Velvet의 pile길이가觸感及物理的特性에 미치는影響

정정애류덕환

제명대학교가정대학의류학과

The Effect of Pile Length on the Handle and Physical Properties of Velvet

Chung-Ae Chung·Duk-Hwan Ryu

Department of Clothing and Textiles, Keimyung University
(1995.1.11 접수)

Abstract

Using the acetate velvet and viscose velvet whose pile lengths were sheared as 1.45, 1.55, 1.65, 1.75, 1.85, 1.90mm under the condition equating the weaving process of ground fabric, the conclusions were as follows through the results of the sensory assessments estimated by women students in our university and the physical properties, H.V. and T.H.V. obtained by KES-F system.

1. In the sensory assessments estimated by the method of paired comparison and ranking of samples, the longer pile length was, the more the hand values of smoothness, softness, thickness, heaviness increased on the whole.

2. The H.V. and T.H.V. measured by KES-F system were as follows;
 Kosbi increased to pile length 1.85mm and then decreased a little at 1.90mm. Numeri increased as pile length was longer. Fukurami increased to pile length 1.75mm and then decreased gradually as pile length was longer. Total hand value increased gradually from 1.45mm to 1.85mm, had the top value at 1.85mm, and then decreased a little at 1.90mm.

3. In the results of summarizing the physical properties correlated closely with the H.V. obtained by sensory assessments and the physical properties correlated closely with the H.V. and T.H.V. obtained by KES-F system, it showed that all the sensory properties correlated closely with compressive energy, flexural rigidity, thickness, weight and pile ratio in the former and that the physical properties correlated closely with each H.V. and T.H.V. were different in the latter.

4. It showed that factor 1 was related to compressive energy, thickness, weight, pile ratio, factor 2 was related to recovery energy, compressive resilience, compressive index, and factor 3 was related to compressive recovery ratio in the result of factor analysis.

5. In the multiple regression analysis, the expressions of all sensory properties had
compressive ratio, frictional coefficient in the regression expressions of 'H.V. obtained by sensory assessments', while the expressions of each H.V. had different physical properties in the regression expressions of 'H.V. obtained by KES-F system'.

I. 서론

대표적인 pile-직물인 velvet은 독특한 외관, 감촉과 함께 뿌어진 보온성을 갖는 중요한 외복소재중의 하나이며, 최근에는 pile직물의 소재도 다양해지고 가공기술도 발전하여 의복용 소재로서 고부가가치 제품으로 알려져 있다.

pile직물의 구조는 pile사선, pile밀도, pile면적 등에 의존요인에 의해서 구성된 pile층과 경사, 위치로 구성된 무게중으로 구성되어 있기 때문에 일반 직물과는 그 특장이나 역학적 특성, 열전달 특성 등에 특이한 현상을 나타내고 있다고 하였다. 특히 여기서 주목받는 것은其布層보다 pile의 깊이가나 형태가 깊이에 어떠한 영향을 미치는지에 대해 연구가 필요하다. 여기서는 velvet의 pile길이가 추상 및 물리적 특성에 미치는 영향을 보고하고 하였다. 특히 여기서 주목받는 것은 其布層보다 pile의 깊이가나 형태가 깊이에 어떠한 영향을 미치는지에 대해 연구가 필요하다.

축감에 관한 특성들에 있어서는 KES-F system이 개발되기 이전에는 축감에 관련된 물리적 특성을 평가하기 위하여 고형 혹은 진단특성 각각에 관한 연구들이 많이 있었으며, 최근에 이르러는 Kawabata 등이에 의하여 압축, 코만, 굽힘, 인장, 진단특성에서 주의는 각각의 물리적 특성들 뿐만 아니라 그들을 통합하여 구한 H.V., T.H.V.를 통해 보다 종합적인 특성의 층감평가가 가능하게 되었다.

이상에서 살펴본 문헌들은 주로 축감의 관능성과 물리적특성의 관계에 둘고, 물체의 특성과 이를 통계적 수법을 이용하여 해석한 연구들로, pile길이가 변화에 따른 물성변화에 관한 연구는 거의 없는 실정이다. 따라서 본 논문에서는 velvet의 pile길이가 층감 및 물리적 특성에 미치는 영향을 심도 있게 연구하고, KES-F system에 의해 물리적 특성들의 관계를 탐색한 후, 이를 토대로 통계처리를 행하여, 각 pile그룹마다 “관능적 특성과 관련된 물리적 특성”과 “KES-F system 층감에 의해 산출된 데이터와 관련된 물리적 특성”의 관계를 탐색한 결과를 통해 계측수법을 적용하여 점수하였다.

II. 시료 및 실험방법

1. 시료

시료는 Table 1에 나타난 바와 같이 其布는 polyester로서 모두 동일하며, 여기에 교란된 pile의 형태는 w형의 fast pile로서, pile사선의 종류를 acetate와 viscose rayon으로 달리한 두 그룹의 시료를 사용하였 다. 또한 각 pile 그룹마다 pile의 길이를 1.45, 1.55, 1.65, 1.75, 1.85, 1.90mm로 6중류로 분류하여 총 12종의 시료를 사용하였다. 본 논문에서는 주의의 성 pile길이가 짧은 것에서부터 긴 것 순으로 각 그룹마다 acetate pile 그룹(A-pile group)은 A1, A2, A3, A4, A5, A6, viscose rayon pile 그룹(V-pile group)은 V1, V2, V3, V4, V5, V6로서 sample No.를 정하여 사용하였다.

