MAGNETIC PROPERTIES OF Fe-Al-B-Zr-Cu ALLOYS WITH FINE NANOCRYSTALLINE STRUCTURE

K.J. Kim, J.Y. Park*, K.Y. Kim, T.H. Noh and I.K. Kang

Division of Metals, Korea Institute of Science and Technology, P.O.Box 131, Cheongryang, Seoul 130-650, Korea

* Department of Metall. Eng., Sung-Kyun-Kwan Univ., Suwon, 440-746, Korea

The crystallization behaviors and magnetic properties for $Fe_{81-x}Al_4B_{10}Zr_5Cu_x$ (x=0, 1, 2 at%) alloys is investigated. By the addition of $1\sim2$ Cu, the temperature range, where a single bcc phase exists, expands largely over 200 K and the grain size of bcc phase represents to less than 10 nm. For the optimally annealed Cu-added alloys, the high μ_e (1 kHz) above 20000 combined with the high B_{10} of about 1.4 T is obtained in nanocrystalline state. The low core loss of 95.8 W/kg at 0.1 T and 100 kHZ is confirmed for the nanocrystalline $Fe_{80}Al_4B_{10}Zr_5Cu_1$ alloy.

I. INTRODUCTION

Recently, we have carried out a systematic study on the development of new soft magnetic materials in Fe-Al-B-Zr alloy system. As was reported [1], the good soft magnetic properties for Fe_{86-x}Al₄B₁₀Zr_x $(5 \le x \le 10)$ alloys annealed from amorphous state were obtained below the onset temperature of the first-stage crystallization. As crystallization started, the soft magnetic properties were deteriorated rapidly through the coarsening of bcc phase and formation of Fe-B compounds. For the optimally annealed amorphous alloys, the obtained magnetic properties were as follows, $\mu_e=17000$ ~ 25000 at 1 kHz, $H_c=20\sim30$ mOe and $B_{10}=0.6\sim1.1$ T. However, because T_c and B_{10} in the amorphous state of these alloys are much lower than those in the crystallized state, it is needed to improve T_c and B₁₀ characteristics by the proper addition of alloying elements to Fe-Al-B-Zr system and crystallization treatment.

It is well known that a metastable bcc phase with ultrafine grain size is obtained and hence a large improvement of their soft magnetic properties is caused by annealing of amorphous Fe-Si-B-Nb-Cu [2] and Fe-M-B-Cu (M=transition metal) [3] alloys in the vicinity of crystallization temperatures. It had subsequently been clarified that the addition of Cu to Fe-Si-B alloys enhanced

the instability of the amorphous structure and gave an easy formation of the nanocrystalline bcc phase [4].

Similarly, the addition of Cu is also expected to bring about a fine-grained bcc structure in the Fe-Al-B-Zr amorphous alloys. This paper is intended to clarify the effect of Cu on the crystallization behaviors and magnetic properties of amorphous Fe-Al-B-Zr alloys.

II. EXPERIMENTAL PROCEDURES

Amorphous $Fe_{81-x}Al_4B_{10}Zr_5Cu_x(x=0,1,2 at\%)$ alloys, about 1.5 mm wide and 18 μ m thick, were prepared by a single-roller melt spinning method in Ar gas atmosphere. The crystallization behaviors of amorphous alloys were examined by a differential thermal analyzer (DTA) at a heating rate of 10 K/min. The Curie temperature (T_c) thermomagnetization (σ_T) of amorphous alloys were studied in the temperature range from 298 to 1083 K in an applied field of 10 kOe using a vibrating sample magnetometer. The amorphous alloys were wound into toroidal cores with 21 mm inner diameter and annealed in the temperature range of 573 to 923 K for 1 h in the vacuum state of $\sim 10^{-3}$ Torr. The structures of the annealed alloys were estimated by an X-ray diffraction (XRD) using Cu-Ka radiation and transmission electron

microscopy (TEM). The effective permeabilities (μ_e) of the annealed alloys were measured by an impedance analyzer in an applied field of 10 mOe. The dc magnetic properties of the magnetic induction (B₁₀) and the coercive force (H_c) were measured by a hysteresis loop tracer under 10 Oe and 0.1 Oe, respectively. The core loss (W_L) was measured by using a B-H analyser.

