHY. QY B4 $opx] ==
£ 449 B4E vimein) =9 ¥ nd vl 4o gy gD

Bezg,

Automated Synthesis of Moore and Mealy-model Time-stationary Controllers
for Pipelined Data Path of Application Specific Integrated Circuits

Jong Tae Kim?!

ABSTRACT

In this paper we discuss Moore and Mealy-

model Time-stationary control schemes of pipelined

data paths of Application Specific Integrated Circuits (ASICs). We developed a method to
synthesize both a Moore and a Mealy-style Finite State Machine (FSM) controller specifications

given a pipelined data path with conditional
generation of control specification and the
generates a FSM specification in the form
are applied to each FSM controller so as to

branches. The control synthesis task consists of the
FSM synthesis. The control specification procedure
of a state table The different partitioning schemes
minimize the total area. Experimental results show

the characteristics of the two different control styles and the effects of these two models on

cost and performance.

1. Introduction

Nowadays, there is a high demand for
high-speed computing with limited resources
and for fast design of systems while guaran-
teeing their correctness. Pipelining has been a
good methodology for designing fast digital,
application specific integrated circuits
(ASICs), but pipelined architectures become
quite complex to design as circuit sizes in-
crease. Automated design tools in high level
for pipeline ASICs are necessary to cope with

such complexity and explore the design space

VA8 A AERdgE dolpekn m
A 01994 94 84, AAbshE 1 19943 149 39

efficiently. High-level synthesis is a relatively
recent branch of VLSI design automation
research and the task of high-level synthesis

,of pipelines may be divided into data path

synthesis and control synthesis. The main
fasks of data path synthesis include schedul-
ing and resource allocation[1]. Scheduling is
the process of partitioning the input specifica-
tion so that each partition corresponds 1o a
single time step, or a control step in execu-
tion and assigns operations in’ the input
graph to time steps while observing the data
precedence and satisfying constraints. %\this
point, no concrete register transfer level
(RTL) structure is implemented. It is only

during RTL synthesis that operators are

TtojZetgl wale| ASIC HojEt H2E 28 R0 W ZElA At FXE BEZnC| XS BHY 255

mapped onto specific hardware modules, val-
ues are mapped to specific registers and
multiplexors are assigned at inputs of shared
resources. RTL synthesis outputs a complete
RTL design implementation. Control synthesis
can be done in parallel with data path
synthesis or afterwards. In this paper we are
focusing on the synthesis of controllers for
pipelined data paths, especially on control
mechanisms which provide control signals for
the entire pipeline from a single source exter-
nal to the pipeline, as usually known as
time-stationary control schemes[2].

The controller can be modeled as both a
Moore-siyle or Mealy-style Finite State Ma-
chine (FSM) in which state memory holds its
present state, and the combinational parts de-
cide the next state and the primary output
functions. The combinational circuits can be
implemented using PLAs or random logic.
One type of FSM whose output is a function
of present state is called 2 Moore machine
[3]. If the output of FSM is a function of
both the mnput and the current state, then it
is called a Mealy machine[4]. We present a
method to synihesize both a Moore-style and
a Mealy-style FSM controller specifications
given a pipelined data path with conditional
branches. The input is a scheduled data flow
graph (DFG) which shows operator-to-time
step assignments and Interconnects between
operations. The output is a FSM specification
in the form of a state table. A DFG is a di-
rected graph representing the functionality of
a digital system or a computer program. In a
DFG, a node represents an operation on val-
ues and a directed edge represents the flow
of values between its source and sink nodes.
There are many constructs which can repre-
sent conditional execution paths in DFGs.
Hov_s_rever, in this paper, we use OR-FORK
and OR-JOIN (also referred to as a distrib-

ute-join (D-J) node pair[1]) to represent
conditional execution paths in DFGs. A DFG
which is augmented with these D-J con-
structs is referred to as a control/data flow
(CDFG) since it now
additional control information. We assume

graph includes
that loops are handled by unrolling them and
the CDFG schedule is pipelined with a laten-
cy (or initiation interval) of L.

We describe a method to generate control
specifications of the pipelined data paths
which makes use of the node labellng and
mutual exclusion testing techniques described
in [1]. The algorithm assigns to every node
a label consisting of a sequence of one or
more integer codes. Using these labels, we
can test for mutual exclusion between any
pair of nodes (operations) in pseudo-constant
time. (Fig. 1) shows the scheduled CDFG
with node label.

