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ABSTRACT : The RNA nucleotide sequences of the 3'-noncoding regions (3'-NCRs) of two
Korean strains of turnip mosaic virus (TuMV), Ca and cqs, have been determined from
their cDNA clones that encompassed the 3'-terminal regions of the viral genomic RNAs. The
3'-NCRs of both strains were 209 nucleotides long, terminated with GAC residues and poly
{A) tails. The potential polyadenylational signal motif, UAUGU, was located 140 nucleotides
upstream from the poly (A) tail in each of the virus. A highly conserved hexa-
nucleotide sequence [A G U G A/U G/C], which was common in the 3'-NCRs of the poty-
virus RNAs, was also found at the regions of 119 bases upstream from the 3'-end. Com-
parison of the 3'-NCRs of the two Korean isolates with those of four strains from Canada,
China and Japan showed significantly identical genotypes (94.3~99.5%). The secondary struc-
ture of three loops with long stems was found within the 3'-NCRs by sequence analysis.
The substituted bases in the region among the six TuMV strains did not alter their secon-
dary structures. Length of the 3'-NCRs of the known 11 potyviral RNAs and TuMV RNAs
was different from one another and their nucleotide sequences showed 55.7% to 24.0%
of homology. The 3'-NCR, therefore, is considered to be useful for phylogenetic studies
in potyviruses.

Key words : turnip mosaic virus, two Korean isolates (Ca, cgs), potyvirus, nucleotide se-
quence analysis, 3'-noncoding region (3'-NCR), secondary structure modeling.

Turnip mosaic virus (TuMV) is a definite species of
the genus Potyvirus in the taxonomic family Poty-
viridae of plant viruses. TuMV causes diseases on
economically important vegetable crops in Korea, par-
ticularly Chinese cabbage (Brassica campestris L. ssp.
pekinensis) and radish (Raphanus sativus).

The genome organization of potyvirus has been well
characterized (3, 12, 21). The genome of potyvirus is
composed of a positive-sense ssRNA of about 10 kb,
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which is linked covalently at its 5-end to a virus-en-
coded protein (VPg) and polyadenylated at its 3'-end.
The genomic RNA is translated into a large poly-
protein precursor that is proteolytically processed into
at least eight translation products by three proteinases
encoded by virus itself (3).

Partial nucleotide sequences of genomic RNAs in
several strains of TuUMV have been reported (5, 11, 15,
24). Recently, the complete nucleotide sequence and
genome organization of TuMV has been reported (17).

Although many serological assays are useful for
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virus detection, several potyviruses share serological
similarities, so that they may not be distinguishable
from one another (13). When unique regions such as 3'-
noncoding region (3'-NCR) are targeted, specific
viruses and even strains of a virus can be distinguished
(7, 8, 25).

We have isolated genome RNAs and cloned the 3'-
terminals including the partial nuclear inclusion body
(NIb) and entire coat protein (CP) gene from two Kore-
an TuMYV strains, as a step toward developing molec-
ular probes for virus detection and genetically en-
gineered virus resistant plants (5, 6, 18, 22, 23). Here,
we report the nucleotide sequences of the 3'-NCRs of
genome RNAs of two Korean TuMV strains and com-
pared them with those of other four TuMYV isolates (11,
15, 17) and other 11 potyviruses (1, 3, 4, §, 9, 10, 12,
16, 19, 20, 21). We also predict secondary structure
within the 3'-NCR of the viral RNA and discuss the
structural conservation within different strains.

MATERIALS AND METHODS

Virus sources and their nucleotide sequences.
Two strains of TuMV, designated as TuMV-Ca and
TuMV-cqs, were originally obtained from naturally in-
fected Chinese cabbage leaves showing severe mosaic
and small black necrotic spots in the high altitude area
of Daekwallyeong, Kangwon-Do, in Korea (6, 18).
Synthesis and cloning of cDNAs of the two isolates
were already reported previously (5, 22). The 3'-end of
TuMV-Ca was sequenced using pTUCA35 and con-

firmed using pTUCA31 which has overlapping region -

of pTUCA35 (22). pTUS6 was used as a parent clone
for determining nucleotide sequence of the TuMV-cqs
(5). Nucleotide sequences of the 3'-NCRs of the two
Korean TuMV strains (TuMV-Ca, EMBL X79366;
TuMV-cqs, EMBL X83968) and four foreign TuMV
strains from Canada (TuMV-CAN, EMBL D10927)
(17), China (TuMV-CH, EMBL X52804) (11) and
Japan (TuMV-JA-1 and TuMV-JA-31) (15) were used
for primary and secondary structural analyses.
Nucleotide sequences of 3'-NCR from the following
viruses of the genus Potyvirus were used for com-
parison : Kalanchoé mosaic virus (KMV) (10), papaya
ringspot virus (PRV) (19), peanut stripe virus (PStV)
(4), plum pox virus (PPV) (12), potato virus Y-N
(PVY-N) (21), soybean mosaic virus-N (SMV-N) (8),
sweet potato feathery mottle virus (SPFMV) (1), to-
bacco etch virus (TEV) (3), watermelon mosaic virus 2

(WMV 2) (8), wheat streak mosaic virus (WSMV) (16)
and zucchini yellow mosaic virus (ZYMV) (9).