시료의 질록도는 Fig. 1과 같다. 여기서 G1, G2는 其布의 경사이며, P1, P2, P3, P4는 pile 경사를
Table 1. Characteristics of samples

<table>
<thead>
<tr>
<th>Item</th>
<th>A-pile group</th>
<th>V-pile group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Fabric</td>
<td>Polyester</td>
<td>Polyester</td>
</tr>
<tr>
<td>Pile Yarn</td>
<td>Acetate</td>
<td>Viscose Rayon</td>
</tr>
<tr>
<td>Pile length (mm)</td>
<td>1.45</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>1.65</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>1.85</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td>Yarn count (D.)</td>
<td>Ground warp</td>
<td>121.0</td>
</tr>
<tr>
<td></td>
<td>Ground weft</td>
<td>121.0</td>
</tr>
<tr>
<td></td>
<td>Pile warp</td>
<td>120.0</td>
</tr>
<tr>
<td>Fabric density</td>
<td>Warp density (ends/inch)</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Weft density (picks/inch)</td>
<td>98</td>
</tr>
</tbody>
</table>

Fig. 1. Structural diagram of fast pile fabric.

Fig. 2. Side view of fast pile.

pile group 6종류, V-pile group 6종류, 총 12종의 pile직물에 대하여 다음과 같은 방법으로 관능검사를 시행하였다.

1) 순위법에 의한 관능검사

43명의 검사자들에게 각 관능특성마다 6가지의 pile
길이에 대하여 가장 좋은 sample No.부터 높은 점수를 주도록 하여 순서를 정하도록 하였다.

2) 일대 비교법에 의한 관능검사

pile길이에 따른 6가지 서로 다른 시료의 조합을 (C2
로 하여 15가지 시료의 조합을 만들어 두시료를 나란
히 놓고 축잡을 비교하도록 하여 원측 시료가 오른쪽 시료보다 매우 축잡이 좋으면 +2점, 어느 정도 좋으
면 +1점, 차이가 없으면 0점, 원측 시료가 오른쪽 시
료보다 어느 정도 축잡이 나쁘면 -1점, 매우 나쁘
면 -2점을 주도록 하였다.

2) KES-F system에 의한 물리적 특성치, H.V.
(Hand Value), T.H.V.(Total Hand Value)의
측정 및 계산방법

측정조건은 표준상태와 하고, 시료의 크기는 각 특
성마다 KES-F system 측정을 위해 규정된 바대로 하
였으며, 시료마다 Table 2에 나타낸 바와 같은 각 특
성치에 대해 4회씩 실험하여 평균에서 가장 근접한 측
정치 3가지를 취하여 평균치로 사용하였다. 그러나
pile 직물의 특성상 급접특성은 부득이하게 B, 2HB
모두 경사의 +값만을 취하였다.

배감은 KES-F system의 계산조건 MEN'S WINTER SUIT 계산 program에 따라 기본테스트 재산식
KN-101-W를 적용하여 hand value(Koshi, Nemer, Fukurari)값을 계산하였으며, total hand value(T.
H.V.)는 KN-301-W식을 적용하여 산출하였다.

3) 기타 물리적 특성치들의 계산

1) Recovery Energy (WC)
Table 2. Characteristic values of basic mechanical properties.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Symbols</th>
<th>Characteristic value</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile</td>
<td>LT</td>
<td>Linearity</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>Tensile energy</td>
<td>gf·cm/cm²</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>Resilience</td>
<td>%</td>
</tr>
<tr>
<td>Bending</td>
<td>B</td>
<td>Bending rigidity</td>
<td>gf·cm³/cm</td>
</tr>
<tr>
<td></td>
<td>2HB</td>
<td>Hysteresis</td>
<td>gf·cm/cm</td>
</tr>
<tr>
<td>Shear</td>
<td>G</td>
<td>Shear stiffness</td>
<td>gf/cm·deg.</td>
</tr>
<tr>
<td></td>
<td>2HG</td>
<td>Hysteresis at φ=0.5°</td>
<td>gf/cm</td>
</tr>
<tr>
<td></td>
<td>2HG5</td>
<td>Hysteresis at φ=5°</td>
<td>gf/cm</td>
</tr>
<tr>
<td>Compression</td>
<td>LC</td>
<td>Linearity</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>WC</td>
<td>Compressional energy</td>
<td>gf·cm²/cm²</td>
</tr>
<tr>
<td></td>
<td>RC</td>
<td>Resilience</td>
<td>%</td>
</tr>
<tr>
<td>Surface</td>
<td>MIU</td>
<td>Coefficient of friction</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>MMD</td>
<td>Mean deviation of MIU</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>SMD</td>
<td>Geometrical roughness</td>
<td>micron</td>
</tr>
<tr>
<td>Weight</td>
<td>W</td>
<td>Weight per unit area</td>
<td>mg/cm²</td>
</tr>
<tr>
<td>Thickness</td>
<td>T</td>
<td>Thickness at 0.5gf/cm</td>
<td>mm</td>
</tr>
</tbody>
</table>

\[
WC' = \int_{T_m}^{T_0} P' dT
\]

2. **Compressive Ratio** (EMC)

 \[
 EMC = \frac{(T_0 - T_m)}{T_0 \times 100}
 \]

3. **Compressive Recovery Ratio** (KC)

 \[
 KC = \frac{(T_0 - T_m)}{T_0 \times 100}
 \]

단, \(T_0 \): 제2회 압축 시 압력 0.5gf/cm²에서의 두께이 다.

