Simulation Anaysis on the Output Characteristics of XeF$(C\rightarrowA$ Excimer Laser Pumped by Electron-Beam

전자빔여기 XeF$(C\rightarrowA$ 엑시머 레이저의 출력특성에 대한 시뮬레이션 해석

  • 류한용 (경희대학교 전자공학과) ;
  • 이주희 (경희대학교 전자공학과)
  • Published : 1995.09.01

Abstract

By the use of computer simulation including collisional mixing kinetic processes of the B- and C-state in the upper laser level the output characteristics of electron-beam pumped XeF$(C\rightarrowA$ excimer laser are analyzed. We compared the results between experiments and simulations for the $XeF^*(C)$ formation that correlated the number of densities of the $XeF^*(B)$. We obtained good agreement$(28.5 mJ\pm5%)$ with comparisons between experiment and simulation and confirmed the optimal gas mixing ratio of $Xe/F_2/Ar=5.26/0.49/94.28%$ at atmospheric pressure laser medium under the condition of 70 ns [FWHM] electron-beam (800 kV, 21 kA). Also through the simulation we have investigated that the $XeF^*(C)$ formation channel, the $XeF^*(C)$ relaxation channel, and the absorption channel of bluegreen wavelength region as a function of F2 halogen donor and Xe partial pressure. ssure.

전자빔여기 XeF$(C\rightarrowA$ 엑시며 레이저의 상준위 B-와 C-상태에 대하여 충동혼합 운동과정을 포함하는 모델을 컴퓨터 시뮬레이션하여 이의 출력특성을 해석하였다 $XeF^*(B)$ 의 수밀도에 관련되는 $XeF^*(C)$의 형성에 대하여 레이저 에너지를 실험치와 비교하였다. 이 결과는 70ns[FWHM]의 전자빔(800kV, 21kA)을 사용한 대기압 매질에서 매우 좋은 일치$(28.5 mJ\pm5%)$를 보였고, $Xe/F_2/Ar=5.26/0.49/94.28%$의 최적화된 가스혼합비를 확인하였다. 또한 시뮬레이션으로 $XeF^*(C)$의 형성경로, $XeF^*(C)$의 완화경로, 청록색 파장대역의 흡수경로에 대한 $F_2$ 할로겐 도우너 및 Xe 압력의 함수관계를 조사하였다.

