Preparation of Precision Thin Film Resistor Sputtered by Magnetron

Abstract

To develop a high precision TiAIN thin film resistor, TiAIN films were deposited on Al₂O₃ substrates by reactive planar magnetron cosputtering from Ti and Al targets in an Ar-N₂ atmosphere. The characteristics of the TiAIN thin film were controlled by changing the R.F. power on Ti and Al targets, and the N₂ partial pressure.

The high precision TiAIN thin film resistor with TCR(Temperature Coefficient of Resistance) of less than 10ppm/℃ was obtained under the R.F. power condition of 160(w)/240(w) to Ti and Al targets at the N₂ partial pressure of 7×10⁻⁵ Torr. The composition of these films were investigated by XRD, SEM and EDS.

Key Words : TiAIN, Precision Thin Film Resistor, TCR, Reactive Cosputtering

1. 서 론

반도체 회로의 고밀도화와 고정밀화의 추세로 저항성자의 고품질화는 더욱 절실히 요구되고 있으며, 사무기기의 초반막의 성장에 따라 박막가열소자(thermal heating element)로서도 박막저항체의 용도가 더욱 증가하고 있다. 이와같은 고 품질의 박막저항체가 갖추어야 할 조건으로는 첫째, 전극과의 기계적 접촉 및 마찰에 의한 부식적 손상이 마호 없이 장시간 견디어야 하고, 고온에서 신화하지 않아야 한다. 둘째, 비저항이 높고, 저항온도계수(TCR: Temperature Coefficient of Resistance)가 0에 가까운 재료여야 한다. 1, 2

본 연구에서는 가장로 하여 있는 절화 타이타늄과 절화 알루미늄의 복합물인 절화 타이타늄 알루미늄(TiAIN)은 내마모성과 내산화 특성이 극히 우수한 것으로 보고되고 있다. 3, 4, 5 특히 절화타이타늄(TiN)은 비저항이 약 200 μΩ·cm이고 TCR이 약 +300ppm/℃ 인데 반하여 절화알루미늄(AIN)은 비저항이 약 2000 μΩ·cm로서 TCR이 약 -400ppm/℃인 것으로 알려져 있다. 따라서 Ti와 Al 타겟을 Ar-N₂ 분위기 속에서 동시에 반응성 스파트링하여 양의 TCR를 나타내는 TiN과 음의 TCR를 나타내는 AIN을 복합하면 TCR이 매우 낮은 고품질 박막저항체를 제작할 수 있을 것으로 사료된다. 6, 7

본 연구에서는 우수한 내열성과 기계적 특성을 가진 TiAIN을 비저항이 크고 TCR이 극히 낮은 초정밀 박막저항성자로 이용하기 위하여, 반응성 분위기에서 Ti와 Al 두개의 타겟을 동시에 스파트링할 수 있는 장치를 제작하여, 최적의 박막형성조건을 규정하고, 그 특성을 연구하였다.

2. 실험 방법

그림 1은 본 연구에서 사용한 R.F. 평판형 마그네트론 스파트링 프로세스의 캐드로를 나타내고 있다. 이 그림에서 두개의 타겟은 기판의 중심을 하여 중심축에서 동일한 거리와 각도를 가지고 설정되어 있으며, 드라이브 모터(driving motor)에 의하여 기판은 최고 10cm까지 상하 이동이
그림 1. R.F.광활형 마그네트론 동시 스파트링 프로세스의 개념도.

Fig. 1. The Schematic Diagram of Experimental Set-up.

가능하다. 또한 N₂와 Ar 가스의 유량을 MFC (Mass Flow Meter)에 의하여 각각 0.2 SCCM에서 100 SCCM까지 정밀 조절할 수 있으며, 5×10⁻⁷ Torr까지 진공이 가능하다. 더욱이 독립된 두 개의 R.F. 전원 및 두개의 타겟(3 inch)을 동시에 혹은 독자적으로 운전할 수 있어 여러중류의 재료를 동시에 스파트링할 수 있다. 기판은 PTC(Positive Temperature Coefficient)소자가 의하여 800℃까지 가열할 수 있으며, 백막의 평활도를 증가시키기 위하여 기판은 중량중에 분당 20회까지 회전할 수 있다.

