Effect of Taurine Supplement on the Lipid Peroxide Formation and the Activity of Glutathione-Dependent Enzyme in the Liver and Islet of Diabetic Model Mice

당뇨 모델쥐의 간관 췌장에서 타우린이 지질과산화물 생성과 글루타티온 의존성 효소의 활성에 미치는 영향

  • 임은영 (서울대학교 식품영양학과) ;
  • 김해리 (서울대학교 식품영양학과)
  • Published : 1995.04.01

Abstract

In this study we wanted to investigate the effect of taurine supplement on the lipid peroxide formation and the activities of glutathione(GSH) dependent enzyme in diabetic model mice. We induce type I diabetes mellitus with alloxan injeciton in ICR mice and type II with high calorie diet in genetically hyperglycemic KK mice. Taurine was given in drinking water at the level of 5%(w/v) for seven days. In type I diabetic model, the malondialdehyde(MDA) of liver and islet significantly increased compared to control group and they significantly decreased by taurine supplement. In type II diabetic model, the concentration of MDA was not changed by taurine supplement. The activities of GSH-peroxidase(GPX) of liver and islet increased in type I diabetic group while decreased in type II. GPX activities were not changed by taurine supplement in the liver of both types but increased in the islet of type II. Taurine supplement has no effect on the activities of GSH S-transferase(GST) in both types. From these results, we suggest that taurine supplement protect against lipid peroxide formation in diabetic model of type I.

당뇨 모델에서 타우린의 보강에 의한 지질과산화물의 생성과 GSH 관련 효소들의 활성에 미치는 영향을 알아보고자 alioxan을 이용한 I형과 KK-mouse에 고열량식이를 이용하여 II형 당뇨를 유도하였다. I형과 II형 각각에 정상대조군, 타우린보강군, 당뇨군, 타우린보강 당뇨군을 두어, 모두 8개 군으로 나누었으며, 타우린의 보강은 7일 동안 5%(w/v) 수준으로 자유로이 마시게 하였다. 간과 췌장에서 malondialdehycel(MDA), gluta-thione peroxidase(GPX), glutathions S-transferase(GST)의 활성을 측정하였다. 간조직에서 지질과산화물의 함량은 I형의 경우 당뇨군에서 매우 증가했고 타우린 보강에 의한 유의적으로 감소한 것을 볼 수 있었으며, II형에서는 타우린보강에 의해 유의적인 차이가 없었다. 췌장도 간과 같은 결과를 나타내었다. GPX의 활성은 간에서 I형 당뇨군이 유의적으로 증가했으나, II형 당뇨군에서는 유의적으로 감소했다. 타우린의 보강에 의해 GPX활성에는 유의적인 차이가 없었으며 췌장에서도 간과 비슷한 결과를 보였다. GST의 경우에도 당뇨 유도에 의한 활성 변화는 있었으나 타우린의 보강에 의한 활성 변화는 보이지 않았다. 이상의 결과들로 미루어 당뇨에 있어 타우린의 항산화작용은 당뇨 모델의 종류에 따라 다르며, GSH 관련 효소들의 활성변화 보다는 I형 당뇨 모델의 간과 췌장에서 지질과산화물의 생성을 억제하는 작용을 하리라고 생각 된다.