Keywords

References

  1. IEEE J. Quantum Electron. v.QE-28 Th.Hofmann;T.E.Sharp;C.B.Dane;P.J.Wisoff;W.L.Wilson;F.K.Tittel;F.Szabo
  2. IEEE J. Quantum Electron. v.QE-30 D.E.Klimek;A.Mandl
  3. Technical Digest of the Conference on Lasers and Electro-Optics v.CFH6 H.Y.Ryu;C.H.Lee;Y.W,Lee;Y.P.Kim
  4. Appl. Phys. Lett. v.62 Y.K.Cheng;S.P.Yang;M.X.Wang;Z.G.Ma
  5. IEEE J. Quantum Electron. v.QE-27 R.C.Sze;T.Sakai;M.Vannini;M.L.Sentis
  6. Appl. Phys. v.B56 R.E.Beverly Ⅲ
  7. IEEE J. Quantum Electron. v.QE-25 W.L.Nighan;M.C.Fowler
  8. J. Chem. Phys. v.66 R.Burnham;N.W.Harris
  9. Appl. Phys. Lett. v.33 D.Kligler;H.H.Nakano;D.L.Huestis;W.K.Bischel;R.M.Hill;C.K.Rhodes
  10. Appl. Phys. Lett. v.33 H.C.Brashears, Jr.;D.W.Setser
  11. Appl. Phys. Lett. v.33 T.G.Finn;L.J.Palumbo;L.F.Champagne
  12. Appl. Phys. Lett. v.34 W.K.Bischel;H.H.Nakano;D.J.Ecksrom;R.M.Hill;D.L.Huestis;D.C.Lorents
  13. J. Chem. Phys. v.69 C.H.Fisher;R.E.Center
  14. Appl. Phys. Lett. v.35 R.Burnham
  15. Appl. Phys. Lett. v.35 W.E.Ernst;F.K.Tittel
  16. IEEE J. Quantum Electron. v.QE-19 F.Kannari;A.Suda;M.Obara;T.Fujioka
  17. J. Appl. Phys. v.57 F.Kannari;M.Obara;T.Fujioka
  18. Excimer Lasers Rare gas halide lasers C.A.Brau;C.K.Rhodes(ed.)
  19. J. Chem. Phys. v.76 H.C.Brashears;D.W.Setser
  20. J. Chem. Phys. v.78 R.Sauerbrey;W.Walter;F.K.Tittel;W.L.Wilson, Jr.
  21. J. Quantum Electron. v.QE-15 J.H.Johnson;L.J.Palumbo;A.M.Hunter,Ⅱ
  22. 레이저공학 v.3 류한용;이주희;김용평
  23. Sandia National Laboratory report, SAND80-1486 J.M.Hoffmann;J.B.Moreno
  24. Atomic and Molecular Radiation Physics L.G.Christophorou
  25. Physica v.82C D.C.Lorents
  26. final report by MSNW Incoperated, Contract DEACO(079DP0115) Conceptional design of a KrF scaling module
  27. Appl. Phys. Lett. v.35 D.W.Trainor;J.H.Jacob
  28. J. Appl. Phys. v.51 T.H.Johnson;R.M.Hunter
  29. J. Appl. Phys. v.67 N.Nishida;T.Takashima;F.K.Tittel;F.Kannari;M.Obara
  30. J. Chem. Phys. v.63 J.K.Rice;A.W.Johnson
  31. Gaseous Electronics and Gas Lasers B.E.Cherrington
  32. Kinetics of Ion-Molcule Reaction Ion-Molcule processes in lasers J.B.Laudenslager;P.Ausloos(ed.)
  33. Phys. Rev. A. v.9 P.K.Leichner;R.J.Ericson
  34. IEEE J. Quantum Electron. v.QE-17 Analogous to $Ne^+$ + Xe + Ne→$NeXe^+$ + Ne J.H.Johnson;L.J.Palumbo;A.M.Hunter,Ⅱ
  35. J. Chem. Phys. v.73 J.Bokor;C.K.Rhodes
  36. Topical Meeting on Excimer Lasers S.J.J.Nagalingam;G.H.Miley
  37. J. Chem. Phys. v.56 H.L.Kramer;J.A.Herce;E.E.Mushlitz, Jr.
  38. Advances in Atomic and Molecular Physics J.N.Bardsley;M.A.Biondi;D.R.Bates(ed.);J.Esteman(ed.)
  39. Phys. Rev. v.132 H.J.Osakam;V.R.Mittelstadt
  40. J. Appl. Phys. v.52 W.K.Bischel;D.J.Eckstrom;H.C.Walker,Jr.;R.A.Tilton
  41. Appl. Phys. Lett. v.30 M.Rokni;J.H.Jacob.;J.A.Mangano;R.Brochu
  42. J. Chem. Phys. v.69 J.G.Eden;R.W.Waynant
  43. Appl. Phys. Lett. v.41 W.Walter;R.Sauerbrey;F.K.Tittel;W.L.Wilson,Jr.
  44. J. Chem. Phys. v.78 R.Sauerbrey;W.Walter;F.Tittel;W.L.Wilson
  45. J. Chem. Phys. v.69 C.H.Chen;M.G.Payne;J.P.Judish
  46. J. Chem. Phys. v.65 J.E.Velazco;J.H.Kolts;D.W.Setser
  47. Analogous to $Xe^{*}+ F_{2}$$XeF^{*}$ + F
  48. J. Chem. Phys. v.69 Estimated from $Ar_{2}^{*}$ C.H.Chen;M.G.Payne;J.P.Judish
  49. Analogous to $Xe_{2}^{*}+ F_{2}$$XeF^{*}$ + Xe + F
  50. Analogous to $Xe_2^{*} + F_{2}$$Xe_2F^{*}$ + F
  51. J. Chem. Phys. v.76 N.Boewering;R.Sauerbrey;H.Langhof
  52. J. Chem. Phys. v.69 D.L.Huestis;R.M.Hill;H.H.Nakano;D.C.Lorents
  53. Appl. Phys. Lett. v.31 M.Rokini;J.H.Jacob;J.A.Mangano;R.Brochu
  54. J. Appl. Phys. v.56 Y,Nachson;F.K.Tittle;W.L.Wilson, Jr.
  55. J. Chem. Phys. v.68 J.Tellinghuisen;P.C.Tellinghuisen
  56. IEEE J. Quantum Electron. v.QE-18 Analogous to Ne + Xe+Ne→NeXe G.Marowsky;G.P.Glass;F.K.Tittel;K.Hohla;W.L.Wilson, Jr.;H.Weber
  57. J. Chem. Phys. v.72 D.W.Trainor;J.H.Jacob;M.Rokni
  58. Opt. Lett. v.2 J.G.Eden;R.W.Waynant
  59. Appl. Phys. Lett. v.31 K.J.McCann;M.R.Flannery
  60. Estimated from $Ar_2^+$, see[33]
  61. J. Chem. Phys. v.73 W.R.Wadt
  62. IEEE J. Quantum Electron. v.QE-23 R.A.Sauerbery
  63. J. Am. Chem. Soc. v.78 R.K.Steunenberg;R.C.Vogel
  64. Phys. Rev. v.A3 A.Mandl
  65. 한국광학회지 v.5 류한용;이주희;김용평
  66. IEEE J. Quantum Electron. v.QE-25 S.F.Flulghum;D.W.Trainor;C.H.Appel
  67. Appl. Phys. Lett. v.52 Y.W.Lee;H.Kumagai;Shu-ichi Ahsidate and M.Obara
  68. Appl. Phys. Lett. v.51 A.Suda;H.Kumagai;M.Obara
  69. Opt. Comm. v.94 Y.W.Lee;J.Jethwa;A.Endoh;F.P.Schafer
  70. 한국광학회지 류한용;이주희