본 연구에서는 Ar 가스를 동착가스로 N₂ 가스를 반응성 가스로 이용하여 Ar 가스에 대한 질소분압과 Ti와 Al 타겟에 인가되는 R.F. 전력등을 변수로 하여 각종 백막을 제작하였다. 사용한 기판은 알루미나, 실리콘레이크(111) 및 고속도장(high speed steel) 이며, 이들은 동시에 원판상으로 배치하여 각 기판에 TiAlN 백막을 형성한 후, 저항특성과 물성연구 (EDS : Electron Diffraction Spectroscopy, XRD : X-Ray Diffraction Patterns)에 이용하였다. 표 1은 본 연구에서의 실험조건 및 실험변수의 값에 대한 결과를 나타내고 있다.

한편 백막형성체의 전기전도는 주로 격자의 열운동과 전자의 상호작용에 의하여 결정되므로 저항은 \(\rho \)는 다음과 같이 나타낼 수 있다.\(^a\)

\[
\rho = \text{Const.} \cdot \frac{T}{M \theta^2} \quad (1)
\]

여기서, \(T \)는 절대온도, \(M \)은 열운동원자의 질량이며, \(\theta \)는 Debye 격자온도이다. (1)식에서 다음식을 얻을 수 있다.

\[
a = \frac{1}{\rho} \cdot \frac{d \rho}{dT} \quad (2)
\]

여기서 \(a \)는 TCR을 나타내고 있다. 백막의 저항 측정은 4 단차법으로 절소분압기에 중한 형습조에서 25℃에서 125℃까지 온도를 변화시키면서 측정하였다. 백막의 제작조건에 따른 백막 배향성과 백막의 표면구조를 연구하기 위하여 SEM과 XRD를 이용하였으며, EDS에 의하여 백막을 구성하는 물질의 원소비율과 결정을 조사하였다.

3. 결과 및 고찰

그림 2는 기판온도 300℃, 진공도 2.5×10⁻³ Torr에서는 Ti와 Al타겟에 인가되는 전력과 절소분압을 변수로 하여 제작된 각종 시료의 저항을 특성변화를 나타내고 있다. 일반적으로 절소분압의 상승과 Al 타겟에 인가되는 R.F. 전력의 증가에 따라 저항이 증가하는 경향이 있음을 알 수 있다. 특히, Ti와 Al 타겟에 가해지는 R.F. 전력이 각각 160W 및 240W인 경우(이하 160/240 등으로 표기함) 절소분압의 증가에 따라 급격하게 저항이 상승하는 것을 관찰할 수 있으며, 이것은 절소분압이 낮을 때는 거의 침체되지 않고 급속상으로 스파트링 되던 Al이 절소분압의 증가에 따라 침체가 진행되며, 저항은 매우 높은AIN의 특성과 백막의 성질을 지배하기 때문에로 설명된다. 한편 200/200과 240/160의 두 특성구선은 곰선 160/240의 경우에 비하여 저항의 증가는 적게 나타나고 있다. 그 이유는 Ti타겟에 인가되는 R.F. 전력이 Al 타겟에 비하여 작거나 크기 때문에 형성된 백막에 존재하는 AIN의 양이 약 50% 이상이 되지 못하여, 전도에 기여하는 대부분의 전자가 AIX에 크게 영향을 받지 않고 TiN을 통하여 이동하기 때문에 이로 설명된다.\(^b\)

표 2는 절소분압 \(7 \times 10^{-5} \) Torr에서 얻어진
그림 2. 질소분압에 따른 TiAIN박막의 저항을 특성.

Fig. 2. The resistivity as a function of N₂ partial pressure for TiAIN thin films.

표 2. R.F. 출력에 대한 TiAIN의 원자 조성비.
Table 2. The atomic ratio in TiAIN as the R.F. Power.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom(%)</td>
<td>41.98:58.02</td>
<td>51.14:48.86</td>
<td>54.69:45.31</td>
</tr>
<tr>
<td>Ti:Al</td>
<td>56.23:43.77</td>
<td>65.02:34.94</td>
<td>68.18:31.82</td>
</tr>
</tbody>
</table>

TiAIN 박막내 Ti와 Al의 원소비율과 질량비를 EDS로 분석한 결과를 나타내고 있다. TiAIN 박막내 포함된 Al과 Ti 원소의 양은 타كت에 인가되는 R.F. 전력에 거의 비례하고 있음을 알 수 있다.