4. **Energy Loss Ratio** (EC)

 \[
 SC = \frac{(EC - EC' \times EC \times 100)}{EC}
 \]

5. **Compressive Modulus** (DC)

 \[
 DC = \frac{(T_0 - T_m)}{T_0 - T_m} \times 100
 \]

6. **Fatigue Ratio** (HI)

 \[
 HI = \frac{EC}{EC \times 100}
 \]

단, \(EC \): 2회 압축시의 Compressive Energy이다.

7. **Compressive Index** (ID)

 \[
 ID = RC \times HI / 100
 \]

8. **Flexural Rigidity** (G)

 \[
 G = WL^4 / 88
 \]

단, \(W \): 시료의 단위 면적 당 중량 (mgf/cm²)

\[
\delta: \text{시료의 두께 (cm)}
\]

9. **Thickness** (T)와 **Weight** (W)

 \[
 T: \text{압력 0.5gf/cm²에서의 두께를 시료두께로 하였 다. (단위: mm)}
 \]

\[
W: \text{시료 1cm²의 중량을 mg단위로 나타내었다. (단위: mg/cm²)}
\]

10. **Pile Ratio** (P.R.)

 Pile Ratio는 韓松績典2000대의 제안한 다음 식에 의하여 계산하였다.

 \[
 \text{Pile Ratio} = [L_0 + (d + d_p) \pi / 2] \times m / 1
 \]

단, \(L_0 \): pile 길 (cm)

\[
d: \text{錳繩 直徑 (cm)}
\]

\[
d_p: \text{榻繩 直徑 (cm)}
\]

\[
m: \text{錳繩 方向 1cm간에 들어 있는 pile 本數 (本數/cm)}
\]

1: 単位長 (≡1cm)이다.

3. 통계 처리

통계처리는 Macintosh 통계용 pakage, STAT VIEW 11 version 1.01과 JMP version 2.05를 사용하였다. 통계 처리 방법은 각 pile group마다 균등검
사 경과와 관련된 물리적 특성치와 KES-F system 측정결과와 관련된 물리적 특성치, 이 두가지에 대하여, 우선 각 관능적 특성치들과 물리적 특성치들의 상관관계를 구하고, 요인분석에서는 주성분분석을 통한인 자주출방법으로 인자를 추출한 후, Kaiser가 제시한
고유치 1이상의 값으로 인자수를 결정하였으며, Varimax 직교회전을 실행하여 각 인자가 어떠한 물리적 특성치들과 관련된 인자인지 알아보고, 마지막으로는 다중회귀분석을 실시하여 각 관능적 특성치들
가장 잘 설명해 주는 회귀식을 얻었다.

III. 실험결과 및 고찰

1. 관능검사

43명의 여대생을 대상으로 하여 관능검사를 행한 후
검사자들의 관능능력에 대하여 점검을 한 결과, 3명
의 데이터는 제외시키고 40명의 데이터를 이용하여
로 하여 다음과 같은 결과들을 얻었다.

1) 순위법에 의한 관능검사

Fig. 3은 40명의 여대생을 대상으로 하여 순위법에
의한 관능검사를 실시한 결과를 pile길이에 대한 각
관능적 특성치 점수의 평균(관능검사의 hand value)
으로 나타낸 것이다.

(a)는 A-pile group의 각 관능적 특성치들의 평균
값을 pile길이에 대해 나타낸 것이다. 우선 smo-

othness는 5번 시료까지는 pile길이가 길수록 점
수의 평균치가 증가하다 6번 시료에서 약간 감소하는
경향을 나타내고 있다. 따라서 관능적 특성치 smooth-
ness는 5번 시료의 pile길이가 최적이라고 볼 수 있겠
다. softness는 pile길이가 길수록 점수의 평균치
가 증가하는 경향을 나타내고 있다. thickness와
heaviness는 pile길이가 길수록 점수의 평균치
가 높아지고 있다. 그런데 thickness에 있어서 주목되
는 점은 pile길이가 긴 시료가 평균치가 약간 높기는

Fig. 4. Total Hand Value obtained by paired compari-
son.
하나 pile질이 차이가 적은 1번과 2번, 3번과 4번, 5번과 6번 시료끼리는 서로 근소한 차이를 나타내고 있다는 것이다.