Sequence analysis. The nucleotide sequences of
the 3'-NCRs of TuMV-RNAs of two Korean strains
were compared with other 4 TuMV strains from
foreign countries. Sequence data were compiled and
analyzed by the multiple sequence alignments, phy-
logenetic relationships and Zuker's RNA secondary
structure programs of the PC/GENE Software Ver-
sion 6.6 (IntelliGenetics, Inc.). Modeling of secon-
dary structure was analyzed with the program de-
scribed by Abrahams et al. (2).

RESULTS

Determination of nucleotide sequence of the 3'-
NCR. The RNA nucleotide sequences of the 3'-
NCRs of two Korean strains, Ca and cqgs, have been
determined from their cDNA clones that encompassed
the 3'-terminal region of the viral genomic RNAs. The
3'-NCRs of the two Korean strains were 209 nu-
cleotides long, terminated with GAC residues and poly
(A) tails of 19 residues for TuMV-Ca and 15 residues
for TuMV-cgs. Multiple alignments of the nucleotide
sequences between two Korean strains and four foreign
strains are shown in Fig. 1. This 3'-NCR region was
the most conserved among the TuMV strains with sig-
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Fig. 1. Multiple alignments of the 3'-noncoding regions
of the nucleotide sequences between two Korean strains
(Ca and cqs) and four foreign strains of turnip mosaic
virus (TuMV). Nucleotides identical to those of TuMV-
Ca are shown by asterisk. Nucleotide sequences involved
in formation of stem-loop structures are underlined.
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Table 1. Percentages of nucleotide sequence similarities in the coat protein (below diagonal) and the 3'-noncoding re-
gions (above diagonal) among six geographically distinct turnip mosaic virus (TuMV) strains®

% nucleotide sequence similarity

TuMV strains

Ca cgs CH CAN JA-1 JA-31
Ca - 94.8 94.4 99.5 99.5 99.5
cgs 94.1 - 99.5 94.4 94.4 95.8
CH 94.4 97.6 - 93.9 93.9 95.3
CAN 95.1 94.8 94.4 - 99.1 99.1
JA-1 96.9 96.5 96.9 96.2 - 99.1
JA-31 96.2 94.8 94.8 97.9 97.9 -

* Nucleotide sequences of 3'-NCRs and amino acid sequences of coat protein of the 5 TuMV strains were taken from
references (5, 11, 15, 17). Data of TuMV-Ca were from this study.

TuMV-Ca
TuMV-CAN
—{_ TuMV-JA-31

TuMV-JA-1

TuMV-cgs
L—— TuMV-CH
Fig. 2. Phylogenetic consensus tree of 6 TuMV strains
based on the amino acid sequence alignment of their
coat protein.

nificant identities. The 3'-NCRs of TuMV-Ca exhibits
99.5%, 94.3%, 94.7%, 99.5% and 99.5% nucleotide se-
quence identities to TuMV-CAN (17), TuMV-CH (11),
TuMV-cgs (5), TuMV-JA-1 and TuMV-JA31 (15),
respectively, showing 1 to 12 nucleotides substitutions
(Table 1). On the bases of the multiple alignments of
the coat proteins (CPs) and 3'-NCRs, six TuMV strains
were divided into two subgroups (Fig. 2,3). Subgroup
I included TuMV-Ca, TuMV-CAN, TuMV-JA-1 and
TuMV-JA31, while TuMV-cqs and TuMV-CH were
grouped into subgroup II. Relationships in the 3'-NCRs
of the TuMV strains were very similar with those of
their CP sequence homologies. On the contrary, length
of the 3'-NCRs of the known 11 potyviral RNAs and
TuMV RNAs was heterogenous and their nucleotide se-
quences showed 55.7% to 24.0% of homology (Fig. 4).
Sequence analysis showed that TuMV was more close-
ly related to Kalanchoé mosaic virus (KMV) (10) than
the other potyviruses (Table 2).