그림 4. 주위 온도변화에 따른 TiAIN박막의 저항율 특성(N₂=7×10⁻⁵ Torr).

Fig. 4. Variation of resistivity as a function of ambient temperature for TiAIN thin films.(N₂ partial pressure=7×10⁻⁵ Torr)

AIN의 특성이 다른 곡선에 비하여 다소 크게 나타나고 있기 때문인 것으로 사료된다.

그림 4는 그림 3의 조건에서 질소의 분압만을 증가하여 질소분압 21×10⁻⁵ Torr에서 제작된 시료의 저항율특성을 나타내고 있다. 곡선 240/160에서 주위 온도증가에 따라 저항율이 증가하고 있으며, 곡선 160/240에서는 온도증가에 따라 저항율은
오하나 감소하고 있는데 반하여 죽선 200/200에서
는 온도가증에 따른 저항율의 변화는 거의 없이
두 목선의 중간에 위치하고 있음을 알 수 있다.
이
와 같이 R.F. 전력 및 질소분압에 따라 주원온도변
화에 따른 저항율의 변화가 상이하게 나타나는 것은
R.F. 전력 및 질소분압이 변화하면 결화정도가 변
화하여 양의 TCR를 나타내는 TiN과 음의 TCR을
타내는 AIN의 특성이 명확하게 구별되기 때문
인 것으로 사료된다.
그림 5는 질소의 분압비를 더욱 증가시켜서 35
×10^{-5} Torr에서 제작된 시료의 저항율 변화를 나
타내고 있다. 그림 4에 비하여 전체 저항율의 특
성은 1이하의 영역으로 이동한 것을 알 수 있다.
그림 3, 4, 5의 결과를 종합하면 질소의 분압으로
미약한 평화가 증가함에 따라 TiN의 TCR은 감소하여 일정한 양(+)의 값으로 포화되는 특성을 나타내지만 AIN의 TCR은 저항율의 증가에 따라 음
(-)의 값으로 급격하게 증가하고 있음을 알 수 있
다. 이와같은 변화를 더욱 명확히 하기 위하여
TiN과 AIN단의 TCR 특성을 고찰하였다.
그림 6은 TiN과 AIN 단의 TCR(TCR)특성을

\[\text{T.C.R. (ppm/K)} \]

\[\text{N}_2 \text{ Partial Pressure (x10^{-5} Torr)} \]

그림 6. 저온분압에 대한 TiN과 AIN의 TCR특성.

Fig. 6. The characteristics of TCR of TiN and
AIN as a function of N2 partial pressure.

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{R.F. Power} \]

\[\text{Ambient Temperature (C)} \]

그림 5. 주원온도변화에 따른 TiAIN 박막의 저
항율특성(\(N_2=35 \times 10^{-5}\)Torr).

Fig. 5. Variation of resistivity as a function of
ambient temperature for TiAIN thin films.(\(N_2=35 \times 10^{-5}\)Torr)

\[\text{TCR (ppm/K)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

\[\text{Ambient Temperature (C)} \]

\[\text{R.F. Power} \]

\[\text{Resistivity (\mu \Omega \cdot cm)} \]

\[\text{TCR (ppm/K)} \]

그림 8은 그림 7에서 질소분압을 21×10⁻⁵Tor로 증가한 경우의 저항율과 TCR의 특성을 나타내고 있다. R.F. 전력 200/200 근처에서 저항율이 크게 증가하고 있으며 TCR도 양의 영역에서 음의 영역으로 이동하면서 ZERO TCR Line을 통과하고 있다. 이 그림은 태이트로 Ti와 Al공급을 사용하지 않고 친화된 세라믹 태이트인 TiN과 AIN을 사용하여 동시에 스파트링한 결과와 매우 비슷한 양상을 보이고 있다.6) 질소분압 21×10⁻⁵Tor에서에서는 Ti와 Al에 인가되는 전력에 비슷한 영역에서 우수한 TCR의 특성을 얻을 수 있었다.