III. RESULTS AND DISCUSSION

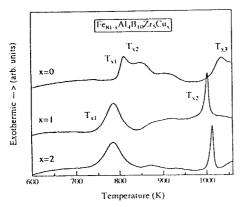


Fig.1 DTA curves of amorphous $Fe_{81-x}A14B_{10}Zr_5Cu_x$ (x=0,1 alloys heated at the rate of 10K/min.

Figure 1 shows the DTA curves, revealing the effect of Cu addition on the crystallization processes of amorphous $Fe_{81-x}Al_4B_{10}Zr_5Cu_x(x=0,1,2)$ crystalline phases precipitated allovs. The represented in Fig.1 were identified by X-ray separately [1], the As reported amorphous alloy with x=0 crystallized through three stages, consisting of the first-, second- and third-stage changes from amorphous to bcc, mainly Fe₃B and Fe₃Zr respectively. However, the alloys with x=1 and 2 crystallize through two stages, corresponding to the changes from amorphous to bcc and mainly Fe₂B(Zr), respectively. Here, the T_{x1} , T_{x2} and T_{x3} represent the onset temperatures of the precipitation of bcc, Fe₃B and Fe₃Zr in case of x=0, while T_{x1} and T_{x2} do bcc and $Fe_2B(Zr)$ phases in case of x=1 and 2, respectively. As shown in this figure, Tx1 and Tx2 for the Cu-free

 $Fe_{81}Al_4B_{10}Zr_5$ amorphous alloy are overlapped, while for the Cu-added alloys the temperature gap between the two peaks is expanded largely over 200 K. Furthermore, T_{x1} shifts to a lower temperature side. This result indicates that the addition of Cu in the amorphous Fe-Al-B-Zr alloy results in an extension of the temperature range where the single bcc phase field exists.

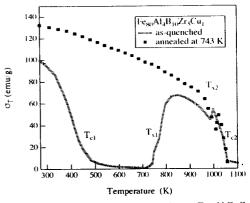


Fig.2 Thermomagnetic curves for amorphous Fe $_{80}$ Al $_{4}$ B $_{10}$ Zr $_{5}$ Cu $_{1}$ alloys as-quenched and annealed for 1 h at 743 K under an applied field of 10 KOe. The heating rate is 10 K/min.

Figure 2 shows the temperature dependence of (σ_T) for magnetization saturation Fe₈₀Al₄B₁₀Zr₅Cu₁ alloys as-quenched and annealed at 743 K for 1h, respectively. The T_{x1} and T_{x2} correspond to the onset temperatures of the firstand second-exothermic peaks on the DTA curves measured at the same heating rate. As the temperature increases, σ_T for the as-quenched alloy decreases remarkably and approaches nearly zero value at 470 K, which is the Curie temperature (Tcl) for the amorphous alloy. The further rise of heating temperature results in the significant increase of σ_T in the vicinity of T_{x1} , which is due to the precipitation of the bcc phase from amorphous matrix. It is notable the discontinuous increase at Tx2, which is presumably due to the structural change from the remaining amorphous phase to the bcc α -Fe(Al) and Fe₂B(Zr) ones, where pure α-Fe and Fe₂B phases have the T_c values of about 1043 and 1015 K [5,6], respectively. The bcc Fe₈₀Al₄B₁₀Zr₅Cu₁ alloy annealed at 743 K for 1 h is also recognized this phenomenon at T_{x2} . Furthermore, the Curie temperature (T_{c2}) of this alloy is about 1040 K and higher than those of other Fe-based nanocrystalline materials.

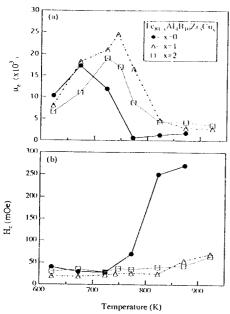


Fig.3 (a) Effective permeabilities, μ_{e_1} at 1 kHz and (b) coercive force, H_{e_1} as a function of T_a for amorphous Fe_{81-x}Al₄B₁₀Zr₅Cu_x (x=0,1,2) alloys.