(FAg. 1) Scheduled CDFG with Node Labelling : L=3
{Moore Model)

256 E=HEHCIYE =BX H2H H2& (% 3)

2. Related Work

Early works[5, 6] in pipeline design fo-
cused on either scheduling and controlling ex-
isting pipelines or physicaily construction of
stages with fixed functions. Pipeline stages
are physically separated {structural pipelin-
ing). This may force non-optimal wuse or
sharing of resources. The data path synthesis
program we use, called Sehwal[l], presents
some theoretical foundations of pipelined
synthesis. In Sehwa, the logical-stage concept
(functional pipelining) was used. A logical
stage corresponds to the set of operators, reg-
isters, and multiplexors which are activated
during the same clock cycle. Two logical
stages may share the same resource, which
makes more complex and efficient sharing of
resources possible.)

Most of the previous work done in the con-
irol synthesis at the register transfer level
was for non-pipeline systems. Automatic
synthesis of microprogrammable control hard-
ware was addressed in [7] using the two op-
timization algorithms. The optimization tech-
niques can be used to reduce the number of
branches, to shorten conditional branching
time, and to reduce the number of micro cy-
cles which leads to increase the performance
of the micro engine. The CONSPEC[8] dealt
with the automatic production of control spec-
ifications from high-level behavioral descrip-
tlons in control and timing ,;g,r‘aph form and is
designed for interface processors. Bridge[9]
is a high level synthesis sytem developed at
AT&T Bell Laboratory and performs data
path and control path allocation for non-pipe-
line systems. There have been numerous re-
ported works on FSM optimization. These in-
encoding[10],
counter embedding and logic partitioning[11,
12, 137, and logic minimization[14]. Vertical

clude algorithms for state

partitioning[12] separates the set of output
functions 1nto two or more PLA’s while mini-
mizing the number of redundant product
terms in all the PLAs. Horizontal partitioning
[131 allows the reduction of the number of
input and/or output columns in the PLAs
resulting from the partition. As a part of our
approach to FSM optimization, we use a varl-
ation of the horizontal partitioning technique.

3. Control Synthesis

The control synthesis system consists of
two parts . the automated generation of con-
trol specification and FSM optimization. The
control specification procedure consists of
three major steps: preprocessing, state deci-
sion, and state transition. In preprocessing, to
reduce the number of states and simplify the
control synthesis tasks we modify the mput
CDFG by rearranging the D and J nodes, in-
serting NOP nodes. In addition, we need to
insert latches for keeping input conditions if
ihe life time of conditional branches are long- -
er than L for Mealy model. In Moore model
the conditional branches occur before the
next time step, in other words the conditional
branches decide the next states. In the case
of Mealy model the conditional branches de-
cide the output functions. Edges with no op-
eration nodes increase the number of states
in the FSM and our solution to this problem
15 to keep the D and J nodes as close as pos-
sible. NOP nodes are also inserted along exe-
cution paths in order to simplify the control
synthesis tasks, since now only nodes need to
be considered (as opposed to nodes and
edges). Through the state decision process
the states are bound with operation. After
identifying the states, the state -transitions
are determined. The state outpuis are deter-
mined by binding the control signals available

To|Zetel Ao ASIC mlojet HZE I8t RO W el M2 HAE TEERS AE BA 257

from the RTL data path synthesis for each
state. Once thé state table is obtained, we
need to synthesize an FSM to implement the
controller. FSMs can be implemented with ei-
ther PL.AAs or standard cells. The first stage
of the FSM optimization is performing both
partitioning and state encoding or state en-
coding alone, depending on the user’s choice.
Next stage is logic minimization with Espres-
so[14] for two level or MIS[15] for multi-