(b)는 V-pile group의 각 관능적 특성치의 평균값을 pile질이에 대해 나타낸 것이다. smoothness는 pile질이가 길어 절수록 점수의 평균치가 점차 증가하는 경향을 보이므로 있는데 4번 시료에서 약간 감소하다가 다시 증가하고 있다. softness 역시 pile질이가 길어 절수록 근소하게나마 점수의 평균치가 증가하는 경향을 나타내고는 있으나, 2번 시료가 1번 시료보다 평균치가 작고, 4, 5, 6번 시료의 차이가 매우 근소한 것으로 보아 A-pile group에 비해 V-pile group의

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Sample No.</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. WC (g·cm/cm²)</td>
<td>0.196</td>
<td>0.199</td>
<td>0.202</td>
<td>0.208</td>
<td>0.209</td>
<td>0.211</td>
<td></td>
</tr>
<tr>
<td>2. WC' (g·cm/cm²)</td>
<td>0.120</td>
<td>0.127</td>
<td>0.135</td>
<td>0.142</td>
<td>0.130</td>
<td>0.124</td>
<td></td>
</tr>
<tr>
<td>3. RC (%)</td>
<td>61.22</td>
<td>63.82</td>
<td>66.83</td>
<td>68.83</td>
<td>68.27</td>
<td>62.20</td>
<td></td>
</tr>
<tr>
<td>4. EMC (%)</td>
<td>14.41</td>
<td>13.90</td>
<td>13.45</td>
<td>13.35</td>
<td>11.65</td>
<td>10.64</td>
<td></td>
</tr>
<tr>
<td>5. KC (%)</td>
<td>98.67</td>
<td>98.76</td>
<td>99.40</td>
<td>98.80</td>
<td>98.79</td>
<td>98.70</td>
<td></td>
</tr>
<tr>
<td>6. SC (%)</td>
<td>38.78</td>
<td>36.18</td>
<td>33.17</td>
<td>31.73</td>
<td>37.80</td>
<td>41.23</td>
<td></td>
</tr>
<tr>
<td>7. DC (%)</td>
<td>90.78</td>
<td>91.07</td>
<td>95.24</td>
<td>91.02</td>
<td>89.64</td>
<td>87.79</td>
<td></td>
</tr>
<tr>
<td>8. HI (%)</td>
<td>96.94</td>
<td>96.48</td>
<td>97.03</td>
<td>96.63</td>
<td>97.13</td>
<td>97.63</td>
<td></td>
</tr>
<tr>
<td>9. ID (--)</td>
<td>59.35</td>
<td>61.58</td>
<td>64.84</td>
<td>65.92</td>
<td>60.41</td>
<td>57.38</td>
<td></td>
</tr>
<tr>
<td>10. MIU (--)</td>
<td>0.258</td>
<td>0.253</td>
<td>0.249</td>
<td>0.246</td>
<td>0.250</td>
<td>0.252</td>
<td></td>
</tr>
<tr>
<td>11. G (mgf·cm)</td>
<td>0.939</td>
<td>0.986</td>
<td>1.030</td>
<td>1.060</td>
<td>1.101</td>
<td>1.155</td>
<td></td>
</tr>
<tr>
<td>12. T (mm)</td>
<td>1.506</td>
<td>1.612</td>
<td>1.717</td>
<td>1.835</td>
<td>1.905</td>
<td>2.001</td>
<td></td>
</tr>
<tr>
<td>13. W (mg/cm²)</td>
<td>18.78</td>
<td>19.72</td>
<td>20.59</td>
<td>21.20</td>
<td>22.02</td>
<td>23.09</td>
<td></td>
</tr>
<tr>
<td>14. P.R.</td>
<td>3.6</td>
<td>3.8</td>
<td>4.1</td>
<td>4.3</td>
<td>4.5</td>
<td>4.7</td>
<td></td>
</tr>
</tbody>
</table>

