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Structural Study of the K-Median Problem*

Sang Hyunz Ahn*

Abstract

The past three decades have witnessed a tremend.us growth in the literature on location problem.
A mathematical formulation of uncapacitated plant location problem and the k-median as an integer
program has proven very fruitful in the derivatiin of solution methods. Most of the successful
algorithms for the problem are based on so-called “s:rong” linear programming relaxation. This ‘is due
to the fact that the strong linear programming relaxation provides a tight lower bound. In this paper

we investigate the phenomenon with a structural anulysis of the problem.

1. Introduction

The past threee decades have witnessed a tremendous growth in the literature on location
problems. However, among the myriads of formulations the uncapacitated plant location problem
and the k-median problem have a wide range of rzal-world applications. A mathematical formu-
lation of these problems as an integer program ha: proven very fruitful in the derivation of sol-
ution methods.

Consider an index set I ={l, 2,---, n} of n point:, and integer k<n, and let ¢; be the shortest
distance between two points i, j€ 1.

We introduce integer variables. Let y,=1 if a pont j is selected as a median, otherwise 0 and
xs=1 if a point j is the closest median to point i, otherwise 0. With x, y variables the k-median

problem is formulated as an integer program as follows.
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Integer Program Formulation :

Zre=Min Yl YT ¢ %y (1)
subject to
T %=1 i jel (2)
L1 =k @)
<y, i, jEI (4)
y<1 jel ' (5)
x, v,20 i, JeI (6)
x; ¥, integral i, j€T (7)

When we drop integer constranint set (7), the integer program becomes a linear program.

Linerar Program Formulation

Zir=Min Y.y Y1 ¢; x;
subject to

(2), (3), (4), (5), (6)

A vast number of algorithms were proposed for the k-median probelm. We refer readers to Ahn
et al {1], Beasley [2], Boffey [3], Christofieds [4], Beasel and Christofides [5], Cornuejols [6]
[7] [8], Fisher and Hochbaum {9], Francis and White [10], Handler and Mirchandani [11],
Jacobsen and Pruzen [12], Kolen[13], Krarup and Pruzan [14], Papadimitriou [15], ReVelle [16],
Rosing [17].

Most of the successful algorithms for the k-median problem are based on the strong linear pro-
gramming relaxtion. In Ahn et al [16] we presented and explained why the strong linear pro-
gramming relaxation provides a tight lower bound in the probabilistic sense. In this paper we in-

vestigate the phenomenon with a structural study of the problem.

2. Structural Analysis

In this section we investigate the k-median problem defined on a graph. That is, each point

represents the vertex of a graph. Unless otherwise specified it is assumed that ci=0, symmetry
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of distance and triangular inequality. That is, cs;=c¢ and ci<cates

Kolen[13] proved that the linear programming relaxation of the uncapacitated plant location
problem defined on a graph has an integer optimal solution when the underlining graph is a tree.
However this does not hold for the k-median problem. We state this observation as a prop-

osition below.

Proposition 1 :

Even when the underlying graph is a tree, the linear programming relaxation of the k-median
problem on a graph can have a fractional optimal solution.
Proof :

By an example in Figure 1./

figures : lengths of edges

{Figure 1) A Tree »f Duality Gap

For te above thee Zi»=5 with an optimal solution of y;=yi=1, ;=0 for j=1, 2, 5. xs is defined
to satisfy (2}, (4), (6).

Zir=4.5 with an unique optimal solution of y»1=C(. y;=1/2 for j=2, 3, 4, 5 and xe=xn=2x2=1Xxn=
xw=xn=xs=xu=xn=xs=1/2, all other x;=0.

Since the linear programming relaxation of the k-median problem on a tree can have a frac-
tional optimal solution, here we further investigate a tree in which the optimal linear program
soluion is always fractional. Let G(V,E) be graph such that length of every edge is unit and |V|
=n. We shall assume thast c;=1 for all pairs of i, '€V which are joined by an edge hereafter.