level logic.
3.1 Moore Style Controller Synthesis

3.1.1 Control Specification

First the mutual exclusion set (MES) is
identified for given time step i. A set M of
nodes is said to be a MES if all the nodes in
M are pairwise-mutually exclusive and M is
not included in any larger MES M. MESs
are the maximal groups of mutually exclusive
operations within a given time step. Let M;,,
M; 5+, M;. denote the MES covering time
step L a Possible Execulion Mode or PEM, P
is defined as a set of n operations, one from
each MES, Pi={o 0.l o0 & M, h=1,-,
n}. We will denote by P,; Psa , the differ-
ent PEM’s in time step i. Next, we find sets
of operations P, PEM, which can be execut-
ed concurrently in each time step by picking
one operation from each MES and combining
them. Thus, each P,; represents a subset of
nodes that can be executed in parallel during
time step i Since the schedule is pipelined,
time steps i, i+L, i+2L,--are overlapping
and therefore, a state can now be defined as
follows: Given 1=i<L, a state Si is defined
as a set of PEM’s corresponding to overlap-
ping time steps i, i+L, i+2L, . Si={Py|
YPuy Prp=Sy k mod L = m mod L = i},
and Si is not included in any larger state Si'.
We will denote by Si5, Siza---Siw all the states
that can be generated by different combina-

tions of PEM’s in 1 and the time steps that
overlap with it, and n; is the number of such
different combinations. Since I=<i=[L, we can
define groups of states G Gaes, Giery GL
such that Gi= {S,;, I=<j<n;}. As an exam-
ple, we took the CDFG shown in (Fig. 1).
We used Sehwa to schedule this CDFG with
latency L.=3. Preprocessing adds two NOP
nodes to the CDFG. One, (110), is added to
time step 2 and other, (10), to time step 4,
so that the procedure deals with only opera-
tion nodes. < Table 1> shows the state iden-
tification procedure. The mutual exclusion
sets are M,,;=(10,110,111), M,,=(20,21) in
time step 2, Ms=(100,101,110,111) in time
step 3, My, =(10,11) in time 4, and M=
{30,31) in time step 6. There are 6 different
PEMs In time step 2. They are P.,;=(10,20),
P.2=(10,21), P.z=(110,20), P,=(110,21),
Paus=(111,20), and Pa,s=(111,21). In time
steps 3, 4, 5, and 6 there are 4, 2, 1, and 2
different PEM sets, respectively. Since L=3,
time steps 2 and 5 are overlapped. From
these PEMs we can bind operation nodes and
states. We can find 6 states in G2 which are
S21=(P2,1,Psn), Sz2= (Poi2sPsi), Sza= (Pays,Ps,
1, Szn=(_szP5,1), Sus=(P2s,Psi), and Spe=
(P2,6,P5,1). There is a total of 16 states in
this example.

After identifying the states, we need to de-
termine the state transitions. Given a CDFG
pipeline-scheduled with a latency L, we ob-
serve that state transitions occur between

(Table 1) State decisions for the example

1. Muusal E‘Elllsit-m #e=(10,110. 111), M2=(20,21). Ma,=(100,101,110,111),
Saus Mo s=(10. 11), May=(30,31)

2. Sets of Pessible | Fuia=(0,1,2), Ppi=(10.21), Ppe=(10,21), Fi,3=(110, 20),
Execution Modes Pr=(110,21), Pye=(111,20), Pre=(111,21),
By.s=(100), Pia=(101), Bya=(110), Baa=(111),

Po1=(10), Pas=(11). Bys=(0.3), Pes=(30)., Peo=(31)
| 61] Su=(Pu.Pu). Siz=(Py,ba)
Sa=(B, Pua), S0=(PraPra), Sea=(FraFea).

Sp.4=(Paa.Pu1). Sus=(Prs,Psy), Spe=(Fya.Pot)
E31=(Far.Per). Saa=(Par Pas), Sas5(FazFex).
Saa={Pr2.P2), Sne=(Pas.P1). Sna={faa.Fez).
Su1=(Paa.Pra), Poa=(PaaPuz)

G
G |

258 EHEIEXEES =2X M2 ¥2E (95, 3)

adjacent groups of states in the following se-
G—Gupr-G—G,. This 1s
mainly due to the pipelined nature of the

quence:G,—Gy--

scheduling and is shown in (Fig. 2). This 1s
a key properiy in our optimization scheme,
as will be discussed later. Another important
factor affecting the control specifications are
the distribution nodes (D). If the present
state has m D nodes, there are 2™ possible
combinations of input conditions. Given a par-
ticular state, the next state is the one which
has all the compatible (i.e. not mutually ex-
clusive) nodes of the present state. We find
compatible nodes by searching only the PEMs
corresponding to the next time step within
states In the next group. The state transition
procedure is presented in (Fig. 3).