(b) V-pile group

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Sample No.</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. WC (g·cm/cm²)</td>
<td>0.190</td>
<td>0.193</td>
<td>0.195</td>
<td>0.201</td>
<td>0.203</td>
<td>0.207</td>
<td></td>
</tr>
<tr>
<td>2. WC' (g·cm/cm²)</td>
<td>0.127</td>
<td>0.131</td>
<td>0.141</td>
<td>0.149</td>
<td>0.136</td>
<td>0.133</td>
<td></td>
</tr>
<tr>
<td>3. RC (%)</td>
<td>66.84</td>
<td>67.88</td>
<td>72.31</td>
<td>74.13</td>
<td>67.00</td>
<td>64.25</td>
<td></td>
</tr>
<tr>
<td>4. EMC (%)</td>
<td>15.18</td>
<td>14.29</td>
<td>13.62</td>
<td>13.47</td>
<td>11.81</td>
<td>11.00</td>
<td></td>
</tr>
<tr>
<td>5. KC (%)</td>
<td>98.42</td>
<td>98.71</td>
<td>98.67</td>
<td>98.02</td>
<td>99.01</td>
<td>99.35</td>
<td></td>
</tr>
<tr>
<td>6. SC (%)</td>
<td>33.16</td>
<td>32.12</td>
<td>27.69</td>
<td>25.87</td>
<td>33.00</td>
<td>35.75</td>
<td></td>
</tr>
<tr>
<td>7. DC (%)</td>
<td>89.61</td>
<td>90.95</td>
<td>90.21</td>
<td>92.74</td>
<td>91.59</td>
<td>94.12</td>
<td></td>
</tr>
<tr>
<td>8. HI (%)</td>
<td>95.26</td>
<td>96.37</td>
<td>96.41</td>
<td>95.52</td>
<td>96.55</td>
<td>96.14</td>
<td></td>
</tr>
<tr>
<td>9. ID (--)</td>
<td>63.67</td>
<td>65.42</td>
<td>69.71</td>
<td>70.81</td>
<td>64.69</td>
<td>61.77</td>
<td></td>
</tr>
<tr>
<td>10. MIU (--)</td>
<td>0.266</td>
<td>0.260</td>
<td>0.253</td>
<td>0.247</td>
<td>0.251</td>
<td>0.252</td>
<td></td>
</tr>
<tr>
<td>11. G (mgf·cm)</td>
<td>1.002</td>
<td>1.030</td>
<td>1.078</td>
<td>1.115</td>
<td>1.164</td>
<td>1.220</td>
<td></td>
</tr>
<tr>
<td>12. T (mm)</td>
<td>1.522</td>
<td>1.624</td>
<td>1.725</td>
<td>1.841</td>
<td>1.913</td>
<td>2.009</td>
<td></td>
</tr>
<tr>
<td>13. W (mg/cm²)</td>
<td>20.03</td>
<td>20.60</td>
<td>21.55</td>
<td>22.30</td>
<td>23.28</td>
<td>24.40</td>
<td></td>
</tr>
<tr>
<td>14. P.R.</td>
<td>3.6</td>
<td>3.8</td>
<td>4.1</td>
<td>4.3</td>
<td>4.5</td>
<td>4.7</td>
<td></td>
</tr>
</tbody>
</table>
softness 관능평가가 어려웠음을 알 수 있다. thickness와 heaviness는 pile길이가 증가함수록 절차의 평균치가 비교적 안정적인 증가를 나타내고 있다.

2) 일대 비교법에 의한 관능검사

Fig. 4는 일대 비교법에 의한 관능검사 결과(일대 비교법의 total hand value)를 pile길이별 절차의 평균으로 나타낸 것이다. 순위법에 의한 관능검사에서는 평균값을 대가지 관능적 특성치(sMOOTHNESS, softness, thickness, heaviness)로 나누어 각각 따로 평가하였으나, Fig. 4는 평균에 대한 전체적인 감각 평가치를 나타낸 것이다. A-pile group은 pile길이가 증가할수록 total hand value 역시 비교적 안정적인 증가를 나타내고 있다. 반면 V-pile group은 pile길이가 증가함에 따라 total hand value가 증가하는 경향을 나타내고 있다. 3번 시료와 4번 시료(즉, pile길이 1.65 mm와 1.75mm)는 total hand value의 차이를 거의 느낄 수 없는 것으로 나타났고, 전체적인 경향 또한 A-pile group보다는 안정적이지는 못한 것으로 나타났다. 이러한 것들로 미루어 볼때 일대 비교법에 의한 관능검사에서는 V-pile group이 A-pile group보다 평가가 어려웠다고 할 수 있다.

2. KES-F system에 의하여 계측된 물리적 특성치와 H.V., T.H.V.

1) KES-F system에 의하여 계측된 값으로부터 계산한 물리적 특성치

Table 3은 KES-F system에 의해 측정된 물리적 특성치들 중의 일부를 앞서 실형방법에서 언급된 공식에 의해 pile길이별로 계산하여 나타낸 것이다.

2) KES-F system에 의하여 계측된 H.V., T.H.V.

Fig. 5은 KES-F system에 의해 계측된 역학적 특성치들과, 정규분포를 고려한 대수(log)값으로 계산한 물리량으로부터 KES-F program에서 MEN’S WINTER SUIT에 의하여 구한 H.V.와 T.H.V.를 pile길이에 대해 plot한 것이다. 여기서 H.V. 즉 koshi, numeri, fukurami는 僕의 認知語돌이며, 1을 weak, 10을 strong으로 하여 1부터 10사이의 값으로 나타낸 것이다17. T.H.V.는 5를 excellent, 1을 poor로 하여 1부터 5사이의 값으로 나타내 것이다18.

전체적인 경향을 보면 A, V-pile group 모두 koshi 는 5번 시료까지는 증가하다가 6번 시료에서 약간의 감소를 나타내고, numeri는 pile길이가 길어질수록 절차 감소하는 경향을 나타내고 있으며, fukurami는 4번 시료까지는 점차 증가하다가 다시 감소하는 경향을 나타내고 있다. T.H.V.는 pile길이에 따른 차이가 매우 적기 때문에 그림상으로 보아서는 거의 차이를 느낄 수 없으나 두 group 모두 5번 시료까지는 증가하다가 6번 시료에서 약간 감소하는 경향을 나타내고 있다. 그리고 두 개의 pile group을 비교해 보면 그 차이가 매우 근소하기는 하지만 koshi는 V-pile group이 A-pile group보다 더 높게 나타났고, nume-

--- 477 ---
리와 fukurami는 A-pile group이 V-pile group보다 높게 나타났다. T.H.V.는 V-pile group이 A-pile group보다 높게 나타났다. 여기서 주목할 것은 여대생들에 의한 관능검사 결과에서는 pile길이 1.85mm는 5번 시료(pile길이 1.85mm)는 증가하다가 6번시료(pile길이 1.90mm)에서는 약간 감소한다는 것이다.