We introduce a notion of a dominating set.



104 Sang Hyung Ahn HEEER S

Definition 1 :

A subset D of V is a dominating set if for every node that does not belongs to D, there
exists at least one edge which connects it to any node in D.

If the length of each edge, cs>1 for all {5, then we must have
Zww=Zir>n—k (8)
In fact, when there exists a dominating set in a graph, Zir achieves its lower bound and equals
Zir. We present this as a lemma below.
Lemma 2 :

If there exists a dominating set in a graph, then Zr=Zir=n—k.

Proof :

Suppose there exists a dominating set DSV in the graph.

Let y,=1, xi=1, for all j€D and =0, x,=0 for all other j.

The value of this integer solution is n—k, which is its low bound. Hence Lemma 2 follows (8).//
We derive the dual of the linear programming relaxation of the k-median problem Let. V., U,

Wy, t be the dual variables associated with the constraints set (2), (3), (4), (5) respectively.

The dual formulation is :

Z{D)=Max YL, V.—(R)U)—Y01 & (9)
subject to

V.—-W,<C, i, jel (10)

Yo W,—U—t,<0 jel (11)

W, £=0 i, j€l (12)

V., U ; unrestricted i1€1 (13)

For any given V=(V, : i=1,---,n), define
pi(V)=Y0 (V,—¢)" for j=1,-,n, where a* denotes Max(0, a).
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Lemma 3 :
ZLPZZ:‘:I V,»“kXMaxFl,...',. p,(V)
Proof :

If can be checked that, a feasible soluion of Z;:(I") is obtained by setting Wy=(V,—cy*, ,=0
and U=Max,-;1,..,npi(V). V4
We let Z,(V)=37., V.—kXMax., ., , p{V) be this dual bound.

We present a tree where the linear progrmming relaxation always has a fractional optimal sol-

—()—
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")

ution at (Figure 2).

—
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p . # of spokes

each spoke consists of
1 non-eaf and 1 leaf node

besides center node

(Figure 2) A Tree with a Fractional Optimal LP Solution : 1

Theorem 4 :

For 2<k< p the optimal LP solution to the above three is : y={(p—&)/(p— 1), m=(k—1)/
(p—1), y==0 for j=1,p.
Zwr(k)=(3p*— 2pk—p+k—1)/(p—1)



106 Sang Hyung Ahn BERSEH 2T

Proof :

Let V., W;, t, U be dual variables and we construct a dual feasible solution as follows.
Vo=1, Vi =1, Vi,=2+1/(p—1), ti =t;,=0, for i=1,--p
Wu=1, Wou= Wau=0, for i=1,,p
Wio=1, Wi;=0, for i=1,---p
1if 1=y
n 0 otherwise for i, j=1,.p
Wio=1/(p—1) for i=1,;-p
2+1/(p—1) if =)
0 otherwise for i, j=1,,p
U=2+1/(p-1),

1,4,

The value of the above solution, which is dual feasible, is :
Zie(D)=Y'., V.—kU=(3p* ~ 2pk—p+k—1)/(p— 1), which is Zur.
By the strong duality theorem both the primal and the dual solutions are optimal.//

Proposition 5 :

For 2<k<p, an optimal integer solution for {Figure 2) is yo=1, ya=1 for an k—1 spokes.

Proof

The value of the above solution Zir=(k—1)+3(p—k+1)=3p—2k+2, and Zir—Zir=(k—1)/
-D<l/

The proposition 5 implies that even though a duality gap, Zir—Zir, always exists for the three
given in (Figure 2), the duality gap is less than 1 and goes to 1 when p goes to infinity for
k=p—1.

One interesting feature of the above treee is that for k=p, there is no duality gap.
Proposition 6 :
For k=p, the duality gap vanishes for the trec of {Figuere 2). That is, Zir=Zir.