Sequence analysis. The 3'-NCRs of the TuMV
strains did not have the general poly (A) signal se-
quence, AAUAAA, for poly (A) tailing (Fig. 1). In-

TuMV-Ca
TuMV-CAN
TuMV-JA-1

—— TuMV-JA-31

TuMV-CH
L TuMV-cqgs

Fig. 3. Phylogenetic consensus tree of 6 TuMV strains
based on the nucleotide sequence alignment of their 3'-
noncoding region.

stead of this general motif, the sequence UAUGU, that
has been known to be important for transcription ter-
mination in yeast (27), was found in the region from
142 to 146 bases upstream from the poly (A) tail in
each TuMV strains (Fig. 1), which has been considered
as another potential polyadenylational signal motif (14).
Sequence analysis also revealed that a highly con-
served hexanucleotide sequence, AGUGUG, found in
most of other potyvirus RNAs as [AGUG A/U G/C]
(4), was located in the region from 119 nucleotides
from the 3'-ends in all TuMV RNAs.

Modeling of secondary structure of the 3'-NCR.
The RNA secondary structures of the 3'-NCR of
TuMYV strains were determined by the Zuker's me-
thod of PC/GENE program and Abrahams et al. (2).
Computer analysis of the 209 nucleotides of the 3'-
NCRs of each of the TuMV strains revealed po-
tentially 3 major stem-loop structutes in the strains
(Fig. 5). The structure was calculated to be — 48.2 kcal.
The stem-loops were denoted as I to III from the order



Table 2. Percent similarities of the 3-nonceding region
of TuMV with those of the other potyviruses
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PRV AGCCC*2CGUA-*UUUUAGAA* # ¥ % #CRA* # xCUR AA-GAC*~~CCAURC
TEV UCU* * + 2 AGUC-U# AUUAC* *AGGCGAAC*ACHAA*U~GA#G-~UCACC-
WMV2 AGCGUGG#*UA=A# # % CRU* *GGAGUACUR **UAUU-* *AGUUUA*##C*
2YMV U*G2CC-AGGA-GU#CCGUAG#*CCHGUCG*A-** #UU-UA——~—~~ Slainbode
SMV A-G*G*GG*UYUAACC* *~—CCCH*G: {eidt) AU**
PStV UAG*G*GG*U#*~GUCCH# *CAACAUA#UNCHAGUA+UUUS ## *UUAR 42w %
WSMv G*4GCHARGUN-UGN~=wm e =G *A*G*CG*CGCU-*CALS
SPFMV GACCCGAAGA*-AU*GUUGAG*GCAYAACA*GGUG*G~* *UAUAUCHC~-#»
Consensus -u.uw.U..qug...g...... uu.00.G.Gu.a.....auqu....U.a9
166 209
TuMv “CUC >C A AUGCAAGGGACA,,
KMV UCHUUGGH # A SUANAA K 2 & RGHGH Ak # # A AUUGH =R ¥ # A RN
PPV CUGAUGUG—#* ##G#* #JU* C#C~UCCA*UCGG*UU* * AGUUCUUGUGCAAG
PVY AGHUUAUUA=~—#* ¢ AGA#A# ¥ = A4G*GCC—G* *~U* *UUGUU*UGUGACU
PRV AG*=**GGGUAGCCC* ACGUG- *UA* *CGAGCC-UCUU*GAAUGAGAG,
TEV --’.'Gu'.A-."CU'C'.U‘GUAG"CG*'M,,,
WMV2 UAGAAGGGA=#*~AC*A# £ ¥ = # # A ¥~ *CCGHA-GHUGUUU*U*GUGUGA
IYMV CC**UCA®~## XA+ AAGC*CG-AGA* *AGACUC-CGUUUGCAAG*CUA,,
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SPFMV ACUCUUAAAAAGU ACCUC AGAAAAGCCUUUUUGGUUCGUG
PVY UCUGGAUUUAGUUACUUGGGUGAUGCUGUGAUUCUGUCAUAGCAGUGACY
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SPFMV GAGCCAAUCA,
PVY GUAAACUUCAAUCAGGAGACA,

Fig. 4. Comparisons of the nucleotide sequences of the
3'-noncoding regions of TuMV and other 11 potyviruses.
Nucleotides identical to the TuMV are indicated by
asterisk, and gaps by dashes. Nucleotides identical in
more than 6 viruses and in more than 8 viruses are
shown as small and capital letters, respectively.

of the 5'-end, and their general feathers and positions
are shown in Fig. 6. No alteration of the secondary
structure among the six strains noted from their sub-