3. Velvet직물의 물리적 특성치와 태(관능적 특성치, 감각 평가치)외의 관계

여기서부터는 각 pile group마다 앞에서 구해진 “물리적 특성치와 관능검사에 의한 hand value”와 “물리적 특성치와 KES-F system에 의한 H.V., T.H.V.”의 두 가지로 구분하여 통계적 분석을 행하였다. 그 이유는 “관능검사 결과와 관련된 물리적 특성치”와 “KES-F system 측정결과와 관련된 물리적 특성치”가 분석 방법에 따라 어떤 항목에서 차이를 나타내고 있는지, 두 pile group사이에는 어떤 차이가 나타나고 있는지 알아보기 위해서이다. 또한 상관관계를 구하여 상관관계를 알아보고, 인자분석 및 다중회귀분석을 하였다.

1) 상관관계를 통한 분석

Table 4의 (a)는 관능검사 결과 얻어진 hand value와 상관관계가 높은(상관계수 절대치 0.9이상) 물리적 특성치들로 A-pile group과 V-pile group을 양축에 비교하여 정리해 놓은 표이다. #절차가 높은 것은 정상관, 점차가 있는 것은 역상관 관계를 의미한다. smoothness는 A, V-pile group 모두 압축 에너지, 굴육강도, 두께, 중량, pile배열과 역상관이 높은 것으로 나타났으나, V-pile group은 이것은 의도한 양축을과는 정상관, 압축회복용과는 역상관관계가 높은 것으로 나타났다. softness 역시 이와 같은 결과를 나타내고 있다. 그러므로 여대생들이 행한 관능검사 결과에서 smoothness와 softness는 두 group 모두 압축 에너지, 굴육강도, 두께, 중량, pile배열이 격차수록 높게 느끼지는 관능적 특성치라고 나타났다. thickness는 두 group 모두 압축 에너지, 굴육강도, 두께, 중량, pile배열과는 역상관이 높고, 압축응과는 정상관이 높은 것으로 나타났으며, V-pile group은 이

<table>
<thead>
<tr>
<th>Table 4. Physical properties correlated closely with subjective properties (a) Physical properties correlated closely with H.V. obtained by hand evaluating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical properties</td>
</tr>
<tr>
<td>A-pile group</td>
</tr>
<tr>
<td>WC, G, T, W, P.R.</td>
</tr>
<tr>
<td>WC, G, T, W, P.R.</td>
</tr>
<tr>
<td>WC, EMC#, G, T, W, P.R.</td>
</tr>
</tbody>
</table>

(b) Physical properties correlated closely with H.V., T.H.V. obtained by KES-F system

<table>
<thead>
<tr>
<th>Table 4. Physical properties correlated closely with subjective properties (b) Physical properties correlated closely with H.V., T.H.V. obtained by KES-F system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical properties</td>
</tr>
<tr>
<td>A-pile group</td>
</tr>
<tr>
<td>WC#, G#, T#, W#, P.R.</td>
</tr>
<tr>
<td>WC, EMC#, G, T, W, P.R.</td>
</tr>
<tr>
<td>RC#, SC, ID#</td>
</tr>
<tr>
<td>T.H.V.</td>
</tr>
</tbody>
</table>

(# : positive cor., none : negative cor.)

이에 의해 양축 resilience와는 정상관이 높은 것으로 나타났다. heaviness 역시 두 group 모두 압축 에너지, 굴육강도, 두께, 중량, pile배열과는 역상관이 높고, 압축응과는 정상관이 높은 것으로 나타났으나, V-pile group은 이에 의한 양축 resilience와는 정상관이 높고, 압축회복용과는 역상관이 높은 것으로 나타났다. 그러므로 thickness와 heaviness는 두 group 모두 압축 에너지, 굴육강도, 두께, 중량, pile배열이 격차수록 높게 느끼지는 관능적 특성치라고 나타났다.

Table 4의 (b)는 KES-F system에 의해 얻어진 H.V., T.H.V.와 상관관계가 높은(상관계수 절대치 0.9이상) 물리적 특성치들로 A-pile group과 V-pile group에 대하여 정리해 놓은 표이다. koshi(stiffness)는 A, V-pile group 모두 두께, pile배열과 정상관
계가 높은 것으로 나타났는데, 이것이에도 A-pile group에 있어서는 압축 에너지, 굴곡강도, 중량과 경상관이 높은 것으로 나타났으며, V-pile group에 있어서는 마찰체수와 역상관이 높은 것으로 나타났다. numeri(smoothness)는 두 group 모두 압축 에너지, 두께, 중량, pile배울과 역상관이 높은 것으로 나타났는데, 이에선 A-pile group에 있어서는 압축응력과는 정상관이 높고 굴곡강도와는 역상관이 높은 것으로 나타났으며, V-pile group에 있어서는 마찰체수와 경상관이 높은 것으로 나타났다. fukurami(softness&fullness)는 두 group 모두 압축 resilience, 압축 index와는 정상관이 높고 에너지 축정용과는 역상관이 높은 것으로 나타났으며, V-pile group은 희박 에너지와도 정상관이 높은 것으로 나타났다.