Proof :

Let J* be a set of ji of spoke. Then J* is a dominating set, so Zw=Zrr=p+1 with y,=1 for
each spoke./

Since the dual feasible region is independent of the value of k, we have following results.
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Theorem 7 :

Let S*={U* V* W*} be an optimal LP solution for 2<k=k*<p and Z:»(k*) be the optimal of LP
relaxtion when k=k*. Then S* is also an optimal LP solution for 2<k=k*+a<p and Zir(k*+a)
=Ze(k*) —aU™.

Proof :

Since the dual feasible region does not depend on the value of k, S* is a feasible LP solution to
k=F*+a. The value of this solution S* to k=k*+a is
(8p* = 2 p(k*+a) ~p+(k*+a)— 1} (p— 1 )=Z,(k*) -aU*,
which is the optimal value according to the Theorem 4./
We generalize the Theorem 4 by adding nodes tu each spoke of tree of (Figure 2) in two dif-

ferent ways. First by adding one non-leaf node to euch spoke, we have the following results.

Theorm 8 :

For 2<k<p, the optimal LP solution to the tree of (Figure 3) is :
(a) yo=(p—k)(p—1), %,=0, y,=(k— 1)/(p— 1), 3,=0, for j=1,,p
(b) Zie(R)={2(3p* — 2pk—p+k— 1)} (p—1)

Proof :

The proof is same as the proof for the Theorem 4. Here we only give the dual variables V's
and U

Vo=2, U=4+2/(p—1)

Vi=1, V.,=2+1/(p—-1), Vi=3+1/(p—1), for i=1,-,p./

When we add m leaf-nodes to each spoke of the iree in {Figure 2) we have an example of infi-
nitely large duality gap as n goes to infinity.
Theorem 9 :

For 2<k<p.

(a) optimal LP and IP solutions to {Figure 4) ave sme as for the Theorem 3 and the Theorem

4 respectivley.

(b) liir}( (Zir—Zip)[Zir=(k—1) / {k(k+3)}, and the maximum value is 1/9 attained when k=3
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p : the number of spokes
each spoke consists of 3

nodes besides center node
{Figure 3) A Tree with a Fraciona! Optimal LP Solution : 2

Proof :

For part (a), proof is same as for the Theorem 4. We just give the optimal dual solution V's
and U;V’s are same as those of the Theorem 4, U=(m+1)+m/p—1).

For part (b).

Zw=lpm(2p—k—1)+p* —kp+k—1}/(p— 1),

Zir={m(2p—k+1)+(p—k+1)

Hence the relative gap is

(Zip—Zi)| Zre={m(k— 1 }+{(p— 1 )(m(2p—k+ 1)+ (p—k+ 1))}

—k-1)(p~1)(2p—k+1)asm -

clearly the last fraction takes it maximum when p=k-+1./

Here we generalize the results of the Proposition 7 and the Theorem 9, and provide it in the

following theorem.

Theorem 10 :

(a) for k=1 or k=[(n— 1)/ 2], Zw=Zwr for every tree on n nodes.
{(b) For 2 <k<[(n—1)/2], and n#8, there is a tree on n nodes such that Zir#Z.r
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p : # of spokes, m : # of leaves

each spoke consists of m+1

nodes besides center node
(Figure 4) A tree with Infinitely Large Gap

(c) There is an infinite family of trees such tnat (Zi—Zr)/Zir—r(k) where r(2)=1/4, r(3)
=1/3 and r(k)—1/2

Proof :

For the 1—median problem, it is well-known that Zw=Z.r for every choice of ¢y, 1<i, j<n.

When k=[(n—1)/2] Zw=Zir=n—Fk follows from the claim that every tree on n nodes has a
dominating set of cardinality at most [(n—1)/2]. This claim is proved by inducion, It is true
for n=2, or 3. Any tree on n>3 nodes has at least one node which is not a leaf and is adjacent
to at most one other non leaf node. Removing sucli a node and the adjacent leaves yields a tree
with at most n—2 nodes. Putting V in the dominating set proves the claim.