3.1.2 FSM Optimization

The controller is vertically partitioned into
a sequencing part and a command part. The
sequencing logic is partitioned horizontally

Tasks

n h]mln

(Fig. 2) Overall timing and state transitions in a
pipelinde system

Procedure State_Transition
iny d Groups of states G, --- Gy
outputs:State table which is set of TGy - TG
I TGe the transition groups comesponding to Gu
S fth state In G; //
For =1 to L
n
While (G0}
in

ol the next state Se;
I/ whers is{/+1)module L l’
Put lormation In TG
end while
and for
and procedure

{Fig. 3) State transition procedure

into two parts[13]. In our Moore model, the
inputs to each of the groups G; are mutually
exclusive since the D nodes are scheduled in

.only one time step. Thus, grouping over-

lapped stages in a pipelined data path has
the great advaniage that input/output rela-
tions do not block any binary simplifications
between terms because the inputs to each
group are mutually exclusivee We partition
the groups into two subsets SP; and SP: such
that the total area of the resulting parti-
tioned FSM is minimized. If the controller is
implemented as a PLA, in order to calculate
the area we need to know the number of col-
umns CP; and CP: in SP; and SP, the num-
ber of product terms (PTs) mw and me and
the number of binary relations in each parti-
tion. We can estimate the number of rows
RP; and RP; in each partition by subtracting
the total number of rows reduced by coding
constraints from the total number of PTs in
the partition. The total area is Area=RP,CP;
+ RP;CP:. The problem reduces to linding the
partitioning which results in a minimum total
Area. Since we deal with only L groups in-
stead of a much larger number of states, we
can find the optimal partitioning by exhaus-
tive search (which is otherwise not feasible).

Once the horizontal partitioning of the state
table is done, we need to perform state en-
coding. Given a set of coding constraints, the
objective of this procedure is to assign state
codes so that the size of the sequencing logic
is reduced. We generate coding constraint
groups consisting of states having the same
next state and matching primary inputs.
States in the same coding constraint group
can be collapsed into one common PT, thus
reducing the number of states. In addition to
saving states by horizontal partitioning, we
can also reduce the number of bils/state by
assigning even codes to all the next states of

wWolZetel wale] ASIC HOE HZRE RIEt R0 ® YEIY A YAE ZERES X5 Y 259

one partition (in a PLA, this will set the last
column in the OR-plane to all zeros). The de-

tailed descriptions of FSM optimization can
be found in [16].

3.2 Mealy Style Controller Synthesis

3.2.1 Control Specification

In our Mealy model, a state is defined as a
set of nodes in overlapping time steps i, i+1L,
i+2L,-. The number of states doesn’t de-
pend on the conditional branches by the defi-
nition of state and the number of states is
the same as latency L which is the number
of groups in Moore model. We can see that
the number of states In a Mealy-style con-
troller is much less than in a corresponding
Moore-style controller. Thus the state decision
is less complicated than Moore model one and
quite straight forward.

The state transitions are the same as
group transition concepts. The state transi-
tions occur in circular fashion, i.e., 5:—S--
S 5i41--S.—>8; where 1=<i=<L. If there are
no conditional branches, the number of states
in both controllers is the same. The number
of PTs in a Mealy-style FSM is the same as
the number of states in a Moore-style FSM.
The number of PTs in Mealy model depends
on the binding of the input conditions and
the current states. The number of states n
each group of Moore-style FSM is the same
as the number of PTs in the corresponding
states in Mealy-style FSM. The output gene-
ration is quite complex compared to state se-
quencing synthesis, since the output is depen-
dent on both current state and input condi-
tions. The output binding at each state starts
by identifying the dependency of nodes on
conditional branches in each time step and
deciding on the outputs for all the possible
combinations of input conditions on nodes in
that state. In this case the input conditions

are not mutually exclusive between states,
rather, they depend on the life times of con-
ditional branches. If the length of a condition-
al branch is longer than the latency L we
need latches to keep the input conditions
every L time steps.