Table 4에는 (a)와 (b)를 비교해 볼 때, (a)에서는 역상관과 정상관관계가 둘 사이에 나타내지 않았지만, 모든 관능적 특성과 (smoothness, softness, thickness, heaviness)에 대하여 공동적으로 압축 에너지, 굴곡강도, 두께, 중량, pile배울이 높은 역상관 관계를 보이며, 이에 반하여, (b)에서는 각 관능적 특성점과 정상관관계가 높은 물리적 특성점과 다르게 나타나 있음을 알 수 있다. 그러므로 (a)기계적 재측에 의한 측정점수가 (a)검사자에 의한 측정점수가 보다 정확하고, 세부적인 결과를 얻어낼 수 있다고 나타났다.

2) 인지분석

Table 5는 인지분석 결과, 인지부하값이 높은 (+0.9이상)물리적 특성점들을 두개의 pile group에 대하여, 각 factor별로 정리해 놓은 것이다.

우선 (a)는 "물리적 특성점들과 관능검사에 의해 얻어진 H.V."로 인지분석을 행한 결과 구체한 factor들을 두개의 pile group에 대하여 정리해 놓은 표이다. factor 1은 A, V-pile group 모두 압축 에너지, 굴곡강도, 두께, 중량, pile배울에 관한 인자로 나타났으며, 이것 이외에도 A-pile group에서는 피로응력과, V-pile group에서는 압축 회복율, 압축 modulus도 관련된 인자로 나타났다. factor 2는 A, V-pile group 모두 희박 에너지, 압축 resilience, 압축 index와 관련된 인자로 나타났다.

(b)는 "물리적 특성점과 KES-F system에 의해 얻어진 H.V., T.H.V."로 인지분석을 행한 결과 구체한 factor들을 A, V-pile group에 대하여 정리해 놓은 표이다. A-pile group에서는 factor 1이 압축 에너지, 굴곡강도, 두께, 중량, pile배울, koshi에 관한 인자로 나타났으며, V-pile group에서는 압축, 에너지, 압축 회복율, 압축 modulus, 굴곡강도, 두께, 중량, pile배울, koshi, T.H.V와 관련된 인자로 나타났다. factor 2는 A, V-pile group 모두 희박 에너지, 압축 resilience, 압축 index, fukurami와 관련된 인자로 나타났으며, factor 3은 A-pile group에서는 압축 회복율과 관련된 인자로 나타났다.

이상에서 살펴본 Table 5의 (a), (b)에 정리된 factor들로 보아 대체적으로 factor 1은 압축 에너지, 굴곡강도, 두께, 중량, pile배울과 관련된 인자이고, factor 2는 희박 에너지, 압축 resilience, 압축 index와 관련된 인자라고 할 수 있다.

Table 6은 다중회귀분석을 통하여 물리적 특성점들로부터 hand value를 추정해 볼 수 있는 회귀식을 나타낸 것이다.

우선 (a)의 관능검사에 의한 H.V.에 대한 A-pile...
Table 6. Multiple regression analysis

Standard regression coefficient and predictor variables
(a) Physical properties and H.V. obtained by hand evaluating

<table>
<thead>
<tr>
<th>A-pile group</th>
<th>Criterion variable</th>
<th>V-pile group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46EMC +72.75</td>
<td>Smoothness</td>
<td>0.08EMC +182.84</td>
</tr>
<tr>
<td>MIU−20.70</td>
<td></td>
<td>MIU +0.22ID −58.43</td>
</tr>
<tr>
<td>R²=0.84*</td>
<td></td>
<td>R²=0.97</td>
</tr>
<tr>
<td>0.97EMC+115.99</td>
<td>Softness</td>
<td>0.82EMC +51.98</td>
</tr>
<tr>
<td>MIU −0.003DC−37.91</td>
<td></td>
<td>MIU−20.58</td>
</tr>
<tr>
<td>R²=0.99*</td>
<td></td>
<td>R²=0.98*</td>
</tr>
</tbody>
</table>

(***: 1% significant, *: 5% significant)

(b) Physical properties and H.V., T.H.V. obtained by KES-F system

<table>
<thead>
<tr>
<th>A-pile group</th>
<th>Criterion variable</th>
<th>V-pile group</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.22WC+0.55T−4.79</td>
<td>Koshi</td>
<td>−0.56T+1.18P</td>
</tr>
<tr>
<td>R−0.91</td>
<td>R²=0.87*</td>
<td>R²=0.95</td>
</tr>
<tr>
<td>0.09EMC+17.57</td>
<td>Numeri</td>
<td>0.02EMC+8.49</td>
</tr>
<tr>
<td>MIU+0.74</td>
<td>MIU+3.34</td>
<td>R²=0.99**</td>
</tr>
<tr>
<td>R²=0.99**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.17RC−0.15ID+4.94</td>
<td>Fukurami</td>
<td>3.51WC+0.01</td>
</tr>
<tr>
<td>RC+0.002ID+4.54</td>
<td>R²=0.97*</td>
<td></td>
</tr>
<tr>
<td>R²=0.95*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(***: 1% significant, *: 5% significant)