Virus % Similarity References
PPV 24.0 Lain et al. (1989)
ZYMV 314 Grumet and Fang (1990)
SPFMV 315 Abad et al. (1992)
PStV 374 Cassidy et al. (1993)
TEV 38.8 Allison et al. (1986)
PRV 38.9 Quemada et al. (1990)
PVY-N 39.5 Robaglia et al. (1989)
WSMV 41.5 Niblett et al. (1991)
SMV-N 47.0 Frenkel et al. (1989)
WMV2 49.0 Frenkel et al. (1989)
KMV 55.7 Husted et al. (1994)
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'Fig. 5. Possible secondary structure of the 3'-noncoding

region of TuMV. Nucleotides with asterisk indicate the
substituted bases among different TuMV isolates.

stituted bases in the region. Three stem-loops were dis-
tinct in structure, especially in loop. G-U or U-G base
parings were found in stem-loops I and II, and A/U
bases were abundant. All loop regions were het-
erogenous, and their sequences were highly homo-
logous within six TuMV isolates (Table 3).

DISCUSSION

We have cloned and determined nucleotide se-
quences of the 3' terminal regions for two Korean .
strains of TuMV (TuMV-Ca and TuMV-cqs) genomic
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U C Table 3. Conserved nucleotide sequences of the loop re-
U U= » U G = gions in the stem-loop structures I to III located in the 3'-
¢ G *A  U~x NCRs of six turnip mosaic virus (TuMV) strains®
A=U + G=C *
G=C G=C TuMV Loop nucleotide sequences
Ua g:ﬁ R ézg . strains Loop 1 Loop I Loop 1II
G U » _
A=U o Uy Ca GUAU  CUUUG  AUCGU
A=U G ¢ c=G cgs GUAG CUUCG  UACUA
AR A=U G=C CH GUAG  CUUCG  UACUA
U=A C=G U +C Gec JA-1 GUAU CUUUG  AUCGU
C=G U A;U JA-31 GUAU CUUUG AUUGU
é=g c=G U CAN GUAU CUUUG  AUCGU
= L4 - =
A=U e oA * Nucleotide sequences of 3-NCRs of the 5 TuMV
13 U=A 37 82 C=G 113 strains were taken from references (5, 11, 15, 17). Data

their

Fig. 6. Secondary stem-loop structures and
positions in the 3'-NCR of TuMV. Asterisk indicates the
substituted bases among different TuMV strains.

RNAs. Our aim was to characterize TuMV strains on
the bases of geographical distribution and nucleotide se-
quence variations such as 3'-noncoding region (3'-
NCR). Most TuMV strains resemble the type strain in
biological and serological properties, though some diff-
erences are found (6, 26). It is better to compare nu-
cleotide sequences of certain viral genes or specific re-
gions for identification and classification of TuMV
strains. Nucleotide sequence of the 3'-NCRs among the
TuMYV strains showed significant identities from 99.5%
to 94.3%.Tremblay et al. (24) reported nucleotide se-
quence of the 3'-terminal of an TuMV isolate from Ca-
nada. The length and sequence determined were not in
common other strains, especially at the 3'-NCR, which
was later found to be from cloning artifact by Nicolas
and Laliberte (17).

Two Korean strains were homogenous with other
four geographically different TuMV strains but het-
erogenous with other potyviruses. First, the nucleotide
lengths of 3'-NCRs of the TuMYV isolates were exactly
the same of 209 residues long upstream of the poly (A)
tail. Second, a highly conserved hexanucleotide se-
quence motif, AGUGUG, was found approximately 119
nucleotides from 3'-end of the NCR of TuMV strains.
Third, nucleotide sequence of the 3'-ends of NCR was
GAC residues and the potential polyadenylational sig-
nal motif was UAUGU. But, many members of other
plant virus groups with a 3' poly (A) tail like po-
texviruses and carlaviruses exhibit AAUAAA for sig-

of TuMV-Ca were from this study.

nal motif. Conclusively, TuMV is distinguished from
other potyviruses. The 3'-NCR, therefore, is considered
to be useful for phylogenetic studies on potyviruses.
The presence of identical sequences in particular
domains of TuMV and some other potyviruses implies
that TuMV is originated from a common parent and
were subjected to the effects of convergent evolution.

Husted ez al. (10) reported that KMV is closely re-
lated to but distinct from TuMV based on the amino
acid sequence analysis of the viral coat protein. In-
terestingly, our database search on the 3'-NCRs show-
ed that TuMV is more related to KMV than other 10
potyviruses.

These information about interspecific sequence of
TuMV is being used to design a PCR primer that
could provide a highly sensitive and specific assay for
the identification of plant tissue infected with TuMV.
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