As an example of Mealy-style controller
we take the same CDFG scheduled with la-
tency L=3. (Fig. 4) shows the CDFG of
Mealy model. Preprocessing adds two NOP
nodes as in the Moore-style controller and
moves the conditional nodes after time step
boundary. For example, D1, D3, D4 nodes
are scheduled in time step 2 for the Mealy-
stype preprocessing, but these conditional
nodes are scheduled in time step 1 for
Moore-style preprocessing. There are 3 states,
S, S; and S;, which are same as the laten-
cy. S; governs nodes (0,1,2) in time step 1
and nodes (10,11) in time step 4. S; controls
nodes (10,110,111,20,21) in time step 2 and
a node (0) in time step 5. And nodes (100,
101,110,111) in time stép 3 and nodes (30,
31) in time step 6 are the set of nodes in S,

(Fig. 4) Scheduled CDFG with Node Labeling:L=3
(Mealy Model)

260 B=ELXCEE =FA M2H H2E (85 3)

Condition nodes (D1), (D1,D3,D4), and (D2,
D5) are the input conditions for S, S, and
Si, respectively. The output binding starts
with state S; and there are 16 PTs in this
example as shown in {Table 2).

3.2.2 FSM Optimization

Since the output is both the present state
and input conditions, i.e., the partitioning of
sequencing part and command part is noti
feasible. Only horizontal partitioning is per-
formed. We use the same methodology of the
horizontal partitioning that the Moore ma-
chine synthesis is used and the only differ-
ence is the command part is included to do
partitioning. But, in this case the column re-
duction has more effect than the row reduc-
tion. The reason is there are not many cod-
ing constraints groups since the command sig-
nals should be considered to check the coding

constraints.
4. Experimental Results

In this section, we present some experimen-
tal results which were obtained by applying
our approaches to two design examples. The
first example is from [1] and called Sehwa
example. We used Sehwa to schedule this

{Table 2) Mealy-style state table for the example

Input | Present | Next Output

DDDDD State State

12345

- sl s2 00--0-00000-00----- —0--
1---- 51 52 00--0-00000-00-0-0--1—~
0--0- 52 53 10--1011-10-10-------0-
0--1- s2 s3 | ------ 11010-10-1010--1-
1-00- 82 53 10--10110-———=-—=———-i 0-
1-01- 52 5 |- 110-10-101010—-1-
1-10- s2 53 10--10110-10-10--—-- -0-
1-11- s2 53 | -—- 110-10-101010--1-
-00-0 S3 s1 -11110-—--———-- 11110--0
-00-1 53 Sl -111101-1--~—-—--0-1
-01-0 53 N e 11-1111111--0
-01-1 353 51 -—----1-1-11-11----1--1
-10-0 s3 sl -10-11--————-1111---0
-10-1 53 sl -10-111-1--————==mm= 1

~-11-0 s3 s1 -11010--~--——-1111---0
-11-1 53 S1 -110101-1-===-m——-]

CDFG with different latencies. Using the con-
trol synthesis techniques and the FSM optimi-
zatlon schemes of Section 3, the controllers
are built with PLAs. (Table 3) shows the
PLA areas and delays obtained by Moore
machine synthesis and by Mealy machine
synthesis in PLA area units (normalized),
and FSM information. We added an estimate
of the routing and buffering areas. The de-
lays are computed as the worst case delay
and the PLA delay figures are obtained
using Crystal[17]. In this particular example,
Mealy machine 1s smaller than Moore ma-
chine in area but the worst case delay of
Mealy machine is longer than the delay of
counter part.

The second example is the MOSTEK 6502
microprocessor. The specifications in ISPS
were obtamned from the High Level Synthesis
benchmark set[18]. In order to obtain a man-
ageable size example, which can be handled
by Sehwa, we reduced the instruction set to
four instructions. Also, since the original
specifications were based on a non-pipelined
scheduling, in order to enable us to perform
pipelined scheduling with high throughput, we
made some modifications on the data path
and the CDFG. We used Sehwa to schedule
the CDFG with latencies L. = 4 and 6. For
each scheduling, we generated a pipelined
RTL implementation of the data path. State
tables information for both Moore and Mealy

(Table 3) Experimertal results of PLA controllers for
both Moore and Mealy-style

Control Style Moore | Mealy
area 397 361
=2 { delay (ns) {4.11 | 4.15
No. of states| 16 3
No. of PTs 40 16
area 370 338
L= delay (ns) 3.18 | 3.30
No. of states| 32 2
No. of PTs 128 32

hpo|Z=etol siale] ASIC HOIE ZRE 2I8 R0 B HEY AT XY BESC9] AE #4261

(Table 4) State table information of the M6502 ex-
ample with L=4 and L=6

Control Style Mooare Mealy

L 4 6 4 (]
No. of inputs 131 13| 131} 13
No. of states 664 1 196 4 6
No. of PTs 1,368 | 305{ 664 | 196