Fig.4 Dark-field microstructures and corresponding diffraction patterns of Fe $_{80}$ Al $_4$ Bl $_10$ Zr $_5$ Cu $_1$ alloys annealed for 1 h at (a) 743 K and (b) 823 K.

Figures 3(a) show the changes in μ_e at 1 kHz as a function of annealing temperature, Ta, for the amorphous $Fe_{81-x}Al_4B_{10}Zr_5Cu_x$ alloys. The maximum value of μ_e at x=0 is located below T_{x1} and decreases significantly to nearly zero in the crystallite state. However, the μ_e values of the alloys with x=1 and 2 increase steadily and then reaches the maxima as high as 20000~25000 in the Ta range of 723 to 743 K, where the structural change from the amorphous to the bcc phase is observed. With further increasing Ta, they decrease rapidly and approach about 5000 at 823 K. As shown in Fig.3(b), H_c for the alloy of x=0 increases largely in the T_a range above T_{x1} , while for those of above x=1 are constant in the T_a range of 673~ 873 K.

In order to clarify the reason for the rapid change of the μ_e values for the Cu-containing alloys in the range of $T_{x1} \leq T_a \leq T_{x2}$, the microstructure of the amorphous $Fe_{80}Al_4B_{10}Zr_5Cu_1$ alloy was examined by TEM. As shown in Fig.4, the sample annealed at 743 K consists of a bcc phase with a homogeneous and ultrafine grains of $5\sim 8$ nm. However, the one at 823 K includes partially the inhomogeneous and large grains of $8\sim 15$ nm. Accordingly, it is presumed that the excellent soft magnetic characteristics for the bcc $Fe_{81-x}Al_4B_{10}Zr_5Cu_x$ (x=1, 2) alloys are strongly dependent on the grain size of bcc phase

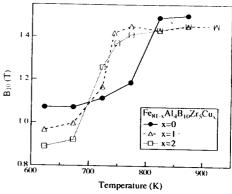


Fig.5 Magnetic induction, B_{10} , calculated by a hysteresis loop tracer at an applied field of 10 Oe as a function of annealing temperature for amorphous $Fe_{81-x}Al_4B_{10}Zr_5Cu_x$ (x=0,1,2) alloys.

On the other hand, although B_{10} for the Cu-containing amorphous alloys in Fig.4 is as low as $0.92 \sim 1.00~\rm T$ in the T_a range below 673 K, it start to increase sharply at 723 K, corresponding to the temperature that the amorphous phase changes into the bcc one. With further increasing T_a , it increases gradually and then reaches 1.45 T at 873 K.

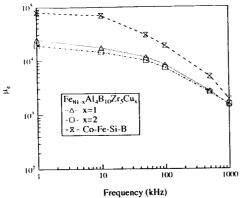


Fig.6 Changes in the μ_e values as a function of frequency for bcc Fe_{81-x}Al₄B₁₀Zr₅Cu_x (x=0,1,2) alloys.

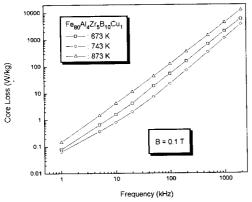


Fig.7 Changes in the W_L values as a function of frequency for the Fe $_{80}Al_4B_{10}Zr_5Cu_1$ alloy annealed at various temperatures.

The frequency dependence of μ_e for the bcc $Fe_{81-x}Al_4B_{10}Zr_5Cu_x$ (x=1, 2) alloys with the highest μ_e values at 1 kHz is exemplified in Fig. 6. The μ_e values decrease gradually to about 8000 at 100 kHz and significantly in the higher frequency range. In comparison with that for the amorphous Co-Fe-Si-B alloy, no district degradation is seen in

the range of 1 to 1000 kHz and, furthermore, they keep the high level of 1500 at 1000 kHz.