그림 9는 질소분압을 더욱 증가하여 35×10⁻⁵Tor에서 얻어진 시료의 저항율과 TCR의 특성을 나타내고 있다. TCR의 특성이 그림 8에 비하여 왼쪽으로 이동되어 있으며, 저항율이 상승하는 지점도 약간 왼쪽으로 이동되어 있고, 전체적인 저항율의 값은 더욱 증가하고 있는 것을 알 수 있다. 그림 7,8,9의 결과로 질소분압의 증가에 따라 TCR가 영(0)이 되는 영역은 Al 태이트에 인가되는 R.F.

Fig. 9. TCR and Resistivity as a function of R.F. power to targets.(N₂ partial pressure =35×10⁻⁵Torr)

그림 10. 질소분압을 변화로 하여 제작된 TiAIN의 XRD특성(Ti : Al=200 : 200W)

Fig. 10. XRD patterns of the films deposited with various N₂ partial pressure.

전력이 감소하는 영역으로 이동하며, 저항율은 증가하는 것을 알 수 있다. 이것은 주로 친화의 증가로 인하여 AIN의 저항율이 증가하여 음의 TCR값이 더욱 크게 나타나기 때문인 것으로 사료된다.
AIN이 이와같이 약 6.2eV의 범드갭을 가진 반도체의 구조를 하고 있기 때문이다.

그림 10은 기관온도 300℃, R.F. 전력 200/200 (W)에서 절소분압을 변수로 제작된 시료의 XRD 패턴의 변화를 나타내고 있다. 절소분압이 증가함에 따라 (111)의 배향성을 가진 TiAIN의 피크가 매우 분명하게 나타나는 것을 알 수 있다. 절소분 압 7×10⁻³ Torr에서 거의 TiAIN의 피크를 관찰할 수 없는 것은 질화에 기여하는 질소의 양이 적어서 질화물이 충분히 형성되지 못하고, 금속상과 혼재하여 아말가스상을 형성하기 때문인 것으로 사료된다.

그림 12. R.F. 전력을 변수로 하여 제작된 TiAIN 의 표면사진(N₂=35×10⁻⁵Torr).

Fig. 12. The surface SEM image of the TiAIN films(N₂ partial pressure=35×10⁻⁵Torr).

고, 따라서 AIN은 TiN과 동일한 격자구조를 구성하지 못하여, 그래인의 크기가 매우 작을 비정형에
가까운 격자구조를 가지고 있기 때문인 것으로 사료된다. 결국 160/240에서는 AIN이 TiN보다 우세하여 매우 큰 저항율을 나타내고, -300ppm/℃ 이상의 TCR를 나타내고 있다. 이 결과는 그림 9의 특성과 잘 일치하는 것이며, 그림 12의 표면 SEM 사진에서도 잘 나타나 있다. 이 SEM 사진에서 240/160의 경우에는 0.1-0.3㎛ 정도의 적정을 가진 그레인을 관찰할 수 있다. 200/200에서는 240/160에 비하여 그레인의 크기는 크게 감소했으나 그레인과 그레인의 경계는 구별할 수 있다. 그러나 160/240에서는 그레인의 경계를 구별할 수 없는 표면 형상을 하고 있는 것을 알 수 있다. 이와 같은 현상은 그림 11의 XRD의 결과와 같이 AIN의 과정에 의하여 흩어진 격자구조를 가지지 못하는 아폴리사상을 나타내고 있기 때문인 것으로 사료된다.

4. 결론

Ti와 Al 타겟을 동시에 반응성 평판형 마그네트론 스파트팅하여 제작된 TiAlN 박막의 적장특성과 물성을 고찰하여 다음과 같은 결론을 요약할 수 있었다.

1. Ar에 대한 질소분압에 따라 TiAlN의 박막의 적장이 증가하고, 저(-)의 TCR를 나타낸다.
2. 성장온도 300℃, 진공도 2.5×10^{-3}Torr, 질소분압 7×10^{-3}Torr, Al타겟과 Ti타겟에 각각 인가되는 R.F.출력비 240:160(W)에서 1ppm/℃의 낮은 TCR가 가능해 적장박막을 얻을 수 있었다.
4. R.F. 스파트팅에 의한 박막의 배향은 거의 (111)면에만 집중되고 산소분압의 증가와 Ti타겟의 R.F. 출력 증가에 따라 더욱 두드러진 배향 성을 나타내었다.

참고 문헌