(Table 5) Experimental results for the M6502 example
with L=6 (Moore style)

No. of PLA Standard Cells
Partitions | Area | Dealy| Area | Delay
(m®) | (ns) | (m?) | (ns)
12.53]| 94.6 | 3.87 46.9
9.82|68.5 [3.70 36.7
9.39] 26.1 | 3.11 33.9
10.111{ 26.1 | 3.61 34.0

L2 PO Do R

(Table 6) Experimental results for the M6502 example
with L.=4 (Moore style)

No. of PLA Standard Cells

Partitions | Area | Dealy| Area | Delay

(ma’) | (ns) | (ma®) | (ns)

1 24.08| 159.8] 9.76 57.3
2 19.421101.4(6.91 43.3
4 19.52] 100.6 | 6.09 43.0

(Table 7) Experimental results for the M6502 example
with L=6 (Mealy style)

No. of PLA Standard Cells
Partitions | Area | Dealy| Area | Delay
(@o’) | (ns) | (mwn®) | (ns)

-1 2.50 | 32.69{ 0.70 31.40
2.65 15.751 0.98 26.80
2.94 | 11.93(1.02 16.90
3.13 [11.93]1.13 16.90

| [0

{Table 8) Experimental results for the ME502 example
with L=4 {Mealy style)
No. of PLA Standard Cells
Partitions | Area | Dealy| Area | Delay
(mo®) | (ns) | (mo®) | (ns)
1 2.16 | 16,51] 0.64 23.30
-2 2.11 14.42 1 0.69 16. 80
4 2.32 [12.35] 0.85 14.30

model is shown in (Table 4). We used our
algorithm to synthesize several implementa-
tions of the control part using both PLAs
and standard cells. In each case, we generat-
ed layouts corresponding to various n-way
partitioning of the groups of states for n =
1, 2, 4, 6. (Table 5) through (Table 8)
shows area and delay data of the various im-
plementations. The total area figures for the
PLA implementations include the sum of the
areas of the individual partitions plus esti-
mates of the buffering and routing areas.
The delays of all the implementations are
computed as the worst case delay. The PLAs
were laid out using octtools[19] in SCMOS 3
technology whereas the Standard Cells were
laid out using the GDT[20] CMOS 3 technol-
ogy. The PLA delay figures were obtained
using Crystal. The Standard Cell delay fig-
ures were estimated by MIS. As shown in
{Table 5), the best area and performance
were achieved using a [our-way partitioning
of the controller in both PLA and standard
cell implementations for Moore model. In the
case of Mealy model controller, unpartitioned
implementations have best areas except the
PLA implementation for a latency L==4, The
areas are Increased while the number of par-
titions goes up. The main reason is that the
column and row reductions of the state table
are not enough to compensate the extra rout-
ing area due to multiple partition. Delays are
always getting smaller while the number of
partitions is increased.

5. Conculsion

Pipelining has been a good methodé)logy for
designing fast digital ASICs, but pipeline ar-
chitectures become quite complex to design as
circuit sizes increase. Automated design tools
in high level for pipeline ASICs are necessary

262 BERFSXEEE =24 H2H H2E (% 3)

to cope with such complexity and explore the
design space efficiently. In this paper we are
focusing on the synthesis of controllers for
pipelined data paths, especially on control
mechanisms which provide control signals for
the entire pipeline from a single source exter-
nal to the pipeline, as usually known as
time-stationary control schemes. The pipelined
data path is generated by using the logical-
stage concept (functional pipelining), not
structural ~ pipelining. we compare the
synthesis schemes of Moore and Mealy-model
controllers for pipelined data paths with con-
ditional branches. First, the control specifica-
tion is generated in the form of state table.
Then FSM is synthesized and optimized by
performing partitioning, state encoding, and
logic minimization. Experimental results show
the characteristics of the itwo different con-
irol styles and the effects of these two mod-
els on cost and performance.