Keywords

References

  1. Diabetes mellitus, theory and practice Epidemiology of diabetes mellitus Zimmet,P.;Ellenberg,M.(ed.);Rifkin,H.(ed.)
  2. Biochem. J. v.216 Effects of vitamine E, ascorbic acid and mannitol on alloxan-induced lipid peroxidation in rats Dillard,C.J.;Kunert,K.J.;Tappel,A.L.
  3. Experimental and spontaneous diabetes in animals Dulin,W.E.;Gerritsen,G.C.;Change,A.Y.
  4. J. Biol. Chem. v.249 The generation of hydrogen peroxide, superoxide radical and hydroxyl radical by 6-hydroxy dopamine, dialuric acid and related cytotoxic agents Cohen,G.;Heikkila,R.E.
  5. Biochem. J. v.199 Cu-Zn superoxide dusmutase, Mn superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse Grnakvist,K.;Marklund,S.L.;Taljedal,I.B.
  6. N. Engl. J. Med. v.304 Superoxide dismutase in human islets of Langerhans Gandy,S.E.;Galbraith,R.A.;Crouch,R.K.;Buse,M.G;Galbraith,F.M.
  7. Diabetes v.30 The inhibition of islet surpeoxide dismutase by diabetogenic drugs Crouch,R.K.;Gandy,S.E.;Kimsey,G.;Galbraith,G.M.;Buse,M.B.
  8. Proc. Natl. Acad. Sci. USA v.79 Determinants of the selsctive toxicity of alloxan to the pancreatic β cell Malaisse,W.J.;Malaisse-Lagae,G.;Senar,A.;Pipeleers,D.G.
  9. Biochimie. v.64 The stimulus-secretion coupling of insulin release. Thiol: disulfide balance in pancreatic islets Anjaneyulu,K.;Anjaneyulu,R.;Sener,A.;Malaisse,W.J.
  10. Am. J. Med. v.70 Animal models of diabetes Mordes,J.P.;Rossini,A.A.
  11. Bull. Esp. Animals v.6 Inbred strains resulting from Japanese mice Kondo,K.K.;Oxawa,T.;Tomida,T.;Ezaki,K.
  12. Diabetologia v.6 Diabetes in the KK mouse Dulin,W.E.;Wyse,B.M.
  13. Biochem. Med. v.21 Lipid peroxide levels of plasma of diabetic patients Sato,Y.;Hotta,N.;Sakammoto,N.;MAtsuoka,S.;Oshishi,N.;Yagi,K.
  14. Endocrinology v.17 Blood-reduced glutathione, serum ceruloplasmin and mineral changes in juvenile diabetes Awadallah,R.;Sessoukey,E.A.;Doss,H.Khalifa,K.;Hawary,Z.
  15. Ind. J. Exp. Biol. v.17 Effects of diabetes mellitus on sialic acid and glutathione content of human erythrocutes of different ages Gandhi,C.R.;Chowdhury,D.R.
  16. Horm. Metab. Res. v.19 Erythrocyte lipid peroxidation and gultathione peroxidase activities in patients with diabetes mellitus Uzel,N.;Sivas,A.;Uysal,M.;Oz,H.
  17. Am. J. Phsiol. v.263 Plasma GSH/GSSG affects glucose homeostasis in heathy subjects and non-insulin-dependent diabetics Paolisso,G.;Maro,G.D.;Pizza,G.;D'amore,A;Sgambato,S.;Tesauro,P.;Varricchio,M.;D'onofrio,F.
  18. Nutr. Rev. v.34 A review on the biological function of taurine Hayes,K.C.;D.V.M.
  19. Ann. Rev. Nutr. v.1 Taurine in metabolism Hayes,K.C.;Sturman,J.A.
  20. Handbook of Free Radicals and Antioxidants in Biomedicine v.2 Taurine and hypotaurine and membrane lipid peroxidation Passantes-Morales,H.;Fellman,J.H.
  21. Neuropharmacology v.25 Inhibitory effect of taurine on 4-aminopyridine-stimulated release of labelled dopamine from straital synaptosomes Arzate,M.E.;Moran,J.;Pasantes-Morales,H.
  22. Physiology and Cardiology Taurine : Functional Neurochemistry Pasanties,M.H.;Martin,D.L.;Shain,W.
  23. Xenobiotica v.13 The utillization of exogenous taurine for the conjugation of xenobiotic acids in the ferret Emudianughe,T.S.;Caldwell,J.;Smith,R.L.
  24. Brain Res. v.330 Taurine and hypotaurine inhibit light-induced lipid peroxidantion and protect rod outer segment structure Pasanties-Morales,H.;Cruz,C.
  25. J. Physiol. Lond. v.338 Amino acid transport and cell volume regulation in Ehrilich ascites tumour cells Hoffmann,E.K.;lambert,I.H.
  26. Biochem. Pharm. v.28 Protective actions of taurine agaist streptozotocin-induced hyperglycemia Hisashi,T.;Yukio,Y.;Kinya,K.
  27. Biol. Reproduction. v.29 Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility Albarez,J.G.;Storey,B.T.
  28. J. Neural. Transm. Gen. Sect. v.86 Effects of ageing on the content in sulfur containing amino acids in rat brain Benetti,M.S.;Russo,A.;Marrari,P.;Dostert,P.
  29. Biochem. J. v.256 The antioxidant action of taurine, hypotaurine and their metabolic precursors Aruoma,O.I.;Halliwell,B.;Hoey,B.M.;Butler,J.
  30. Ann. Clin. Biochem. v.16 Determination of glucose in blood using glucose oxidase with alternative acceptor Trinder,D.
  31. Biochem. J. v.99 Mechanisms of lipid peroxide formation in animal tissuees Wills,E.D.
  32. Enzymol. v.52 Glutathione peroxidase and hydroperoxides Tappel,A.L.
  33. J. Biol. Chem. v.249 Glutathione S-transferase Habig,W.H.;Pabst,M.J.;Jakoby,W.B.
  34. Anal. Biochem. v.150 Measurement of protein using bicinchoninic acid Smith,P.K.;Krohn,R.I.;Hemanson,G.T.;Mallia,A.K.;Gartner,F.H.;Provenzano,M.D.;Fujimoto,E.K.;Goeke,N.M.;Olson,B.J.;Klenk,D.C.
  35. J. Org. Chem. v.40 A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation Pyror,A.W.;Stanley,P.A.
  36. J. Biol. Chem. v.260 Evidence for a role of taurine in the in vitro oxidative toxicity of neutrophils toward erythrocytes Thomas,E.L.;Grisham,M.B.;Melton,D.F.;Jefferson,M.M.
  37. J. Biol. Chem. v.266 The anti-oxidant responsive element Rushmore,T.H.;Morton,M.R.;Pickette,C.B.