Figure 7 shows the changes in core loss (W_L) as a function of frequency for the variously annealed $Fe_{80}Al_4B_{10}Zr_5Cu_1$ alloy. W_L has a similar tendency against T_a and shows minimum at T_a =743 K. The optimum T_a leading to the minimum value of W_L agrees with that at which the maximum μ_e is obtained in Fig. 3 (a).

Table 1 Magnetic properties (Bs, μ_e , Hc), structure and Tc for Fe-Al-B-Zr-Cu and other soft magnetic alloys.

alloy	struct.	B _s (T)	μ _e at 1 kHz	Т _с (К)	W _{L**} (W/kg)
Fe ₈₀ Al ₄ B ₁₀ Zr ₅ Cu ₁	bcc	1.42*	25000	1040	95.8
Fe79Al4B10Zr5Cu2	bcc	1.37*	20000	1040	-
Fe ₈₇ Zr ₇ B ₅ Cu ₁ [3]	bcc	1.55	20000	-	-
Co-Fe-Si-B [7]	amor.	0.53	80000	483	-
Fe ₇₈ Si ₉ B ₁₃ [7]	amor.	1.55	9000	688	168
Fe73.5Si13.5B9Nb3Cu1 [7]	bcc	1.24	90000	873	-
Fe-6.5 wt.% Si [8]	bcc	1.80	2400	973	1200

* Hex=10 Oe, ** B=0.2T at 100 kHZ

the bcc magnetic properties for The annealed at optimum Fe-Al-B-Zr-Cu alloys annealing temperature are summarized in Table 1, where the data of some soft magnetic materials are also shown for comparison. The Bs and Tc values of the bcc Fe-Al-B-Zr-Cu alloys are considerably higher than those of bcc Fe-Si-B-Nb-B and Co-based alloys. The μ_e and W_L values at 1 kHz are also much higher than those of bcc Fe-6.5 wt.% Si and amorphous Fe-based alloys.

IV. CONCLUSIONS

With the aim of developing a new soft magnetic combined with a high saturation material properties magnetic magnetization, the structures of $Fe_{81-x}Al_4B_{10}Zr_5Cu_x$ (x=0, 1, 2 at%) amorphous state from alloys annealed investigated. By the addition of 1~2 Cu, the temperature range formed a single bcc phase expands largely more than 200 K. Furthermore, the addition of Cu results in the formation of bcc phase with a nanoscale grain size of 5~8 nm.

Especially, the bcc nanocrystalline Fe $_{80}$ Al $_{4}$ Bl $_{10}$ Zr $_{5}$ Cu $_{1}$ alloy produced by optimum annealing treatment exhibit high T $_{c}$, μ_{e} , B $_{10}$ and W $_{L}$ of 1040 K, 25000 at 1 kHz, 1.42 T and 95.8 W/kg at 100 kHz and 0.2 T, respectively.

REFERENCES

- [1] K. J. Kim, J. Y. Park, K. Y. Kim, J. S. Lee and T. H. Noh, The Third International Symposium on Physics of Magnetic Materials (ISSPM 95), 1995. 8/21 ~8/25, Seoul, Korea.
- [2] Y. Yoshizawa, S. S. Okuma and K. Yamaguchi, J. Appl. Phys., 64 (1988) 6044.

- [3] K. Suzuki, A. Makino, N. Kataoka, A. Inoue and T. Masumoto, Mater. Trans. JIM, 32 (1991) 93.
- [4] T. Masumoto, A. Inoue, Y. Harakawa, M. Oguchi and Y. Yano, Japanese Patent Applications, No. 59-164693, 1984.
- [5] S. Chikazumi, Physics of Ferromagnetism, Vol.1, Syokabo Press, Tokyo, 1978, p244.
- [6] F. E. Luborsky, Amorphous Metallic Alloys, Butterworths Press, London, 1983, p262.
- [7] Y. Yoshizawa and K. Yamaguchi, J. Magn. Soc. Jpn., 13 (1989) 231.
- [8] H. H. Liebermann, Rapidly Solidified Alloys, Marcel Dekker Press, Inc., New York, 1993, p 639.