References

[1]1N. Park and A. Parker, “Sehwa:a
Software Package for Synthesis of Pipe-
lines from Behavioral Specifications,”
TEEE Trans. on CAD, Vol. 7, No. 3, pp.
356-370, March 1988.

[2]P. M. Kogge, ‘The Architecture of
Pipelined Computers’, McGraw-Hill, N.
Y., 1989.

[31 E. F. Moore, ‘Gedanken Experiments on
Sequential Machines’, Princeton Universi-
ty Press, Princeton, N.J., 1956.

[4] G- H. “A Method for
Synthesizing Sequential Circuits,” Bell

Mealy,

System Technical Journal, Vol. 34, No.
5, pp. 1045-1080, 1955.

[5] E. Davidson, “The Design and Control
of Pipelined Function Generators,” in
Proc. of 1971 International IEEE Confer-

ence on Systems, Networks, and Com-
puters, pp. 19-21, January 1971.

[6] C. Ramamoorthy and H. Li, “Pipeline
Architecture,” -ACM Computing Surveys,
Vol. 9, No. 1, pp. 61-102, March 1977.

[71 A. Nagle, R. Cloutier, and A. Parker,
“Synthesis of Hardware for the Control
of Digital Systems,” IEEE Trans. on

" CAD, Vol. 1, No. 4, pp. 201-212, Octo-
ber 1982.

[8] S. Hayati and A. Parker, “Automatic
Production of Controller Specifications
from Control and Timing Behavioral De-
seriptions”, in Proc. of 26th Design Au-
tomation Conference, pp. 75-80, June
1989.

[9] C. Tseng et al., “Bridge: a Versatile
Behavicral Synthesis System,” in Proc.
of 25th Design Automation Conference,
pp. 415-420, June 1988.

[10] G. De Micheli, R. Brayion, and A.
Sangiovanni- Vincentelli, “Optimal Siate
Assignment for Finite State Machine,”
IEEE Trans. on CAD, Vol. 4, No. 3, pp-
269-285, July 1985.

[11] R. Amann and U. Baitinger, “Optimal
State Chains and State Codes in Finite
State Machines,” IEEE Trans. on CAD,
Vol. 8 No. 2, pp. 153-170, February
1989.

127 G. De Micheli and A. Sangiovanni-
Vincentelll, “SMILE: a Computer Pro-
gram for Partitioning of Programmed
Logic Arrays,” Computer-Aided Design,
pp. 89-97, March 1983,

[13] P. Paulin, “Horizontal Partitioning of
PLA-based Finite State Machine,” in
Proc. of 26th Design Automation Con-
ference, pp. 333-338, June 1989.

[141 R. K. Brayton, et al., Logic Minimiza-
tion Algorithms for VLSI Synthesis’,
Kluwer, 1985.

mol=Zerel grale] ASIC Cio(Et &

[15] R. K. Brayton, et al, “MIS:A Multiple
Level Logic Optimization System,” IEEE
Trans. on CAD, Vol. 6, pp. 1062-1081,
November 1987.

[16] J. Kim and F. Kurdahi, “Finite State
Machine Optimization Algorithms for
Pipelined Data Path Controllers,” in
Proc. of 4th Annual IEEE International
ASIC Conference and Exhibit, pp. 18:7.
1-18:7.4, September 1991.

[17] J. Ousterhout, “Using Crystal for Tim-
ing Analysis,” Tutorial, EECS Dept., UC
Berkeley, 1985.

(18] High Level Synthesis Benchmarks, Mic-
roclectronic Center of North Carolina,
1991.

[19] R. Sickelmier, ‘Release Notes for Oct

28 78 2

S e At §XE EEEDS AE B 263

Tools’, Electronics Research Laboratory,
UC Berkely, 1990.

[20] L Compilers Users Guide, Silicon Com-
piler Systems, 1989.

4 F o

1982\ AFAddw AT
2} (FEH4h)
1987+ vl FalFr|opy et
(Irvine) A7|R HFeT
. ASH(FEA A
199241 w|=+ siE)xuolegt
(Irvine) AZ|Y A&z
AE](Feputal)
1991'—'1-93‘4 v]5 The Aerospace Corp. °4-_rL-ﬂ
1993y ~95y ¥ gty HFelFea ©
1995~ Aggdgta A7g-stst ﬂ%‘-
H4Eek VLSI CAD, ASIC 47, AFe|lFz