“굽힘성과 관련된 느낌, 굽힘 탄력성은 이 느낌을 크게 한다. 직물의 밀도를 높게 하고 탄력성이 있는 설로 제작한 직물은 이 느낌을 강하게 나타내는데*296*. 하는 것에 비추어 볼 때, 굽힘성, 굽힘 탄력성과 관련된 두 개, 직물의 밀도와 관련된 pile 배율이 포함되어 있는 것으로 보아 정의와 비슷한 화학적을 얻었다고 볼 수 있으며, numeri는 그 정의가 “유연하고, 매끄럽고, 부드러운 질감이 흡합한 감각으로서 그것의 정밀적인 느낌은 cashmere에서 느낄 수 있다. 전문어로는 털질이 좋은데서 오는 부드러움이라고 말한다**208**. 라는 것에 비추어 볼 때 화학적에서 마찰체수의 비중이 가장 크고, 압축률은 표준화적각계가 작게나라 포함되어 있는 결과를 얻었으며 이 또한 정의와 비슷한 화학적을 얻었다고 볼 수 있다. fukurami는 “부피감이 있고 품목하고 좋은 겉에서 느낄 느낌, 압축식의 탄력성에 따른 느낌이 동반된 투여용은 이 느낌과 밀접한 연관이 있다*296*. 라는 정의를 가지고 있는데 이것이 화학적 역시 정의와 비슷한 결과를 얻었다고 할 수 있다.

IV. 결 론

Ground fabric의 제작공정을 일정하게 한 상태에서 pile길이를 1.45, 1.55, 1.65, 1.75, 1.85, 1.90mm의 6종류와 종단한 acetate velvet과 viscose velvet을 시료로 사용하여 여두고도의 판정검사와 KES-F system의 측정결과로서 얻어진 물리적 특성치 및 H. V., T.H.V.을 통한 다음과 같은 결과를 얻었다.

1. 순원단과 일대비교법에 의하여 여두고도가 평가한 판정검사 결과에서는 pile길이가 길수록 smoothness, softness, thickness 및 heaviness 모두 hand value가 측정적에 중대하는 경향을 나타났다.

2. KES-F system에 의한 hand value 측정결과에서 koshi는 pile길이 1.85mm가지는 증가하다가 1.90mm에서 약간의 감소를 나타내고, numeri는 pile길이가 길어질수록 점차 감소하는 경향을 나타냈으며, fukurami는 pile길이 1.75mm가지는 점차 증가하다가 다시 감소하는 경향을 나타냈다. 그리고 total hand value는 pile길이가 1.45mm에서 1.85mm까지는 점차 증가하여 1.85mm에서 최대치를 나타내다가 1.90mm에서는 다시 감소하는 경향을 나타냈다.

3. 판정검사로 얻어진 H.V.와 상관관계가 높은 등
리적 특성치 및 「KES-F system」에 의해 얻어진 H. V., T.H.V.와 상관관계가 높은 물리적 특성치의 상관
계수를 구해본 결과, 민첩성에서 두 group 모두 모든
권능역 특성치에 대하여 압축에너지, 공유량도, 두
께, 중량, pile배울의 공통적으로 상관성이 높게 나타
난 반면, 압축에너지의 특성치마다 상관관계가 높
은 물리적 특성치들이 다르게 나타났다.

4. 인지분석을 행하여 두개의 pile group에 대하여 각 인자대에 「관능검사 결과 얻어진 H.V.」와 「KES-F system」에 의해 얻어진 H.V. 및 T.H.V.에 대해 인자
부하량이 높은 물리적 특성치와 관능적 특성치를 구해
본 결과, 공통적으로 factor 1은 압축 에너지, 두께,
중량, pile배울에 관한 인자로 나타났고, factor 2는
회복 에너지, 압축 resilient, 압축 index에 관한 인
자로 나타났으며, factor 3은 압축 회복율에 관한 인
자로 나타났다.

5. 다중회귀분석을 행하여 회귀식을 구해본 결과,
「관능검사 결과 얻어진 H.V.」에서는 관능적 특성치
smoothness, softness에 대하여 두 pile group 모두
압축응, 마찰계수가 포함되어 있는 반면에, 「KES-F system」에 의해 얻어진 H.V. 및 T.H.V.에서는 각 특
성치들마다 각기 다른 물리적 특성치들이 관여하고 있
었다.

참고 문헌

1) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(10), T146-152 (1982)
2) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(11), T160 (1982)
3) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(12), T167-172 (1982)
4) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(13), T183-188 (1982)
5) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(14), T196-201 (1982)
6) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(15), T198-203 (1982)
7) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(16), T204-209 (1982)
8) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(17), T210-215 (1982)
9) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(18), T216-221 (1982)
10) 西松豊典, 澤本二, 「バイル織物に関する研究」, 日本織維機械学会誌, 35(19), T222-227 (1982)
22) "パイル織物(1)", 織維工業雑誌, 第75巻, 第1号, 通卷第816号, 紡織機械学会発行 p. 30 (1984)
24) 西松豊典, 澤本汀二, 「パイル織物に関する研究」 (第2報)パイル織物の構造", 日本繊維機械学会誌, 35 (11), T163 (1982)