To complete the proof of Theorem 10(a), it suffices to consider the case where n is even and
k=(n/2)—1. A closer look at the proof of the abive clami shows that the only trees which do
not have a dominating set k are constructed indictively from a path with 4 nodes by adding
paths P=(V',, V';, V) where V' is one of the non/zaf nodes of the current tree and V', V') are
two new nodes.(See (Figure 5)). Form the constr iction Zir=n—k+1=(n/2)+2. Using the dual
values V;=2 if j is a leaf, 1 if not, Lemma 3 yields Zir>(n/2)+2. Therefore Zw=Z1r.
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To prove Theorem 10(b) when n is odd, consider the tree of {Figure 2). The number of nodes
in the tree is 2p+1 and (n—1)/2=p. Hence Theorem 15(b) when n is odd follows the Theorem
4.

O
D@

{Figure 5) A tree constructed from a path with 4 nodes

To prove Theorem 10(b) when n is even, n#8, we first consider the case £k>3. Add a node Ps
adjacent to P: to the tree of (Figure 2). Then it is optimum to choose P: in S and we can also
choose P:=1 in the LP solution. Removing Pi, P and P: we are back to the case where n is odd
and %2>2. Now consider the case n>10 and k=2. Add three nodes to the graph of {Figure 2),
namely (iy+;), for i=1, 2, 3.

Then Zwr=3p+ 3 but there is a better LP solution, namely, yo=1 and y,=x;=x3=1/3. This
yields Zwi=3p+1.

Finally, to prove Theorem 10(c). consider the tree of {(Figure 6) which is modified of {(Figure
4) and {Figure 5) in the following way. There are p spokes, and for each spoke, there are b num-
ber of non-leaf nodes besides the center node and m leaves.

The optimal LP solution is yo=(p—r)/(p— 1), w,=(k—1)/(p— 1), for j=1, 2,---,p. One obvious
optimal IP solution is yo=1, y,=1 for any 2— | spokes. The values of the LP and IP solution

are

Zee=b(k— 1)/(p— 1 )+p[{b(b+ 1)p— 2bk—b(b— L)}2(p— 1)+m{(b+ 1 )p—bk—1/(p— 1)}]

Zir is ;



0% B Structural Study oi the K-Median Problem 111

(Figure 6) A Tree where Relative Gap converges to 1/ 2

(i) when b=2a, (a"+m)(k—1)+(p—k+1){a(2a+1'+(2a+1)ns
(ii) when b=2a+1, {a(a+1)+mi(e—1)+(p—k+1{(2a+1)(a+1)+2(a+1)m}

Hence the relative gap with p=k+1 goes to r(k' as m goes to o (Note that we let m grow
much faster than b, k and p)

r(k)—{2a(k— D} {k(4a+k+ 1} when b=2a
—{(2a+1)(k—1)}/{k(4a+k+3)} when b=2a+1
In either case r(k)—1/2 as k—oc.

As stated previously the linear programming r:laxation of the uncapacitated plant location
problem on a graph has an integer optimal solution when the underlining graph is a tree. A
similar but restictive result is known for k-mediar. problem defined on a straight-line and on a
cycle graph [8]. However, for more general graph, the appropriate conditions on distance matrix

for attaining an integer optimal solution are not known. We conclude with the following prop-

osition.

Proposition 11 :

Even when the underlying graph is a tree, a line graph, or a claw-{ree and triangulated graph,

the linear programming relaxation of the k-median problem can have a fractional optimal sol-

ution.
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Proof :

By a graph of {(Figure 7)./

The unique optimal linear and integer solution is same as that of (Figure 2) with p=3.

k=2
length of an edge=1
except 3 edges whose

edge lengths=4

{Figure 7y A Graph of Duality Gap
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